
Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Abbas et al., 2025 | Page 159 

 

A DEEP LEARNING FRAMEWORK FOR SPACE WEATHER PREDICTION: 
LEVERAGING TWO-DIMENSIONAL CONVOLUTIONAL NEURAL 

NETWORK FOR SUNSPOT FORECASTING 
 

Maria Abbas1, Farman Ali*2, Sikander Rahu3, Hina Shafi4, Tarique Ali Brohi5, Ali Ghulam6 
 

1, *2Department of Computer Science, Bahria University, Islamabad, Pakistan 
3Center for Computing Research, Department of Computer Science and Software Engineering, Jinnah University for 

Women, Karachi, Pakistan 
4,6Information Technology Centre, Sindh Agriculture University, Tandojam, 70060, Pakistan 

5Department of Computer Science, SZABIST University, Hyderabad Campus, Pakistan 
 

*2farman335@yahoo.com or farman.buic@bahria.edu.pk 
 
DOI: https://doi.org/10.5281/zenodo.16778983 
 
 Abstract 

Accurate sunspot activity prediction is crucial for space weather forecasting, as it 
helps protect space-dependent infrastructure. Cloud computing has significantly 
advanced deep learning techniques, enabling more precise and efficient 
forecasting models. This study employs Long Short-Term Memory (LSTM), Gated 
Recurrent Unit (GRU), and Two-Dimensional Convolutional Neural Networks 
(2D-CNN) to enhance sunspot prediction accuracy. Leveraging cloud-based 
frameworks, the proposed approach improves model scalability, optimizes 
computational efficiency, and enables real-time forecasting. The dataset consists 
of time-series records of sunspot activity, making it highly suitable for recurrent 
neural networks. LSTM and GRU effectively capture sequential dependencies, 
while optimization techniques, including modified particle swarm optimization 
and hyperparameter tuning, reduce computational complexity and mitigate 
overfitting. Experimental results indicate that 2D-CNN achieves the highest 
accuracy 99.39%, with an F1-score of 98.79%, precision of 99.45%, and recall 
of 99.33%, demonstrating its superior ability to capture spatial correlations in 
sunspot data. Furthermore, GRU outperforms LSTM in processing sequential 
data, achieving higher precision (98.80% vs. 97.81%) and F1-score (96.21% vs. 
96.11%). These findings reinforce the effectiveness of deep learning, particularly 
2D-CNNs, in sunspot forecasting. 
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INTRODUCTION
Accurate space weather forecasting is essential for 
protecting space-dependent infrastructure, such as 
satellites, communication networks, and power grids, 
from disruptions caused by solar activity[1]. Sunspots 
are good indicators of solar activity and are 
important for predicting space weather events. 
Normal forecasting methods can use a lot of 
compute and not always provide accurate 

predictions, leading researchers to turn to new 
machine learning and deep learning methods[1]. 
Recent development in machine learning and deep 
learning has generated exciting results in the field of 
weather and climate-based modeling. One example is 
research that explored the use of neural network 
emulators to enhance the speed of modern-day 
weather forecasting systems. Other research explored 
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the use of hybrid deep learning models derived from 
Convolutional Neural Networks (CNN's) and Long 
Short-Term Memory (LSTM) to predict 
meteorological parameters. Additional research has 
also used a decision tree classifier to improve short-
range weather forecasting accuracy. Other research 
has implemented ensemble models, established 
bidirectional LSTM, and used extreme gradient 
boosting in a myriad of weather-related applications 
including precipitation forecasts, flood predictions, 
and plume modeling of a nuclear accident. Future 
innovations will likely arise from further research 
using AI and cloud computing to enhance the 
models used in weather forecasting[2].  
Nonetheless, optimizing model complexity and 
tuning hyperparameters remains a challenging, and 
still mostly unexplored topic in time-series 
forecasting of sunspot activity. Many approaches that 
have been employed in the past and will still be 
applicable in the present do not have specially 
tailored optimizations of hyperparameters for 
sunspot prediction and will likely lack the precision 
needed for practical predictions. All of this serves to 
limit the utility of some traditional approaches for 
forecasting space weather using sunspots. This paper 
hopes to alter this reality with a deep learning 
approach to this challenge. To that end, the paper 
explores how AI-based models, using cloud-based 
optimization methods, can increase the accuracy and 
scalability of sunspot prediction[3]. 
The remainder of this paper is organized as follows: 
Section 2 discusses related work in deep learning 
applications for weather and space weather 
forecasting. Section 3 presents the proposed 
methodology, detailing the dataset, model 
architecture, and optimization techniques. Section 4 
evaluates experimental results, comparing the 
performance of deep learning models with 
traditional machine learning approaches. Finally, 
Section 5 concludes with key findings and future 
research directions in enhancing space weather 
forecasting through AI-driven methodologies. 
 
