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 Abstract 

In human complex networks, link prediction aims to predict when missing, 
deleted, or future linkages may arise. In this work, we use link prediction methods 
on five different human interaction networks to find the best prediction method 
for human complex networks. The techniques utilized are based on similarity-
based strategies and are mainly concerned with evaluating each network's 
similarity scores. Eight algorithms were carefully selected and modified for use in 
networks relating to humans since they have shown encouraging results in other 
complicated network contexts. To evaluate the predictive power of the applied 
techniques, our simulation centers on forecasting links that have been eliminated 
from the network. The datasets are converted into adjacency matrices and then 
divided into training and probing sets as part of the technique. The chosen methods 
are used to calculate similarity scores during a training phase that is followed by 
rigorous testing. Accuracy metrics are then computed for every dataset. This 
method makes it easier to do a thorough comparison analysis, which makes it 
possible to determine which prediction method works best. The author used five 
different datasets to evaluate the performance of eight different methods. The 
AUC was the evaluation metric that was employed. According to the findings, 
the Resource Allocation Index (RAI) performed the best on big and complicated 
datasets out of all the algorithms. 
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1. INTRODUCTION
Complex networks provide a robust framework for 
describing real-world networks [1]. These networks 
can be accurately represented using graphical models 
[2], where nodes correspond to social entities or 
individuals, and links signify interactions or 
relationships between these nodes [3]. Complex 
networks involve nodes representing entities 
(biological components, individuals, etc.) and links 
indicating their interactions [4]. The applications of 
complex networks are widespread, particularly in 

applied sciences. They have played a crucial role in 
shaping legislative efforts focused on citizen 
engagement and optimizing road networks for 
efficient routes [5]. Because of over time, new edges 
and vertices are constantly added due to their 
inherent adaptability. [6]. Research into these 
networks has gained significant attention, leading to 
practical applications that address various network-
related inquiries [7]. Because complex networks are 
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dynamic, the problem of missing link prediction 
(LP) has grown more difficult. [8]. 
The core concept of the LP problem involves 
predicting potential links between nodes within a 
given complex network [9]. In essence, LP predicts 
linkages that do not yet exist between nodes by 
estimating the likelihood of links between pairs of 
nodes that are not yet linked. [10]. Solving the 
problem of predicting link existence holds promise 
not only for filling in missing data gaps within 
complex networks, such as predicting protein-
protein interactions in biological networks, but also 
for forecasting network evolution (predicting future 
link existence) [11], [12]. The underlying premise of 
LP is that if two nodes are similar, they probably 
have a link. Calculating node similarity is a critical 
aspect, and the original method used to address this 
problem was the Common Neighbors (CN) 
technique [13]. But there were drawbacks to this 
approach, especially its dependence on nodes with 
higher degrees. Several CN variations, such as the 
Jaccard Index [14], have been used to minimize this 
bias to get around this restriction. Other techniques 
for calculating node similarity, such as the Katz Index, 
have also shown promise [15]. 
In the realm of social networks, LP has exhibited 
progress, effectively revealing hidden connections 
that contribute to a deeper understanding of social 
dynamics [16]. Similarly, LP’s application extends to 
transportation networks, shedding light on potential 
links that impact route optimization and overall 
network efficiency [17]. Furthermore, in the 2 realms 
of biological networks, LP has been harnessed to 
uncover latent relationships, enhancing our 
comprehension of complex molecular interactions 
[18]. Beyond these domains, LP techniques have 
proven beneficial for path analysis within the World 
Wide Web (WWW), enhancing link navigation and 
information retrieval [19]. This method has also 
found application in hyperlink creation and 
prediction, contributing to the dynamic evolution of 
web content and connectivity. 
[20] [21]. Additionally, LP has been harnessed to 
delve into intricate protein-protein interactions, 
offering a more nuanced perspective on biological 
processes [22]. 
The rest of the paper is organized in this manner. 
Section 2 discusses the literature review. Section 3 

discusses methodology, Section 4 discusses results 
and analysis, and Section 5 discusses the conclusion 
and Future Work. 

