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 Abstract 

Thyroid diseases, such as hypothyroidism and hyperthyroidism, are prevalent 
endocrine disorders that significantly impact global health. Early detection is 
crucial to prevent severe complications, but traditional diagnostic methods often 
face challenges like delayed results, reliance on human expertise, and limited 
accessibility in remote areas. This study addresses these limitations by proposing a 
hybrid deep learning model that combines Convolutional Neural Networks 
(CNNs) and Graph Attention Networks (GATs) for automated thyroid disease 
detection using ultrasound images. The proposed model leverages EfficientNet-B4 
for spatial feature extraction and GAT layers to analyze relational dependencies 
between features, enhancing classification accuracy. Trained on the Algeria 
Ultrasound Images Thyroid Dataset (AUTD), the model achieves an accuracy of 
92.48%, precision of 93.94%, recall of 92.48%, and an F1-score of 92.87%, 
outperforming traditional methods such as Sequential CNN with K-Means 
clustering (81.5% accuracy). Key innovations include dynamic graph 
construction for localized feature analysis and robust data augmentation 
techniques to mitigate class imbalance. The system's performance is ensured by 
intensive experiments, confusion matrix analysis, and multiclass ROC curves 
that establish its trustworthiness for clinical deployment. This study contributes to 
medical AI research by presenting a precise, scalable, and deployable early 
detection of thyroid disease solution. Future developments can involve 
investigating more sophisticated attention mechanisms, seamless integration with 
other clinical data sources. 
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1. INTRODUCTION 
Globally, millions of people suffer from thyroid 
diseases like hypothyroidism and hyperthyroidism. It 
produces essential hormones like triiodothyronine 
(T3) and thyroxine (T4) that regulate metabolism, 
energy levels, and overall body function [1]. When 
the thyroid gland fails to maintain hormone 
balance, it leads to metabolic disorders, causing 
fatigue, weight fluctuations, depression, 

cardiovascular diseases, and other complications [2]. 
Early diagnosis of thyroid disorders is extremely 
important, as delayed diagnosis can lead to serious 
health problems, including bone weakness 
(osteoporosis), infertility, and mental impairment [3]. 
Traditional methods for diagnosing thyroid diseases 
rely on blood tests, clinical evaluations, and imaging 
techniques, such as ultrasound scans and radioactive 
iodine uptake tests [4]. However, these techniques 
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have their limitations, such as delayed output, 
reliance on human skills, and limited access to 
medical centers in developing regions [4]. 
The subdomain of Artificial Intelligence (AI) named 
Machine Learning and Deep Learning (DL) allows 
computers/machines to learn patterns from 
information and make predictions without direct 
programming [5, 6]. Multilayered neural networks are 
utilized in DL, one of the areas of machine learning, 
for enhancing pattern identification and feature 
learning. Recent advancements in ML and DL have 
made it possible to achieve automatic detection of 
thyroid disease with faster, accurate, and scalable 
diagnostic tools [7-9]. Deep learning, particularly 
convolutional neural networks, excels in extracting 
complex features from medical images, such as 
ultrasound and computed tomography scans, 
without manual feature engineering. These models 
have shown promising results in classifying thyroid 
nodules as benign or malignant, achieving diagnostic 
accuracy comparable to or surpassing that of 
experienced radiologists [10]. For instance, DL-based 
systems like ThyNet have improved radiologist 
performance by reducing unnecessary FNABs, with a 
reported 4.5% increase in the area under the curve 
for ultrasound image analysis [11]. 
Moreover, a multi-modal approach integrating 
ultrasound, CT, and other imaging modalities has 
enhanced diagnostic precision by leveraging 
complementary data, achieving accuracies up to 
97.2% for ultrasound and 94.2% for CT in multi-
classification tasks [12]. Recent developments in DL 
have expanded beyond binary classification (benign 
vs. malignant) to multi-classification of thyroid 
disease types, including thyroiditis, cystic nodules, 
and multi-nodular goiter. Multi-channel CNNs, such 
as those based on the Xception architecture, have 
demonstrated robust performance in handling 
diverse thyroid conditions, offering potential for 
integration into clinical workflows to guide specialist 
referrals [13]. Transfer learning, using pre-trained 
models like ResNet or DenseNet, has addressed 
challenges posed by limited labeled datasets, 
improving generalizability across diverse patient 
populations [14]. Moreover, explainable AI 
techniques, such as SHapley Additive exPlanations, 
have been employed to enhance model 
interpretability, increasing clinician trust by 