1. Related work  
Advancements in deep learning and machine 
learning techniques have significantly improved 
space weather forecasting and meteorological 
predictions. Various studies have explored different 

datasets, algorithms, and hybrid models to enhance 
accuracy, computational efficiency, and forecasting 
capabilities. For instance, Kaifeng et al. (2023) 
employed hierarchical temporal aggregation and 
cyclone tracking on the ERA5 dataset using Mean 
Sea Level Pressure (MSLP) techniques. Their study 
demonstrated high forecasting accuracy; however, 
reliance on reanalysis data introduced temporal 
inconsistencies and underestimated extreme 
events[4]. Similarly, Chantry et al. (2021) developed 
a hybrid neural network (HNN) model on the 
NOGWD dataset, utilizing GPU acceleration and 
normalization techniques. While their approach 
improved model performance, it suffered from slow 
CPU transmission and inaccurate orographic 
dynamics[5]. 
Tal Ben et al. (2022) optimized the Finite Volume 
Cubed-Sphere Dynamical Core (FV3AD) using 
DaCe (GPU code generation) and GT4Py 
(abstraction framework) to enhance forecasting speed 
and reduce computational costs. Although their 
method boosted FV3 model performance, it required 
hardware-specific optimizations and adjustments in 
transfer settings for broader applicability[6]. Sercan 
et al. (2022) introduced a hybrid CNN-LSTM model 
for weather forecasting using historical-hourly-
weather-data. Their approach effectively captured 
sequential dependencies, reducing Root Mean 
Square Error (RMSE) and improving accuracy, but 
required careful hyperparameter tuning and had 
limited scalability[7]. 
Sudhan et al. (2021) leveraged the MERRA database 
to develop a machine learning model combining 
C5.0 decision trees and K-means clustering. Their 
study achieved higher accuracy compared to 
traditional methods but emphasized future 
improvements through deep learning integration[8]. 
Nawaf et al. (2022) explored solar flare forecasting 
using LSTM, bidirectional LSTM, CNN-LSTM, 
random forest, and gradient-boosted trees. Their 
results showed that univariate models outperformed 
multivariate models in reducing forecasting errors, 
though their data spanned only 1.5 years, limiting 
long-term prediction reliability[9]. 
Ali Ayoub et al. (2024) applied Recurrent Neural 
Networks (RNNs) and XGBoost for sunspot 
forecasting, achieving an R² score of 0.84. Despite 
promising results, challenges related to high 
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computational demand and scalability were 
noted[10]. Luka et al. (2023) combined linear 
(ARIMA/SARIMA) and nonlinear (GEP, SVR, and 
GMDH) models for weather data analysis. Their 
hybrid approach improved accuracy using techniques 
such as inverse variance weighting and MSE variance 
criteria, but faced complexity challenges in model 
weight adjustments[11]. 
Carmen Calvo et al. (2024) conducted a machine 
learning-based weather prediction study using 
Random Forest (RF), Stochastic Gradient Descent 
(SGD), Decision Trees (DT), and AdaBoost (AB) on 
the Zenodo dataset. RF demonstrated superior 
predictive strength and reduced uncertainty, yet 
challenges related to scaling and processing power 
limitations were evident[12]. Lastly, M.S. Hossain et 
al. (2024) compared Vector Autoregressive Model 
with Exogenous Variables (VARX) and Deep Neural 
Networks (DNN) for weather forecasting using GRIB 
data. While VARX provided accurate temperature 
forecasts and DNN improved wind speed 
predictions, both models required frequent 
retraining and emulator optimizations[13]. 
2. Materials and Methods 
2.1. Datasets 
The dataset contains two dominant features. The 
first is "Date," which offers a month-end date for 
which an average monthly number of sunspots was 
determined. This variable is in date format. The 
second characteristic is "Monthly Mean Total 
Sunspot Number," which provides an average 
amount of total sunspots measured during the 
month. This number is provided as a decimal, which 
provides the monthly average amount of total 
sunspot counts by observational data. 
 
