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Abstract 
The application of visualization technology allows for the visual representation of a wide variety 
of computer science concepts. No matter how effectively it is constructed, we argue that such 
technology has very little educational value unless it actively engages students in learning. This is 
experimental investigations that investigated the efficacy of visualization lends support to this 
stance. Regarding the utilization of visualization, it is located within the framework of the 
prevalent attitudes and best practices that are now in place. The authors offer a new taxonomy 
for the classification of learner engagement with visualization technologies. We provide metrics 
for evaluating the educational successes that may result from such active participation, and we do 
so by building upon Bloom's taxonomy of comprehension, which is widely recognized. Using 
these taxonomies of effectiveness and engagement measures as a foundation, we present a 
framework for conducting experimental investigations into the effectiveness of visualization. 
Educators in the field of computer science who are interested in working together with us to do 
research within this framework are cordially invited to do so. 
Keywords- Visualization and Engagement in Computer Science, Education 
 Introduction  
This paper is the outcome of the Working Group on Improving the Educational Impact of 
Algorithm Visualization's cooperative efforts. Under the direction of Tom Naps and Guido 
Roßling, the group's operations were started in the spring of 2002.  Through the use of a 
groupware application and a listserv mailing list, the group was able to generate a draft report, 
administer an online survey, and hold discussions on various topics. These tasks were finished 
and completed prior to the group's in-person assembly at the ITiCSE conference in Örhus, 
Denmark. The terms "we" and "they" will hereafter be used to refer to the Working Group, which 
is made up of the people who were stated in the opening of this report. Furthermore, there is a 
section in this report that thanks the three remote members that attended. The introduction of 
visuals into the realm of computation is motivated by the abstract nature of the fundamental 
components of computation. Based purely on intuition, graphical depictions of these architectural 
elements might simplify understanding of their operation by presenting them in a more tactile 
format. The main goal of visualization software when it was originally released in the late 1980s 
was to provide graphical representations of computer science subjects that could be investigated 
interactively [8, 54]. Recent surveys of computer science educators have revealed that there is 
broad consensus regarding the beneficial effects of visualization technology on learning. However, 
the experimental studies that were conducted to determine the educational efficacy of such 
visualization technologies do not corroborate this claim [28]. 
 The results of our pre-conference poll led us to the conclusion that another significant barrier to 
the adoption of visualization is the massive time and effort that educators must devote to 
integrating technology into their instruction. The two primary barriers that have been found to 
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be impeding the mainstream application of visualization technologies are as follows:  
The student may have doubts about the visualization technology's ability to teach effectively. 
From an educational perspective, there could be significant overhead related to the visualization 
technology, making it unprofitable.  What efforts may be taken to address these problems, given 
that computer science educators are confident that, when used successfully, visualization 
technologies may be of significant use to both teachers and students? It makes perfect sense to 
focus more on the results of earlier experimental studies when examining the efficacy of 
education.  
When using the visualization technology actively, learners often outperform those who merely 
view the visualizations in terms of scores [28]. After a closer look at those research, a significant 
trend becomes apparent. The following activities, for the sake of illustration, have been effectively 
completed by students using visualization technology: creating their own input data sets (40, 
Chapter 9); making predictions about future visualization states (11); programming the target 
algorithm (31); responding to strategic questions about the visualization (23, 44); and creating 
their own visualizations (26). Given this pattern, it seems sense to design further experimental 
studies that examine the deeper and more in-depth educational impacts of different kinds of 
active involvement. We present an outline of a framework for carrying out this type of empirical 
research in the report that follows. Such research can be carried out in classroom settings as well 
as controlled facilities due to the framework's adaptability. We contend that until visualization 
technology actively engages students in learning, its instructional effectiveness is limited, 
regardless of how effectively it is built. Regardless of how beautifully the technology is developed, 
this is the reality. If this is the case, then the most crucial question that must be answered is 
whether active engagement with visualization technology can effectively boost a learner's 
information acquisition. Throughout our poll, instructor overhead was identified as the second 
biggest barrier to visualization technology; yet, this research does not directly address this issue. 