2. LITERATURE REVIEW 
LP is an emerging research problem, and work has 
been done in this area. In 2011, a survey was 
performed by Tao Zhou and Linyuan Lu¨ in which 
the LP techniques were implemented on different 
datasets. Local, global, and quasi-local similarity 
indices were the similarity indices that were used. 
Also, the Maximum likelihood methods were 
implemented, and probabilistic models were applied. 
As an evaluation metric, they employ accuracy and 
precision. The evaluation of the research led to the 
conclusion that the similarity indices performed 
effectively in the provided LP situation. [4]. In 2014, 
LP techniques were implemented using the 
information theory perspective for the role of 
network topology. Fei Tan, Boyao Zhu, and 
Yongxiang Xia use data mining techniques. The 
measurement metric for evaluation was accuracy. 
The results concluded that a mutual information 
approach was introduced [30]. 
The use of the Pearson correlation coefficient 
approach on high-order pathways was discovered to 
be successful in 2015. The data mining techniques 
were implemented on the 9 empirical networks [31]. 
In 2016, another survey was performed, whose main 
focus was the computational complexity analysis of 
other techniques. The methods used were those of 
data mining, and these were implemented on 7 of the 
empirical networks with different perspectives and 
backgrounds. Accuracy and Precision were used as 
evaluation metrics. The comparison was made with 
the old techniques [5]. In 2017, in the area of graph 
theory, a quick way to resolve the LP problem was 
developed. The problem covered was that LP can do 
more than just determine which edges will appear in 
the network. The techniques used were those of data 
mining. The evaluation metrics used were Accuracy 
and Precision [32]. 
In 2018, a network’s nine missing links were located 
using a multiple attribute decision-making process. In 
this study, a novel approach was developed and 
applied to 10 real-world networks. A metric for 
evaluation was accuracy. The MADM method was 
effective in solving the problem [33]. A survey of LP 
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methods, applications, and performance was carried 
out in 2019. They were implemented in the graph 
theory domain, and the techniques used were those 
of data mining. 8 different datasets were used, and 
the accuracy was the evaluation metric [34]. In 2019, 
common neighbor degree penalization was 
performed on the real world as well as the synthetic 
networks. Accuracy and precision were employed as 
evaluation metrics. The research covered two main 
challenges: one was that of large data, and the 
second was of low computational complexity [35]. 
The LP on local path research was carried out in the 
field of graph theory in 2020. Twelve separate 
datasets were subjected to data mining techniques. 
The evaluation metric employed was accuracy and 
precision. When compared to current approaches, 
the results produced offer greater accuracy [10]. The 
parameterized approach based on the centrality and 
common neighbors was created in 2020 and was 

intended to be used on eight networks to address 
the missing LP issue. The evaluation metric 
employed was accuracy and precision. It 
demonstrates that accuracy outperforms precision 
using the employed approach [36]. 
 
3. THE PROBLEM OF LINK PREDICTION 
One of the main issues with LP is that the networks 
are dynamic and incomplete, which makes it possible 
for nodes to form and disappear at any time in the 
future. In terms of the static networks, the nodes are 
static, but in the case of real-world networks, the 
situation is opposite, and the links can be changed 
dynamically with time. For example, we have the 
graph G (V, E) as shown in Figure 1 [41]. It is 
essential to note that although networks in certain 
contexts might be considered static, the same does 
not hold for real-world networks. This characteristic 
poses a significant challenge for LP [23].  

 
Figure 1: Graphical Representation [41] 

 
3.1 Graph Types 
The variety of network structures and ideas, with the 
following graph categories, which are shown in 
Figure 2. 
An Undirected Graph is a mathematical structure 
consisting of nodes or vertices connected by edges, 
where the edges lack directionality, representing 
mutual relationships or connections between the 
nodes. 
• Directed Graph is a directed graph is a 

mathematical representation in which nodes or 
vertices are connected by directed edges, signifying 
one-way relationships between the nodes, indicating 
a clear direction from one node to another. It shows 
the direction of edges. 
• A Weighted Graph is a graph in which each 
edge has a real-numbered value associated with it 
• A Connected Graph is a graph in which all 
the vertices are connected to all the other vertices.
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Figure 2: Types of Graphs 

 
4. APPLICATION OF LINK PREDICTION 
LP approaches have been used extensively in a variety 
of fields. Any area where entities interact with one 
another can gain from LP. The following are some 
of the common uses for LP. 
 