2.1.1. Data Collection: In this project, data 
collection entails researching historic solar data, to 
count sunspots, from a credible source like Kaggle. 
These datasets will be preprocessed to facilitate the 
handling of missing values, normalization, and the 
preparation of a time-series sequence suitable for 
machine learning. To improve model accuracy in 
future stages, it may be advantageous to partition the 
data into segments based on solar cycles or other 
relevant time periods. Model performance on 
predictions of solar activity is evaluated and 

enhanced using training, validation, and testing 
datasets. 
 
2.1.2. Data Preprocessing: Key stages in the data 
preparation stage for this sunspot activity forecasting 
study include cleaning the raw data and organizing 
the data (for example addressing missing values, 
normalizing the data to ensure consistent scale across 
features, and possibly reducing noise.). transforming 
the data to provide a consistent range for the 
features. 
 
2.1.3. Data Labeling: This task assigns class labels or 
values to historical records of solar activity, such as 
sunspot counts or solar flare intensity levels, to 
facilitate supervised learning with data labeling. By 
labeling each data point by kind, intensity, or 
frequency of exercise, the model acquires the 
potential to differentiate groups (e.g., flare classes 
and/or sunspot cycle phases). 
 
2.2. Deep Learning Frameworks for Model 
Training 
2.2.1. Long Short-Term Memory 
Long Short-Term Memory (LSTM) models solve 
long-term dependencies in time-series data by 
regulating information flow through input, forget, 
and output gates. This avoids the vanishing gradient 
problem and keeps important past inputs. Their 
ability to find complicated long-term trends makes 
them a great fit for forecasting solar activity, as well 
as very accurate for other tasks such as sunspot 
prediction[14]. However, due to their high number 
of parameters, overfitting is much more likely when 
using them requiring longer training times 
particularly with small datasets. Long Short-Term 
Memory are frequently used for long term solar 
activity predictions - despite their high data 
requirements and processing time[15]. 
 
2.2.2. Gated Recurrent Unit 
The Gated Recurrent Unit (GRU) is a minimal 
version of Long Short-Term Memory that reduces 
parameters and increases processing speed by 
merging the input gate and forget gate into an 
update gate. It has a straightforward structure which 
is effective for moderately complicated tasks, 
improves the speed of training, and limits the 
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chances of overfitting[14]. Nonetheless, since Gated 
Recurrent Units do not offer the granular gate 
control of Long Short-Term Memory and may be 
limited in processing long sequences with limited 
memory capacity, they might not be as flexible in 
recognizing complex time-series patterns. Gated 
Recurrent Unit can help to predict sunspot activity 
when computational capacity is lower, particularly 
for shorter-term sunspot cycles or simplified 
categories of solar events[15]. 
 
2.2.3. Two-Dimensional Convolutional Neural 
Networks 
While Long Short-Term Memory (LSTM) models are 
frequently employed to predict solar activity and are 
effective at modeling long-term dependencies in time 

series data, they have some limitations, including a 
potential to overfit, a more costly computational 
requirement, and a longer training time, especially 
when used for small datasets. Fortunately, 2D-CNN 
[16] provide a more efficient alternative by applying 
convolutional methods to extract spatial and 
temporal information from the given input data. In 
the context of sunspot prediction, 2D-CNNs achieve 
higher accuracy and improved computation 
efficiency than LSTM because they can learn local 
patterns and hierarchical structures. The proposed 
framework using 2D-CNNs is expected to improve 
performance in predicting complex solar events, 
decrease the likelihood of overfitting, and reduce 
training time. The schematic view of this study is 
depicted in Figure 1. 