However, we remain optimistic that educators from diverse backgrounds will begin to develop 
instructional resources that leverage the aforementioned modes of involvement in the event that 
the experiment results demonstrate that specific forms of active involvement with visualization 
yield exceptionally beneficial educational outcomes.   
We provide proof for our thesis in the second section by analyzing experimental studies that 
established best practices for algorithm visualization and showed the effectiveness of 
visualization. By doing thus, it sets our case against the prevailing beliefs and established industry 
standards about the use of algorithm visualization. Section 3 offers a taxonomy of potential 
categories for learner involvement with visualization technologies. The metrics that can be used 
to assess the learning outcomes that may arise from this kind of engagement are then described in 
Section 4. We provide efficacy indicators and a methodology for conducting empirical evaluations 
of algorithm visualization's utility in Section 5. Our engagement taxonomy serves as the 
foundation for these measurements and approach. The sixth section offers a final discussion of 
this framework's future prospects. This section also covers future projects and opportunities for 
collaboration for interested educators in the field of computer science. 
 Background  
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 Interactive visualisation has been employed in the field of computer science education ever since 
the 1980s (for example, see [8,10]). Because of the various technical experiences that educators 
have had over the course of time, a collection of "best practices" has formed over time. In Section 
2.1, we present a summary of the findings that are considered to be the most significant. The 
purpose of a survey that was conducted recently among educators in the field of computers was 
to determine the prevalent practices, as well as the viewpoints of the instructors regarding the 
effectiveness and implications of these activities. Section 2.22.2 provides a concise summary of the 
most important findings revealed by this survey. In Section 2.3, where we present a summary of 
the inconsistent outcomes of prior experimental investigations on the usefulness of visualisation, 
we advocate the necessity for a fresh set of tests due to the fact that existing trials have produced 
inconsistent results. 
Overview of Best Practices  
 1 Pedagogical visualisation incorporates elements from multiple interconnected fields, including 
typography, algorithms, and psychology. Although many fundamental concepts about style and 
typography stay unchanged, this adds complexity to the process of distilling the insights gleaned. 
The guidelines for interactivity, colour and sound design, and display layout are outlined in 
Khuri's work [35]. While there is no globally known standard for the "commandments of 
algorithm animation," the following eleven proposals are commonly regarded and have been 
created based on practical experience: Grant pupils the ability to access materials that aid in 
understanding the visual depiction. Visualisations, as tangible depictions, possess the capacity to 
aid learners in comprehending algorithms. Nevertheless, comprehending visualisations can be 
challenging, and students may struggle to establish a connection between a certain visualisation 
and the algorithm it is meant to depict. To enhance learners' understanding of the connection 
between graphical representations and programme elements, there are two possible methods: 
either dedicate instructional time to reinforce this relationship throughout the course, or 
incorporate explanatory text or narration into the system's representations. 
. 2. Tailor the content to the user's degree of proficiency. Inexperienced learners may feel 
overwhelmed by an excessive amount of windows or features; they generally prefer to assess an 
animation using pre-determined input data. On the other hand, advanced learners could gain 
advantages from additional tools that help them navigate and manage complexity. They would 
also benefit from the opportunity to create their own input data for more thorough testing of 
algorithms. Furthermore, animations that are influenced by well-known metaphors, like those 
seen in comic strips [4], stage plays [21], electronic publications [9], or slide presentations [43], 
could offer a more straightforward comprehension for beginners. On the other hand, advanced 
learners may benefit from using tools like BALSA, which provides access to extensive data sets 
and a wide range of perspectives [8].  
3. Present a variety of perspectives. An algorithm can be discerned by analysing the control flow 
in source code or by examining the state of data structures, among other factors. Exposing the 
student to several perspectives can enhance their comprehension of the algorithm. Aligning 
windows with different viewpoints will enable the uniform display of information. Having access 
to both programme animation views, which highlight and display code during programme 
execution, and abstract algorithm animation views simultaneously is highly beneficial. By doing 
so, the student can establish a connection between algorithmic operations and code. An 
alternative method is to offer pseudo-code instead of real code [57]. In order to provide a sufficient 
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level of detail, animations of upgraded pseudocode nodes with expand/contract capabilities, 
which simulate gradual refining, should be appropriately synchronised. From an educational 
standpoint, it can be beneficial to provide several perspectives in a consecutive manner. The 
HalVis system [22,23] was designed to demonstrate animation in three distinct stages: an 
extensive depiction of a function, a detailed animation with multiple synchronised views and 
explanations, and a widely recognised metaphor to aid learners in understanding the concept. 