• Identification of Anomalous Email 
The feature of detecting anomalous email is that 
communication acts occur in a network-based 
structure. One-to-one or one-to-many 
communication is possible. One-to-many 
approach detection and anomaly detection are 
performed using the LP technique. A strategy put 
out by Huang and Zeng views email communication 
as a network with nodes and uses LP techniques to 
forecast future conversations [24]. 
 
• Co-participation in Event Prediction 
In social network analysis, persistent relationships 
and discrete events are included in the data. In 
these social networks, the data is changing over time. 
Such linkages and events can be used to forecast the 
co-participation in an event. How likely is it that X 
will call Y next week, for instance? [25]. 
 
• Items recommended to users. 
A recommendation system that suggests items to 
the users from a Bipartite Network. Bipartite 
networks consist of user-tags, item-tags, and some 

other networks. With these, the LP technique is 
applied, and the recommendation system works in 
that manner [26]. 
 
• Yeast proteome 
A protein function that takes advantage of LP 
methods to improve protein interaction. After 
testing, the role-similarity measure is applied to the 
yeast proteome [27]. 
 
5. METHODOLOGY 

The detailed research methodology begins with the 
collection of datasets, which are in numeric form. 
The data sets are in the raw form and needed to be 
presented in an understandable form, which was 
done by the tool (MATLAB). Using Matlab, after 
being stored in an array, the data sets were 
individually given a graphic representation, so that 
the datasets could be understood properly. The 
adjacency matrix is obtained from the graphical 
representation, which represents the links between 
the nodes. There are two instances. The phrase 
“Adjacency Matrix” refers to a matrix where either a 
link exists, signified by a 1, or a link does not exist, 
denoted by a 0. The Adjacency matrix is then divided 
into Training and Probe sets. Different division 
classes, including 90-10, 80-20, 70-30, 60-40, and 50-
50, were used to divide the training and probe sets. 
To determine the best division value, the 
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implementation performed on each of the division 
classes will produce particular results that will be 
compared. The AUC value that is closest to ”1” will 
be chosen for further processing. Each of the chosen 
approaches then runs the prediction phenomenon 
after choosing the train-probe split percentage. A 
post-prediction analysis is carried out to determine 
the effectiveness of each technique on each set of 
data. In the end, the results are compared, and the 
best predicting technique is identified. The overall 
methodology of the research can be shown in Figure 
3. 
To evaluate the performance of the selected 
algorithms in our analysis, a comprehensive set of 
experiments was conducted on four distinct datasets 
for each algorithm. The underlying process is 
systematically outlined below and can also be 
visualized in Figure 3 for a clearer 
understanding. Once the datasets are refined, the 
subsequent step involves the creation of an 
adjacency matrix. This matrix serves as a fundamental 
representation of the network, capturing the 
relationships between nodes. To construct this 
matrix, the process begins by identifying the 
maximum number of nodes present in the dataset. 
This value, denoted as max(max(Dataset())), 

essentially indicates the total count of nodes within 
the dataset. Subsequently, a square matrix of 
dimensions N x N is generated, where N corresponds 
to the previously determined maximum node count. 
Initially, this matrix is populated with zeros, 
signifying the absence of any connections between 
nodes. 
The heart of the process lies in populating this matrix 
with the actual interactions present in the dataset. 
The values within the matrix are updated based on 
the existence of connections between nodes, thereby 
effectively reflecting the network’s underlying 
structure. This transformed matrix serves as the final 
adjacency matrix, providing a comprehensive 
overview of the relationships among entities within 
the network. The datasets are randomly split into a 
training set and a testing set. For a single 
experiment, there would be no accurate results due 
to the bias in data selection. To overcome this effect 
for each algorithm on the respective data set, we 
perform 100 experiments and then calculate the 
average AUC. Through this procedure, the total 
number of experiments is 4800. After 4800 
successful experiments, the results would be more 
accurate. And the error rate would become 
negligible. 