 
Figure 1. Methodology Diagram 

 
2.3. Performance Validation Method 
We validated our model by 5-fold cross-validation 
(CV), which is widely used in diverse research 
problems [17-21]. We carried out 5-fold CV to 
estimate the performance of the model based on 
following evaluation parameters including accuracy 
(Acc), sensitivity (Sn), specificity (Sp), and Mathews 
Correlation Coefficient (MCC). Each one of these 
criteria can be derived from the values in the 
confusion matrix (CM) defined by true positives 
(TP), true negatives (TN), false positives (FP), and 

false negatives (FN). In a weather forecasting context, 
TP indicates the correctly forecasted weather events 
(e.g., rainfall or storms) and TN indicates the 
correctly forecasted non-events (e.g., no rainfall) 
while FP shows instances of forecasted weather 
events that were not actual events and FN shows 
missed real weather events where the model forecast 
failure. We use Accuracy, Precision, Recall, F1-Score, 
MCC, and Specificity which can be computed by 
following equations.  
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒

= 2 ×
𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                    (1) 

𝐴𝐶𝐶

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                 (2) 

𝑀𝐶𝐶

=
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
  (3) 

𝑆𝑁

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                            (4) 

𝑆𝑃

=
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                             (5) 

𝑃𝑅𝐸

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                          (6) 

 
3. Results and Analysis 
3.1 Comparative Analysis of DL Methods 
The results from multiple deep learning models 
indicate that 2D-CNN is the best model, achieving 

accuracy 99.39%, precision 99.45%, recall 99.33%, 
and F1-score 98.79%, as well as having the highest 
accuracy overall as shown in Table 1. It is evident 
that the classification model can capture spatial 
dependencies and spatial patterns present in the 
dataset, which makes it the best model to use in this 
case. Nonetheless, the GRU model also displayed 
good performance with recall value 96.01%, 
precision value 98.80%, and accuracy value 94.90%. 
Thus, GRU model was also able to balance precision 
and recall while capturing sequential dependencies 
present in the data. Similarly, the LSTM model was 
able to achieve 94.80% accuracy, 97.81% precision, 
and 96.10% recall. GRU and 2D-CNN performed 
better than LSTM, but the strong recall value of 
LSTM indicates that it was able to discriminate cases 
identified as good. 
2D-CNN is the most reliable model in this study and 
outperformed both LSTM and GRU on all 
measures. Both LSTM and GRU are still good 
options when working with time-series data, where 
sequential dependencies are important. 

 
Table 1.  Comparative Analysis of DL Methods 
Methods Acc (%) Pr (%) Re (%) F1-Score (%) 
LSTM 94.80 97.81 96.10 96.11 
GRU 94.90 98.80 96.01 96.21 
2D-CNN 99.39 99.45 99.33 98.79 

 
3.2 Comparative Analysis of ML Methods 
In comparing the performance of several machine 
learning techniques including SVM and RF, 2D-
CNN outperforms SVM and RF in every measure of 
performance metric as reflected in Table 2. 2D-CNN 
achieves the maximum accuracy of 99.39%. 2D-
CNN is the best performing for this assessment 
because of its high accuracy of 99.33% recall and 
99.45% precision, which demonstrates that a high 
percentage of class attribution can be reliably 
distinguished. The SVM model similarly performs 
well, achieving a 91.80% accuracy, 91.55% precision, 
and 92.01% recall. This suggests that the SVM can 
fit a strong classifier and generalizing well from the 
training set of experiences. However, in performance 
metrics it is noticeably lagging 2D-CNNs, which 
implies that deep learning might be better suited for 

identifying complex patterns. The Random Forest 
model achieves a lower performance with 80.25% 
precision, 77.30% recall, and 79.17% accuracy. It 
also has fairly strong performance for classification 
with RF having significant lower performance in 
comparison to the SVM and 2D-CNN models; 
Random Forest does not appear to be the best 
option for this problem. 
In general, the 2D-CNN performance is remarkably 
improved over SVM and RF, further confirming the 
effectiveness of deep learning in identifying complex 
patterns in the data. RF is somewhat less accurate 
than SVM, which is still an important traditional 
machine learning method, and therefore should be 
discouraged for this context where high-accuracy 
predictions are desirable 
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Table 2. Comparative Analysis of ML Methods 