 4. Provide precise details on performance. Efficiency analysis is a crucial component in 
understanding algorithms. Therefore, integrating the data obtained throughout the execution of 
the algorithm enhances our overall comprehension of its effectiveness. Simultaneously animating 
numerous algorithms is an additional approach to strengthen performance data, as exemplified in 
the film Sorting Out Sorting [2]. The user visually determines multiple rates for the same problem.  
5. Present the chronological record of the execution process.  
During the algorithm animation, it is typical for the learner to overlook previous steps, 
misinterpret a step, or have the inclination to see the complete history. Sharing historical facts 
with the student can help address these issues.  
Some algorithm viewpoints include the capacity to include history either explicitly or implicitly. 
When using JFLAP [29], users have the ability to choose any configuration and observe the path 
it takes from the beginning state to the specified configuration in a nondeterministic scenario.  
6. Encourage adaptable implementation oversight. The versatility of changing the visualisation is 
evident, including the capability to execute it in both a forward and reverse direction (see 
references [6, 53, 56] for examples). An efficient and user-friendly visualisation control user 
interface includes the following buttons: stop, pause, return to the start, go to the end, go back 
one step, and continuous forward movement [43].  7. Foster the production of visual aids by 
students. According to Stasko [55], it is recommended that students create their own visual 
depictions. By employing this architectural framework, students can acquire understanding of the 
basic components of the algorithm being studied. Moreover, the act of pupils creating their own 
artefacts cultivates a heightened sense of accountability within them [24]. 
 8. Authorise the utilisation of personalised input data sets. By allowing students to independently 
choose the raw data sets they want to use (as shown in [8, 38]), it is possible to increase their 
involvement in the data visualisation process. The learner is given unrestricted access to study the 
animation and acquire a deep understanding of how the algorithm works on different types of 
data. 9. Encourage the development of active investigations. Visualisation systems might employ 
a "pop quiz" method, where users are frequently given brief questions that require a response, in 
order to enhance their involvement with the visualisation [22, 44]. Occasionally, it is beneficial to 
employ two different types of inquiries. Even when given the necessary background, some queries 
may nevertheless be presented in an unusual sequence. These inquiries aid in understanding 
development by guiding the learner's attention to certain topics and encouraging self-evaluation. 
Additional questions may be intentionally included at critical junctures, after which students 
cannot advance unless they provide accurate answers.  
10. Encourage the exchange of participatory feedback. The learners' activities should be 
supplemented by real-time feedback through a visualisation system. Korhonen and Malmi [37] 
give an instance of a visualisation system that displays learners with graphical depictions of 
algorithms and directs them to alter these depictions in order to reproduce the algorithm. 
Afterwards, the technology offers automated, immediate feedback to students regarding the 
accuracy of the simulations.  
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11. Enhance the pictures with relevant anecdotes. Based on educational research rooted in 
dualcoding theory, the combination of visual aids and explanations is proven to be useful in 
improving comprehension [41]. Integration could be accomplished by including an explanatory 
text in a coordinated graphical window or by providing a synced audio track for the visualisation. 
In addition, one can choose to utilise a conventional method of clarification by consulting 
textbooks. Bazik et al. [3] highlight the need of having textbooks and animations closely 
synchronised in order to seamlessly incorporate animations into a course. Due to the lack of a 
universally effective approach or activity for visualisation, educators must carefully evaluate how 
to adapt and implement the described concepts. The design of an animation system and its 
animations should be meticulously prepared, just like any other design project (see to [34] for an 
example).   