 
Figure 3. Methodology 

5.1. Terminology and Notations 
The size of the network may alternatively be 
expressed in terms of a link between the i and j 
nodes, denoted by the pair e_i.j. |V |, which stands 
for "number of nodes." The number of linkages is 
represented by the letter E. LP uses undirected 

graphs; therefore, instead of arcs, they contain edges. 
In essence, the elements of the vertex set that are 
represented as e = (vi,vj) 
∈ E, where (vi,vj) ∈ V, are called edge sets. When the 
edge E is split into two sections, ET and EP, which 
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stand for Training Set and Probe Set, respectively, 
and ET ∪ EP = E, the standard LP may be expressed as 
follows. The set of nodes that are connected by the 
edge x ∈ V is known as x's neighbors and is 
symbolized by the symbol Γx. The degree of node x 
in the undirected graph is denoted by |Γx|. 

6. TOOLS AND TECHNIQUES 
The following tools and techniques are employed for 
this work. 
 
6.1 MATLAB 
MATLAB is a tool used for numeric and 
programming platforms developed by MathWorks. It 
allows matrix manipulation, implementation of data 
and algorithms, and plotting of data. It will help to 
visualize the datasets and convert them into an 
adjacency matrix for further processing of the results. 
Using MATLAB, after being stored in an array, the 
data sets were individually given a graphic 
representation, so that these datasets could be 
understood properly. The adjacency matrix is 
obtained from the graphical representation, which 
represents the links between the nodes. There are 
two instances. The phrase “Adjacency Matrix” refers 
to a matrix where either a link exists, signified by a 1, 
or a link does not exist, denoted by a 0. The 
Adjacency matrix is then divided into Training and 
Probe sets. 
 
6.2 Jaccard Index 
A local similarity index, the Jaccard Index, is 
comparable to the CN but more effective because it 
normalizes the score. The probability of choosing 
pair-wise vertices from a node’s neighbors is what is 
known as, and it is represented as 
 

                         (1) 
 
Where Γ(a) is the collection of a node’s neighbors 
[37]. 
 
6.3 Preferential Attachment Index 
PA is a local similarity index and depends on the 
degree of nodes a and b. It is defined as the 
probability that the nodes a and b, where the link 

exists, are proportional to ka and kb [38] and is 
represented as 
 
SabPA = ka × kb                                          (2) 
 
6.4 Resource Allocation Index 
RA is a local similarity index, and it works based on 
the intermittent nodes connecting node x and node 
y. It can be defined as the amount of resources 
occupied by node x via an indirect relation from 
node y. 
 

                                    (3)  
 
Where k(z) is the degree of node z [39]. 
 
6.5 Common Neighbors 
The concept that two strangers who have a friend are 
more likely to be introduced than those who don't is 
encapsulated by the phrase "common neighbors." 
[16]. 
                cn(i,j) = |Γ(i) ∩ Γ(j)|                      (4) (4) 
6.6 Adamic Adar 
Based on their shared neighbors, Adamic Adar is a 
measure used to determine how close two nodes are 
to one another. [16]. 

                (5)  
 
6.7 Hub Promoted Index 
Due to the denominator’s dependence on the 
minimum degree of the vertices of interest, this 
measure gives linkages near hubs (high-degree 
vertices) better scores. [33]. 
 

             (6) 
6.8 Salton Index 
When provided with vertices, it calculates the cosine 
of the angle between the columns of the adjacency 
matrix. Information retrieval frequently employs this 
measure. [36]. 

                (7)  
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6.9 Hub Depressed Index 
This measure gives connections that are close to 
hubs lower ratings than the Hub Promoted Index 
does. The large neighborhoods are penalized. [34]. 
 
 

                        (8)  

7. DATASETS 
The following are the various datasets used in this 
work. 
 
7.1 Human Contact Network 
People or humans are represented as nodes or 
vertices in a network model called the Human 
Contact Network, and the contacts they have—such 
as phone calls, texts, or interactions—are represented 
as links or edges between the nodes. Each node 
symbolizes a different person, and the edges 
connecting the nodes indicate that there has been 
interaction or communication between the various 
people. This data set provides important details 
regarding interpersonal relationships, 
communication preferences, and social network 
organization. Researchers can look at how 
information moves across this network dynamically, 
identify key nodes or central figures, and understand 
how disease or information spreads through social 
interactions [7]. 
 