visualizing decision-making processes [15]. These 
advancements highlight DL’s potential to streamline 
thyroid disease diagnosis, reduce diagnostic errors, 
and support personalized treatment planning. 
Besides all these advancements, there is a pressing 
need for an accurate AI-based automated detection 
system to mitigate these challenges. This study aims 
to address the limitations of traditional detection 
methods by developing a deep learning-based early 
detection system. The study aims to create a 
comprehensive automated thyroid disease detection 
system utilizing machine learning and deep learning 
models. To accomplish the study’s aim, the following 
goals were pursued: 
• To propose a deep learning model for the early 
detection of thyroid disease. 
• To assist medical practitioners in diagnosing 
thyroid disease at an early stage. 
To achieve these objectives, this study proposes a 
combined deep learning architecture consisting of 
Convolutional Neural Networks (CNNs) and Graph 
Attention Networks (GATs) for further thyroid 
disease categorization. CNNs work well with medical 
image analysis since they can learn spatial patterns 
and features from ultrasound scans [16]. GATs, by 
contrast, augment standard graph-based models by 
attaching attention scores to neighboring nodes and 
are thus useful for structured medical data analysis 
and patient record interrelations [17]. As opposed to 
the standard method, this model makes use of 
EfficientNet for feature extraction and relational 
learning using GAT layers, enhancing diagnostic 
precision. It also includes data augmentation, 
learning rate optimization, and attention-based 
architectures to enhance classification performance 
[17]. 
The proposed Hybrid CNN-GAT (Proposed Model) 
achieved Accuracy: 92.48% (12% improvement over 
Sequential CNN), Precision: 93.64% (consistent 
high-quality positive predictions), Recall: 92.48% 
(9% improvement in detecting true positives), and 
F1-Score: 92.87% (3% better balance than 
Sequential CNN). These results show the efficacy of 
the proposed model over existing work. 
The rest of the paper consists of five sections. Section 
2 is the literature review, which discusses previous 
work related to thyroid disease detection, the 
limitations of existing methods, and the relevance of 
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AI and machine learning techniques in the field. 
Section 3 outlines the research methodology, 
detailing the machine learning models, data 
collection methods, and the design of the mobile 
application. Section 4 presents the results, including 
the performance evaluation of the detection system 
and comparison with traditional methods. Section 5 
is the discussion on results. Finally, section 6 
concludes the paper, along with summarizing the key 
findings and suggesting future directions for further 
research. 
 
2. LITERATURE REVIEW 
This section provides a detailed yet comprehensive 
literature review of the important studies, evaluating 
algorithmic innovations, dataset standardization, and 

clinical translation challenges. Ultrasound imaging, 
introduced in the 1980s, revolutionized thyroid 
nodule assessment by visualizing echogenicity, 
margins, and microcalcifications [18]. Similarly, 
Elastography, a technique measuring tissue stiffness, 
improved specificity by distinguishing malignant 
(hard) from benign (soft) nodules [19]. 
Machine learning and Deep learning are now 
everywhere, transforming most fields [20]. The 
growing ML and DL models in health care, along 
with the availability of well-characterized cancer 
datasets, have advanced the research into deep 
learning’s utility in detecting cancerous cells [21]. 
Table 1 provides a comprehensive review of deep 
learning models used for thyroid cancer diagnosis 
using ultrasound images. 

 
Table 1. Literature Review of Deep Learning work in Thyroid Cancer detection [21] 

S.No Study Model Type of data/Dataset Accuracy Recall Specificity 
5 [11] ThyNet Ultrasound images 89% 94% 81% 
1 [22] Inception v3 Ultrasound images ~95% 93.3% 87.4% 
3 [23] R-CNN Ultrasound images — 81% — 
4 [24] Xception neural network Ultrasound imaging and 

computed tomography (CT) 
98% 94% — 

5 [25] SVM + CNN Ultrasound images 92.5% 96.4% 83.1% 
6 [26] VGG16 Ultrasound images 74% 63% 80% 
7 [27] VGG16 Ultrasound images — 70% 92% 
8 [28] Inception v3 Ultrasound images 76.5% 83.7% 83.7% 
  ResNet101  77.6% 72.5% 81.4% 
  VGG19  76.1% 66.2% 76.9% 
9 [29] Mask R-CNN Ultrasound images — 79% — 
10 [30] CascadeMask R- CNN Ultrasound images 94% 93% 95% 

 
Table 1 compares numerous DL models and their 
performance in analyzing ultrasound images 
(dataset). Study [22] used the Inception v3 model, 
achieving an accuracy of approximately 95%, with 
sensitivity and specificity rates of 93.3% and 87.4%, 
respectively. Similarly, in study [11], the ThyNet 
model achieved high sensitivity (94%) but lower 
specificity (81%), and the accuracy was not reported. 
Moreover, Table 1 shows that the R-CNN model in 
the study [23] showed moderate sensitivity (81%), 
while the study [24] combined ultrasound and CT 
imaging with the Xception neural network, achieving 
good accuracy, i.e., 98% and sensitivity 94%. 
Furthermore, study [25] employed a hybrid SVM + 

CNN approach, yielding better results with 92.5% 
accuracy, 96.4% sensitivity, and 83.1% specificity. 
In studies [26] and [27] both used the VGG16 
model, with varying results, i.e., 63% and 70% of 
sensitivity. Study [28] compared multiple models, 
with Inception v3 showing balanced performance, 
i.e., 76.5% accuracy, 83.7% sensitivity, and 
specificity, ResNet101 achieving 77.6% accuracy, 
and VGG19 performing moderately. Study [29] 
applied Mask R-CNN, reporting 79% sensitivity. 
Study [30] achieved high performance across all 
metrics (94% accuracy, 93% sensitivity, and 95% 
specificity) using CascadeMask R-CNN. These results 
show the dynamism/variability in model 
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performance across numerous studies and the 
importance of selecting the appropriate architecture 
for specific diagnostic tasks, as shown in Table 1. 
 