Description of the surveys  
Prior to the ITiCSE 2002 meeting in Örhus, the Working Group began collaborating and assessing 
numerous resources. One of the provided items was a synopsis of a manual survey completed by 
Scott Grissom at the ITiCSE 2000 conference in Helsinki, Finland [19]. The results of Grissom's 
survey inspired us to carry out a more extensive online poll before the conference. We analysed 
the replies to Grissom's survey in order to create a framework that would provide guidance for 
the working group as it carried out its agenda. The working group utilised the SurveySuite tool 
(http://intercom.virginia.edu/SurveySuite) to create an online survey. This programme simplifies 
the process of creating surveys for researchers by allowing them to choose items from a 
predetermined list.   134 Upon obtaining a specific URL, participants proceed to fill out the survey 
by inputting their answers to the different questions into the form and then hitting a submit 
button to finalise the survey. After the responses are sent, they are collected and stored in a 
database. The researcher can access this database to view profiles of the received responses and 
spreadsheets that show the distribution of the responses for local analysis. The concluding 
questionnaire before to the conference consisted of four components. The study began by asking 
participants about their experiences with visualisations. We utilised a range of tools to evaluate 
individuals' viewpoints and experiences with different types of visualisation. Only a small portion 
of the evaluation items were specifically created to identify mediated transfer, which is an 
instructional method where teachers assist students in making connections between visual 
stimuli and the concepts they are learning. The second component of the pre-conference survey 
aimed to provide a detailed profile of the teaching situation for each participant. The topics 
discussed were the count of educators and learners at the establishment, the characteristics and 
size of courses, the accessibility and arrangement of equipment, and the use of different types of 
visualisation.  
The final portion of the preconference survey requested information from individual respondents 
regarding their experience as educators, the geographical location of their institutions, and the 
sources they used to obtain knowledge on visualisation. In addition, we requested the contact 
information of the participants, along with information about how they were informed about the 
pre-conference survey. Participants were offered a final chance to submit any further information 
or reflections in the Closing Thoughts section. Prior to our departure for the ITiCSE 2002 
conference in Örhus, we had amassed a total of 29 answers. After a thorough discussion of the 
upcoming findings, we reached a consensus that it would be advantageous to administer a concise 
and casual survey to the conference participants using index cards. Our index card survey 
consisted of only two questions. 1) How often do you integrate algorithm visualisations into your 
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lessons? The utilisation of visualisations can enhance the comprehension and analysis of computer 
science. Which of the following options is represented on a five-point scale: Strongly disagree, 
Agree, Neutral/No Opinion, and Strongly agree? The response options on a four-point scale are as 
follows: rarely (occurring once or twice per term), occasionally (occurring every other week), and 
never. The survey collecting index cards were distributed before the conference session began, at 
the same time as each Working Group presented a brief summary of their efforts. The participants 
were directed to promptly answer the two questions that were displayed on the front of their 
index cards. In addition, they were instructed to provide any further comments or inquiries on 
the back of the card. Before presenting the findings of the preconference survey, we gathered the 
completed index cards.  
Engagement Taxonomy  
We describe six broad categories of learner interaction with visualisation technology to help 
explain how learners participate in an educational setting that uses visualisation. The first 
category, "No viewing," denotes that no visualisation technology is used at all, since it is 
undoubtedly possible to learn an algorithm without using it.  
1. No watching  
2. Seeing  
3. Reacting  
4. Modifying  
5. Building  
6. Making a presentation 
Viewing  
looking can be considered the primary mode of interaction with visualisation technology, as all 
other modes of interaction essentially require some sort of looking. This concept is depicted in the 
Venn diagram in Figure 2, where "Viewing" is identified as the overarching category that includes 
all other types of participation. Furthermore, the act of observing is likely the style of engagement 
that offers the most diverse range of variants. For example, a student can opt to passively observe 
an animation, but they can also control its speed and direction, use several windows to see 
different perspectives, or refer to the accompanying written or spoken explanations. Viewing is 
inherently a passive kind of engagement. It does not entail any active contact with the 
visualisation, save for the capacity to change perspectives and control the execution of the 
visualisation. It is crucial to acknowledge that visualisation includes auralization in its whole [49, 
50]. Thus, "hearing" is categorised inside this group.  
 Responding  
"Responding" is the third category in the engagement taxonomy.  
Responding to inquiries about the system's visualisation is the main task in this area. For instance, 
instructors may provide queries to students like, "What will this visualization's next frame look 
like?" "What source code does this visualisation represent?" (prediction) ï (coding) ï "What is the 
algorithm's worst- and best-case efficiency as represented by this visualisation?"  