7.2 Kindergarten Network  
A structured collection of information and 
observations that captures the communication, 
cooperation, and behavioral exchanges among young 
children within a kindergarten setting. This dataset 
includes records of how children engage with each 
other, their interactions during group activities, and 
their responses to various social situations. It 
provides insights into the development of social 
skills, cooperation, conflict resolution, and the 
formation of social relationships among 
kindergarten-aged individuals [22]. 
 
7.3 Human Wireless Contact Network  
In a network model called the Human Wireless 
Contact Network, people or humans are shown as 
nodes or vertices, while wireless contacts or 

connections between them are shown as links or 
edges. Each node in this dataset represents a distinct 
individual, and the edges between nodes show that 
the corresponding individuals have interacted or 
communicated wirelessly [22]. 
 
7.4 Women's Social Event Interaction Network 
A network representation that was inspired by a 
particular women’s event. The women participants 
in this network are shown as nodes or vertices, and 
their interactions with one another throughout the 
event—such as speaking or meeting—are shown as 
linkages or edges between the nodes. This data set 
offers insightful information about the social 
dynamics and communication styles of women at the 
event. By examining this network, researchers can 
learn how social interactions are structured, spot 
important players or pivotal figures in the group, 
and investigate how information or social influence 
moves among the participants [32]. 
 
7.5 Karate Network 
A karate club’s members are represented as nodes or 
vertices in the network representation known as the” 
Karate Network,” while their interactions or 
relationships with one another are shown as links or 
edges connecting the nodes. Due to a study 
conducted in the 1970s by social psychologist Wayne 
W. Zachary, this dataset rose to fame. The network 
captures the ties between members, such as 
friendships, social contacts, or training alliances. The 
interactions of the karate club were studied over 
time. Researchers have learned a lot about social 
networks and community systems by examining the 
Karate Network. The network is a well-known 
example of a community that was finally divided 
into two groups after being widely examined in the 
field of social network analysis [7] 
The average density, average degree of nodes, 
vertices, and edges of the aforementioned datasets 
are given in Table 1. 
The table presents information about four different 
datasets, each representing a social network with 
nodes (V) and edges (E). Additionally, it provides 
two average measures, namely the average degree 
(¡k¿) and the average shortest path length (¡d¿). 
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Table 1: Datasets Details 
Datasets |V | |E| < k > < d > 
Human Contact Network 43 336 15.628 0.80 
Kindergarten Network 111 225 16.87 0.311 
Human Wireless Contact Network 274 2124 15.5 0.41 
Karate Network 34 78 4.588 0.137 
Woman Social Event Network 18 63 7 0.592 

8. EVALUATION METRICS 
The AUC has been widely used for prediction 
accuracy [40]. The author uses AUC as an LP 
accuracy measure. The information from ET is allowed 
to record the performance score Sx.y. The prediction 
score will be based on which n pairs of nodes from EP 

and E
¯ are 

randomly selected. 
If the score measured from EP is bigger than E¯, then n′, 
and if EP is equal to E¯, then n′′, AUC can be calculated 
by Equation (9).  
 

   (9)  
 
8.1 Working of AUC 
We use the LP method, or PA Index, as an example 
of the AUC for easier understanding. The real  

 
network is represented by set (a) in Figure 4, whereas 
the training and probing sets are represented by sets 
(b) and (c), respectively, and the undetected links are 
included in set (d). Next, a pair of nodes from 
unobserved linkages and BD from the probe set were 
selected. The only set that can be utilized to compute 
node degrees is the training set. For instance, we 
select the AB pair from links that are not visible. 
Applying the PA Index now, the similarity between 
nodes BD and CD is ScoreAB = kA × kB = 0 and 
ScoreBD = ScoreAB; therefore, n′ = 0 and n′′ = 1, and 
the AUC will be equal to, in Equation (10).  
 

 
5

       (10) 

As the AUC value is closer to 1, it means that the LP 
technique is efficient. 