Methods Acc (%) Pr (%) Re (%) F1-Score (%) 
SVM 91.80 91.55 92.01 91.78 
RF 79.17 80.25 77.30 78.75 
2D-CNN 99.39 99.45 99.33 98.79 
 
3.3 Comparative Analysis with Existing 
Methods 
Further, we analyzed comparative performance of 
our proposed model with existing methods.  Calvo-
AdaBoost model struggles with the classification task, 
as indicated by its low Accuracy of 74.10% and F1-
Score of 51.40%. Its most significant limitation is a 
very low Recall of 42.70%, which means it fails to 
identify more than half of the total positive cases. 
Jovanovic-XGBoost while it shows stronger Accuracy 
(89.15%) and Precision (88.09%) compared to 
AdaBoost, its performance is still held back by a low 
Recall of 65.49%. This suggests that while it correctly 
classifies the positive cases it finds, it still misses a 
large portion of the true positive instances, resulting 
in an F1-Score of 75.12%. 
The Murugan-NB demonstrates a respectable, 
balanced performance with an Accuracy of 84.62% 
and its Precision, Recall, and F1-Score all in the 88% 
range. This indicates a consistent performance, but it 

is still significantly outpaced by the more advanced 
deep learning-based methods. 
The deep learning models, Yang-LSTM and 
Cahuantzi-GRU, show the next-best performance 
with very similar and high scores. Cahuantzi-GRU 
has a slightly higher Accuracy (94.90%) and 
Precision (98.80%) than Yang-LSTM, while Yang-
LSTM has a marginally higher Recall (96.10%) and 
F1-Score (96.11%). Both models are highly effective, 
but they are a clear step down in performance from 
the proposed model. 
Finally, the 2D-CNN (Proposed Model) achieves the 
highest scores in every category, with near-perfect 
performance. It boasts an Accuracy of 99.39%, a 
Precision of 99.45%, a Recall of 99.33%, and an F1-
Score of 98.79%. This strong performance across all 
metrics suggests it is highly effective at both correctly 
identifying positive cases and not misclassifying 
negative ones, setting a new benchmark for the task. 
 

 
Table 3. Comparative Analysis with Existing Methods 

Methods Acc (%) Pr (%) Re (%) F1-Score (%) 
Calvo-AdaBoost [12] 74.10 64.70 42.70 51.40 
Murugan- NB [8] 84.62 88.32 88.23 88.40 
Jovanovic- XGBoost [11] 89.15 88.09 65.49 75.12 
Yang- LSTM [15] 94.80 97.81 96.10 96.11 
Cahuantzi- GRU [14] 94.90 98.80 96.01 96.21 
2D-CNN (Proposed Model) 99.39 99.45 99.33 98.79 

 
4. Conclusion and Future Work 
The findings of this study showcase how 
optimization and deep learning techniques can 
dramatically improve the accuracy of space weather 
forecasting. With an RNN model having a 2 score of 
0.84, it was shown to be the best classification model 
for predicting sunspots. These results illustrate how 
artificial intelligence can help solve time-series 
forecasting and classification problems in an 

important domain like space weather. Moreover, this 
study exemplifies the importance of metaheuristic 
optimization for hyperparameter tuning, particularly 
the modified particle swarm optimization approach 
employed here, which performed better than other 
traditional methods. 
To better boost predictiveness, future research 
could expand on these findings by adding more 
deep-learning models and ensemble methods. 
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Additionally, data privacy and computing 
efficacies can be improved through the synergies 
with cloud computing or federated learning 
frameworks. Rather than only focusing on the 
scalability and applicability of these algorithms, 
they can be more broadly adapted by integrating 
larger and more diverse datasets, but also a 
framework for real-time predictions. This would 
limit the costs, time commitment, and variability 
around space weather forecasting making a 
useful, helpful, and site-specific tool. 
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