(Analysis of efficiency) ï "Is there any fault in the method this visualisation represents? (Fixing 
bugs) During the responding mode of engagement, the student makes use of the visualisation to 
help them with question answers. As a result, there is not much interaction with the visualisation 
during the engagement. On the other hand, answering a question might require actions that lead 
to more viewing activities. For instance, changing the source code and creating a new visualisation 
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could be a legitimate answer to the query, "Is there a bug in this programme?" during a debugging 
session.  
The category of "responding" is the third classification in the engagement taxonomy.  
The main duty in this region is to address queries related to the system's visualisation. For 
instance, educators may ask learners questions like "What will the next frame of this visualisation 
illustrate?" "Which source code does this visualisation depict?" The division of prediction by 
coding. "What are the minimum and maximum efficiency values of the algorithm, as depicted in 
this visualisation?" The analysis of efficiency, denoted by the symbol η, "Does this visualisation 
exhibit any inherent flaws in its methodology?" (Error resolution) During the interactive learning 
process, the student utilises a visual assistance to help them react to the questions. As a result, 
there is very little contact with the visualisation during the engagement. On the other hand, 
answering a question may require actions that lead to more activities associated to viewing. As an 
illustration, making changes to the original code and creating a new visualisation could be 
considered an appropriate answer to the question, "Does this programme have a bug?" during the 
diagnostic session.  
 Algorithmics and Data Structures in the Context of Bloom’s Taxonomy  
We generate illustrative tasks within the domains of algorithms and data structures to 
demonstrate the process by which an investigator might delineate a specific region according to 
Bloom's breakdown. We acknowledge the inherent complexity of this mapping endeavour and 
the potential complications that may arise with the subsequent categorization. A wide array of 
tasks associated with algorithms, including analysis and implementation, entail remarkably 
diverse degrees of complexity. Such assignments traverse numerous tiers according to Bloom's 
taxonomy. Prior to delving into our exhaustive enumeration of knowledge levels, we shall attend 
to several noteworthy concerns in the subsequent segments of this section. In algorithmics, the 
varying degrees of complexity of fundamental concepts constitute the initial obstacle. Similar to 
other disciplines, algorithms encompass a substantial quantity of unfamiliar terminology and 
concepts that contribute to the field's lexicon. Fundamental notions in graph theory, including 
nodes, edges, cycles, and routes, are easily understood. On the contrary, concepts such as the 
depth-first search (DFS) method for traversing graphs are considerably more difficult to 
implement. The lowest taxonomy level (knowledge level) is characterised by the ability to 
recognise the names of data structures and algorithms. On the other hand, the ability to explain 
their operation is classified as the second level (comprehension level). The second disconcerting 
element is that algorithmics knowledge can be perceived as encompassing both conceptual and 
practical aspects. It would seem logical to assume that in order to apply an algorithm, a learner 
must possess a conceptual comprehension of its operation. However, the suitability of employing 
an algorithm in a programming language for level 2 comprehension or level 3 application is 
dubious. Undoubtedly, learners demonstrate the application of conceptual knowledge when they 
execute a conceptually known algorithm. However, implementation serves as an extra and more 
comprehensive approach to articulating the method. Hence, we propose that level 2 
(comprehension) be associated with a programming assignment that demands the student to 
"write the code for implementing Quicksort," whereas level 3 (application) be associated with a 
test item that necessitates the student to sort an array of records utilising a sorting algorithm. In 
practice, it is almost always necessary for students to modify the code examples they have studied 
in the textbook before applying algorithms to real-world scenarios. Frequently, solutions 
necessitate the integration of diverse data structures and algorithms. Capabilities required for this 
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include problem domain analysis, item and structure recognition, selection of appropriate 
representations for structures, and determination of the most applicable algorithms and 
structures for problem resolution. Problem analysis is a component of Level 4 (analysis) duties. 