 
Figure 4: AUC Calculation 

 
8.2 Why do we use AUC 
The flexibility of the Area under the ROC Curve 
(AUC-ROC) to assess the performance of binary 
classifiers across a range of classification thresholds 
makes it a popular statistic in a variety of machine 
learning applications, including link prediction. Link 

prediction algorithms assign probability scores to 
potential links, estimating their likelihood of 
existence. AUC-ROC (Area under the Receiver 
Operating Characteristic curve) is a metric that 
gauges classifier performance without requiring a 
predetermined probability threshold. This is 
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important as the best threshold can differ based on 
the application or data. AUC-ROC provides a 
comprehensive assessment of the classifier’s ability to 
distinguish between positive and negative instances 
across all potential thresholds. In scenarios with 
imbalanced datasets, where non-links outnumber 
actual links, AUC-ROC takes into account both true 
positive rate (sensitivity) and false positive rate, 
offering a balanced performance assessment not 
skewed by class distribution. 
In link prediction, probabilities rank links. A higher 
AUC-ROC signifies better differentiation between 
real links and non-links, crucial for skewed data and 
recommendations. AUC-ROC allows algorithm 
comparison and handles varied score calibrations, 
supporting reliable performance assessment. By 
measuring a model’s ability to prioritize actual links 
without setting a threshold, it ensures a 
comprehensive evaluation of link prediction 
effectiveness in diverse contexts. 
However, it’s important to note that while AUC-
ROC is a valuable metric, it might not capture the 
full picture in cases where the specific classification 
threshold is critical or when the class distribution is 
extremely imbalanced. In such cases, other metrics 
like Precision-Recall curves and F1-score might 
provide more nuanced insights. Therefore, the 
choice of evaluation metric should be aligned with 
the specific goals and characteristics of the link 
prediction problem at hand. 

9. RESULTS AND DISCUSSIONS 
The primary objective of this study is to investigate 
the effectiveness of eight Link Prediction (LP) 
techniques within the realm of human complexity 
networks. The focal point is to discern the LP 

approach that exhibits superior performance when 
applied to real-world networks. Through a series of 
well-designed experiments, the study sheds light on 
the capacity of LP techniques to identify missing or 
forthcoming connections, particularly evident in the 
context of Human Contact Networks (HCN). The 
experimentation phase involves a deliberate variation 
of Probe Set (EP) percentages to enhance the 
precision of Area Under the Curve (AUC) 
measurements. The careful manipulation of EP 
percentages allows for a more accurate 
assessment of the LP techniques’ predictive 
capabilities. In pursuit of this objective, multiple 
experiments were meticulously carried out with 
varying Training and Probe sets. These sets 
encompassed proportions of 10%, 20%, 30%, 40%, 
and 50%, each contributing to a comprehensive 
evaluation of the LP techniques’ efficacy. The 
comparative analysis of the results obtained from 
these experiments enabled the selection of the most 
promising LP technique based on its AUC 
performance. These results are aptly summarized in 
Tables 2, 3, 4, 5, and 4.5, providing a clear overview 
of the AUC values obtained for different EP 
percentages. Furthermore, for a more intuitive 
understanding, the study includes graphical 
representations of each dataset. These visualizations, 
presented in Figures 5, 6, 7, and 8, offer an 
insightful depiction of the LP techniques’ 
performance across different scenarios, highlighting 
their proficiency in capturing network dynamics and 
predicting linkages. In conclusion, this study 
ventures into the realm of human complexity 
networks to unravel the potential of LP techniques 
in predicting links. 

 
Table 2: Average AUC Results of 90%:10% 
 
 
Techniques 

 
Human Contact 
Network 

Human Wireless 
Contact 
Network 

 
Karate Network 

 
Kinder garden 

Women's Social 
Event Interaction 
Network 

AA 0.8581 0.9345 0.7074 0.7858 0.8346 
CN 0.846 0.9333 0.6845 0.7742 0.8154 
PA 0.7095 0.9362 0.7123 0.5531 0.6909 
HDI 0.8193 0.8859 0.5997 0.7884 0.801 
HPI 0.8313 0.7005 0.6971 0.7326 0.734 
JC 0.847 0.934 0.6693 0.8265 0.7708 
RA 0.8588 0.9342 0.7224 0.8006 0.8356 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Ali et al., 2025 | Page 261 

SALTON 0.8553 0.8905 0.6194 0.7885 0.8036 
Divide the datasets into 90%,10% We give 90% of the nodes to training and 10% to test. From the average AUC, 
we conclude that the Resource Allocation Index (RAI) works best among all other algorithms we use. 
 
Table 3: Average AUC Results of 80%:20% 
 
 
Techniques 

 
Human Contact 
Network 

Human Wireless 
Contact 
Network 

 
Karate Network 

 
Kinder garden 

Women's Social 
Event Interaction 
Network 

AA 0.834 0.9307 0.6869 0.7529 0.818 
CN 0.8283 0.9308 0.6593 0.7319 0.7878 
PA 0.7069 0.933 0.6798 0.5511 0.6884 
HDI 0.8004 0.8854 0.583 0.7607 0.7547 
HPI 0.8114 0.7284 0.6584 0.7176 0.7039 
JC 0.8289 0.9271 0.6575 0.7505 0.788 
RA 0.8451 0.9307 0.6984 0.7431 0.8139 
SALTON 0.8272 0.8846 0.6154 0.7402 0.7634 
Divide the datasets into 80%,20% We give 80% of the nodes to training and 20% to test. From the average AUC, 
we conclude that the Resource Allocation Index (RAI) works best among all other algorithms we use. 
 
Table 4: Average AUC Results of 70%:30% 
 
 
Techniques 

 
Human Contact 
Network 

Human Wireless 
Contact 
Network 

 
Karate Network 

 
Kinder garden 

Women's Social 
Event Interaction 
Network 

AA 0.8187 0.9263 0.6553 0.7115 0.7907 
CN 0.8053 0.9247 0.6406 0.6986 0.7483 
PA 0.7049 0.9284 0.6641 0.5284 0.6769 
HDI 0.774 8 0.8851 0.5849 0.7122 0.7287 
HPI 0.7799 0.7537 0.6207 0.6821 0.6936 
JC 0.8056 0.9249 0.6286 0.6952 0.7543 
RA 0.8195 0.926 0.6512 0.7053 0.7989 
SALTON 0.7942 0.8817 0.6021 0.7012 0.724 
Divide the datasets into 70%. 30% we give 70% of the node to training and 30% to test. From the average AUC, 
we conclude that the Resource Allocation Index (RAI) works best among all other algorithms we use. 
 
Table 5: Average AUC Results of 60%:40% 
 
 
Techniques 

 
Human Contact 
Network 

Human Wireless 
Contact Network 

 
Karate Network 

 
Kinder garden 

Women's Social 
Event Interaction 
Network 

AA 0.7873 0.9189 0.6149 0.6639 0.7477 
CN 0.7777 0.9182 0.6081 0.6501 0.7202 
PA 0.6917 0.9267 0.6611 0.5259 0.6752 
HDI 0.7492 0.8836 0.5834 0.6621 0.6884 
HPI 0.7476 0.7723 0.5974 0.6591 0.6604 
JC 0.7752 0.9197 0.6121 0.6551 0.7174 
RA 0.7933 0.9202 0.6195 0.6678 0.7377 
SALTON 0.7584 0.8756 0.5875 0.6684 0.6884 
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Divide the datasets into 60%. 40% we give 60% of the node to training and 40% to testing. From the average 
AUC, we conclude that the Resource Allocation Index (RAI) works best among all other algorithms we use. 
 
Table 6: Average AUC Results of 50%:50% 
 
 
Techniques 

 
Human Contact 
Network 

Human Wireless 
Contact Network 

 
Karate Network 

 
Kinder garden 

Women's Social 
Event Interaction 
Network 

AA 0.7569 0.9116 0.5983 0.6222 0.6948 
CN 0.7441 0.9104 0.5836 0.6184 0.6641 
PA 0.6886 0.9234 0.6357 0.5154 0.6597 
HDI 0.7167 0.8809 0.5754 0.6268 0.6583 
HPI 0.708 0.7912 0.5843 0.6167 0.6539 
JC 0.7411 0.9112 0.5804 0.6201 0.6843 
RA 0.7584 0.9124 0.593 0.6191 0.6938 
SALTON 0.7208 0.8679 0.5739 0.6148 0.6478 
Divide the datasets into 50,50 %. We give 50% of the nodes to training and 50% to testing. From the average 
AUC, we conclude that the Resource Allocation Index (RAI) works best among all other algorithms we use. 