Construction of the solution corresponds to level 3 (application) if learners are capable of 
handling it through the use of familiar algorithms, and level 5 (synthesis) if they are required to 
generate something from the ground up. Distinguishing between different levels of difficulty is an 
inevitable occurrence; however, assignments requiring the development of novel algorithms must 
be no less than level 5 synthesis.  Learners ultimately attain level 6 (evaluation), which 
corresponds to the pinnacle of Bloom's taxonomy, when they are obligated to appraise their own 
solutions based on specific criteria.  The third challenge at hand pertains to the intricacy of 
algorithm analysis, which encompasses elements classified under various taxonomy levels as per 
Bloom's hierarchy. Level 1 (knowledge) consists of understanding fundamental concepts such as 
big-O notation and worst-case complexity, while level 2 (comprehension) entails replicating and 
following the analysis of an algorithm.  Students must employ what they have learned regarding 
algorithm analysis to a specific problem in order to conduct an analysis.  However, de to the 
considerable degree of difficulty exhibited by these analysis issues, it is difficult to assign them to 
a single level of Bloom's hierarchy. We suggest the following division of this matter into three 
tiers: level three for application, level four for analysis, and level five for synthesis. Assessors might 
be required to conduct an analysis of a foundational algorithm that was deliberated upon in the 
course or to develop a rudimentary iteration of the algorithm. To undertake an analysis of 
progressively intricate and challenging responses, pupils are required to deconstruct the problem 
into more manageable tasks (a level 4 analysis exercise). Once these simpler assignments have 
been distributed, students are free to assess each one independently. Complex problems may 
require students to employ and combine multiple approaches in order to arrive at a viable 
resolution. This requires the utilisation of skills associated with algorithmic research, specifically 
synthesis at level 5. Students have completed level 6 (evaluation) work when they are required to 
provide a critical assessment of their own analysis methods and results.   
Other Factors to be Measured  
We discussed the learner's potential knowledge levels in the preceding section. This section 
delves deeper into the topics that are measurable in terms of learner improvement and the 
variables that may cause results to be misleading. 

1. The advancement of the learner Over the course of a study programme, students should 
advance to work at more advanced levels as their knowledge increases along Bloom's 
taxonomy/hierarchy. But this development is not linear. Students can do well or poorly on 
each level, but the more information they have, the better they should do on the lesser 
levels. The hierarchical structure of knowledge must be taken into account when 
evaluating learners' knowledge. 

2. Let's say the teacher assigns a task that assesses students' understanding at a certain level 
and grades it according to a conventional system that uses a point system ranging from 0 
to 6. The evaluation research might thus yield outcomes similar to "We noticed that 
students using method A received an average of 4.6 out of 6 points on an assignment 
assessing level 2 knowledge, while students using method B received only 3.2 out of 6 
points." To ascertain whether this difference is statistically significant, a t-test could be 
employed.  

http://thecjlr.online/index.php/1/issue/view/2


Spectrum of Engineering Sciences  

Vol-1, Issue-2 

http://thecjlr.online/index.php/1/issue/view/2 

  

22 | P a g e  
 

2. The rate of dropouts  Some students choose to leave a course as a result of the challenges they 
face in their studies. 
Such a decision may be made for a variety of reasons. The motivation of the students to study the 
subject and their attitudes towards the various teaching strategies and resources employed in the 
course are the most pertinent factors in the context of this report. Since some students may 
register for the course before they decide to take it, measuring dropout rates is not always simple. 
Therefore, a more accurate measure of initial enrollment may be the number of students who stick 
with the course long enough to turn in at least the first assignment or exam for assessment. The 
regulations set forth by the institution for taking the final exam should also be taken into account 
when calculating the drop-out rate. Under certain university regulations, students may be able to 
take the final exam in one or more ways. A good place to start tracking the drop-out rate would 
be just after the first exam, or right after all exams have been finished. When designing the 
experiment, it is necessary to decide on the definition of drop-out that will be applied in a 
particular situation. 
3. Time spent learningFor each student to reach the same level of understanding, different learning 
times are required. The amount of time spent learning can also vary depending on the strategy 
used. If the instructor wants to cover additional material in the course, this may be crucial. Thus, 
rather than assigning tasks with a deadline and determining the learner's Bloom's Taxonomy 
Level, 
What Is Possible For The Learner At This Stage Example Assignments And Tasks 
4-Analysis • Recognises how the method relates to other algorithms that address similar or 
related challenges. 