 
Figure 5: Human Contact Network Percentage Results 
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Figure 6: Human Wireless Contact Network Percentage Results 

 

 
Figure 7: Karate Network Percentage Results 

 

 
 

Figure 8: Women's Social Event Interaction Network Percentage Results 
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Figure 9: Average AUC 

 
9.1 Critical Discussion 
According to the Figures and Tables, the 10% 
Probe sets’ AUC values were quite close to 1. 
Therefore, the Probe set taken into account was 
10%. Finding the best HCN prediction method 
with greater accuracy was the major goal. In terms of 
the outcomes, the 10% Probe set Table 4.1 may 
demonstrate that the RA Index brings each dataset’s 
outcomes closer to ”1.” As a result, we can conclude 
that in the domain of human complexity, the RA 
Index performs better than other LP approaches. 
The central focus of this work revolves around the 
exploration and identification of the most suitable 
method for actual networks in the intricate field of 
human interactions. By conducting comprehensive 
experiments, the study aimed to assess the LP 
techniques’ capabilities in discovering missing or 
potential links within the HCN. To ensure the 
accuracy and reliability of the evaluation process, the 
experimentation incorporated varying percentages of 
Probe Set (EP), which allowed for a more precise 
measurement of the AUC. This approach was 
implemented to gain deeper insights into the 
performance of each LP technique across different 
proportions of training and probe data. The creation 
of multiple sets of Training and Probe sets, ranging 
from 10% to 50%, allowed for a systematic 
comparison of the AUC values achieved. 
The findings of the experiments underscored the 
significance of LP techniques in the realm of Human 
Complex Networks. These techniques demonstrated 
their potential in predicting and uncovering 
connections between nodes, thereby revealing latent 

relationships within the network structure. 
Moreover, the varying proportions of the Probe Set 
enabled a meticulous assessment of the LP 
techniques’ robustness and adaptability to different 
data scenarios. As a result of the meticulous analysis, 
the LP technique that exhibited the highest AUC 
value was identified as the most promising approach 
for further investigations. This technique’s superior 
performance could have substantial implications for 
enhancing our comprehension of complex human 
interactions and network dynamics. Overall, the 
research undertaken in this study contributes 
significantly to the field of link prediction in real-
world networks, particularly in the Human Complex 
domain. By shedding light on the strengths and 
weaknesses of different LP techniques and their 
sensitivity to data proportions, the study paves the 
way for future advancements in understanding and 
analyzing intricate human networks and social 
systems. These insights hold the potential to drive 
innovations in various domains, including social 
sciences, data mining, and network analysis, opening 
new avenues for research and practical applications. 
The methodology for the entire research is provided 
in this paper; however, there are several limitations 
that are not addressed, such as the network size, which 
can make predictions take longer if the network is 
large, and thus requires more computer power. 

10. CONCLUSION 
The LP is an emerging research topic, and it has 
received much attention in the last two decades. 
Many different disciplines have benefited from this 
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research area. In addition to helping with the 
analysis of missing links in biological elements like 
PPI, Yeast Proteome, Gene Natures, and many more, 
the application of LP to real-world complex networks 
has also advanced computer science by predicting 
website navigation, hyperlink navigation, social 
elements like Facebook and Twitter, and many other 
areas. Additionally, it has advanced sports by 
providing some future predictions, such as score 
predictions in cricket. The real-world network in the 
field of human complex networks was the focus of 
this study. Much work has been performed for 
predicting the links that are either missing or 
deleted, or for future prediction of the links, but 
some of the human complex networks are left 
untouched, which can help to provide opportunities 
in LP in the domain. This study offers the whole 
methodology of the entire study of "Link Prediction 
in Human Complex Networks," which is essentially a 
comparative examination of the selected LP 
approaches. A literature review was included in the 
paper to better comprehend the research subject." 
Furthermore, LP and complicated networks were 
described. Furthermore, the author assessed the 
performance of eight different algorithms using five 
distinct datasets. The evaluation metric used was the 
AUC. The results indicate that among all the 
algorithms, the Resource Allocation Index (RAI) 
demonstrated the best performance on large and 
complex datasets. 
In recent years, LP has garnered attention across fields 
like physics, biology, and computer science. Research 
outcomes vary based on field-specific characteristics, 
advancing LP’s significance and problem-solving 
potential. Despite progress, the challenge remains to 
reconcile static LP techniques with the dynamic 
nature of real-world complex networks. 
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