• Is aware of the algorithm's code's invariants. 
• Possess the ability to defend, explain, and/or demonstrate the algorithm's correctness. 
• The ability to break down a complex issue into smaller, more manageable issues by identifying 
key components. 
• Sort different types of tree structures. 
• Examine how Quicksort and Heapsort perform in comparison. ·Explain the workings of 
Dijkstra's algorithm. 
• Describe why Dijkstra's algorithm fails for networks with negative-weighted edges, yet Prim's 
algorithm succeeds in such cases. 
Examine the types of data formats and algorithms required for the development of a search engine. 
5-Compositing • Create solutions for challenging issues requiring a variety of data structures, 
algorithms, and approaches. 
• Examine how effective intricately connected structures are. 
• Establish standards for contrasting different approaches. 
• Create a search engine and assess how well it uses time and space. 
• Create the algorithms and data structures required for a vehicle navigation system. 
• Establish a testing environment to evaluate different search structures in a hierarchical memory. 
6. Assessment • Make a case for the modification or combination of one algorithm with another 
in order to address a new, more difficult problem more effectively 
.• Talk about the benefits and drawbacks of various algorithms for the same or related problems. 
• Complete an analysis or design evaluation. 
• Specify suitable standards for judging the suitability of search algorithms and make the case for 
their significance. 
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• Examine hashing and balanced trees in terms of how they approach dictionary implementation. 
• Talk about a solution's design and make the case for why it works better or worse than an 
alternative. 
• Talk on how the analysis in the original text could be improved. 
 147 enhancement, the teacher might provide tasks with an infinite amount of time and track how 
long it takes for pupils to do each one. One could consider this a successful outcome if employing 
visualisation inspired students to dedicate more time to their work. 
4. Contentment of the learner 
There are various reasons why students enrol in a course. Furthermore, they may become less 
motivated as the course progresses. Therefore, it becomes sense to request comments so that the 
instructor may find out what the students think of the course. These inquiries may address 
attitudes towards the topic matter as well as the students' perceptions of the different teaching 
strategies and resources used in the course.  
Procedure  
The objective of the technique is to establish the experiment. The experimental procedure 
consists of three main stages: pre-test, task completion using materials, and post-test. This 
tripartite procedure does not encompass every aspect of utilising the data collection and 
visualisation materials. We delegate the task of process design to the instructor, allowing them 
to tailor it according to their schedule and the needs of their pupils.  To ensure reliable findings, 
it is recommended to desig the experiment by dividing the students into two or more randomised 
groups. These groups should have comparable population distributions based on the specified 
covariants outlined in Section 4.4. Nevertheless, due to the frequent impracticality of such 
groupings, an alternative approach could be utilised, such as the following:  
 • If a course is provided by an institution with two parts, each section may utilise a singular form 
of involvement, which can then be compared. • In some educational institutions, where students 
should receive identical instruction, a specific approach may be implemented in one section of the 
course during the first half of the semester, but not in the other. Subsequently, both segments 
undergo the post-test. In order to ensure equitable learning opportunities, the group that did not 
participate can be treated in the same way after the post-test, once the experimental data has been 
collected.  
• If the same course is taught over two semesters, it is possible to use one teaching approach 
during one semester and a different one during the other.  
Conclusion  
With the use of this report, computer science educators will be able to assess the correlation 
between a learner's type of engagement with a visualisation and the many categories of 
understanding that are impacted by that engagement. To aid in characterising the type of 
engagement employed in these kinds of studies, we have established an engagement taxonomy. 
We have also discussed the ways in which different fields of computer science might employ 
Bloom's taxonomy to distinguish between different kinds of understanding. We have provided a 
framework for performing experiments that employ these two taxonomies to determine the 
independent and dependent variables, respectively, based on these taxonomies. We want to 
create a number more focused experiments based on this concept in the upcoming year. The scope 
of these trials will enable researchers from many universities to work together. Teachers who 
would like to participate are encouraged to get in touch with either of the co-chairs of the working 
group at naps@uwosh.edu or roessling@acm.org. 

http://thecjlr.online/index.php/1/issue/view/2
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