3. RESEARCH METHODOLOGY 
This section describes the systematic methodology 
employed to develop and evaluate a hybrid deep 
learning framework for thyroid disease classification 
using ultrasound images. The workflow is structured 
into four primary phases: dataset acquisition and 
preprocessing, hybrid model design, training and 
evaluation protocols, and performance assessment. 
The Algeria Ultrasound Images Thyroid Dataset 
(AUITD) [31], a Kaggle-based dataset comprising 
ultrasound images divided into three diagnostic 
groups is used as the first application of the 
approach. The training subset is subjected to 
extensive data augmentation. 
The proposed architecture combines (GATs) [17] to 
represent inter-nodal dependencies in the feature 
space with a pre-trained EfficientNet-B4 CNN for 
feature extraction. The hybrid CNN- GAT model is 
trained over 20 epochs using an AdamW optimizer, 
with dynamic graph construction to establish local 
connectivity patterns between image features. The 
implementation leverages Google Collaboratory for 
GPU-accelerated training, PyTorch Geometric for 
graph operations, and TorchVision for image 
transformations. 

The methodology follows a structured pipeline 
starting with the training and testing phase, where 
the model is prepared to learn from data and 
evaluated on unseen samples. The dataset used is the 
Algeria Ultrasound Images Thyroid Dataset 
(AUTID) [31], sourced from Kaggle, which includes 
labeled ultrasound images of thyroid nodules 
categorized as normal, benign, or malignant. 
Preprocessing is applied to the images, including 
resizing, data augmentation (e.g., rotation, flipping), 
and normalization to standardize the inputs 
and enhance model generalization. The core of 
the architecture is a hybrid CNN-GAT model 
that combines EfficientNet-B4 for extracting high-
level spatial features and a Graph Attention Network 
(GAT) for modeling relational dependencies between 
those features. 
The model performs classification into three 
categories—normal, benign, and malignant. A 
comparative analysis is then conducted to 
benchmark this hybrid model against other 
approaches. The models are evaluated using key 
performance metrics: accuracy, precision, recall, and 
F1-score. Based on these evaluations, particularly 
focusing on the F1-score due to class imbalance, the 
best-performing model is selected. This model is 
proposed as the final solution and is subsequently 
deployed to test its real-world performance, which is 
documented in the final report. The overall 
methodology is shown in Figure 1. 

 

 
Figure 1. Methodology 

Figure 2 shows the flow of work we have done. The detailed discussion on each flow is elaborated in more detail. 
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Figure 2. Workflow diagram 

 
3.1 Dataset 
The study utilizes the Algeria Ultrasound Images 
Thyroid Dataset (AUITD) [31] from Kaggle, 
comprising 3,873 ultrasound images categorized into 
three classes: Normal Thyroid (1,575 images), Benign 
(1,200 images), and Malignant (1,098 images). The 
dataset features variations in image resolution, 
acquisition angles, and thyroid gland presentations, 
providing a robust foundation for model 
generalization. 
 
3.2 Testing and Training of Data 
The dataset was split into an 80:20 ratio for training 
and testing. Data augmentation techniques, including 
random rotation (±15°), horizontal flipping, resized 
cropping (224×224), and color jittering, were applied 
to the training set to prevent overfitting. The test set 
used fixed resizing without augmentation to 
maintain clinical validity. 
 
3.3 Techniques Employed 
A novel Hybrid CNN-Graph Attention Network 
(GAT) Velickovic2018 architecture was developed in 
this study, combining the strengths of computer 
vision and graph-based learning. This hybrid design 
enables the model to learn both rich spatial features 
from ultrasound images and intricate relationships 
among them using graph attention mechanisms. 
 

3.4 Hybrid CNN-GAT Architecture 
The proposed architecture integrates EfficientNet-B4 
as the convolutional backbone, responsible for 
extracting high-level, spatially rich feature maps from 
the input ultrasound images. After that, these feature 
maps are transformed into graph-structured data, 
where every patch or geographical area is regarded as 
a node. A Graph Attention Network (GAT) is used to 
encapsulate the dependencies between these features. 
Each node in GAT uses neighbors with learnable 
attention coefficients to update its representation. 
The node update rule in the GAT is defined as 
shown in Equation (1):  

           (1) 
These attention scores are computed using self-
attention mechanisms, allowing the network to focus 
more on the most relevant neighbors when 
aggregating information. 
 
3.5 Graph Construction 
To transform image features into a graph structure, 
an adjacency matrix A is constructed, defining the 
connectivity between nodes (i.e., regions of the 
image). Instead of using a fixed or handcrafted 
graph, this method adopts a dynamic graph 
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construction approach, where connectivity is based 
on the spatial proximity of features. 
The adjacency rule is as shown in Equation (2): 
 

            (2) 
This ensures that each node is connected to its local 
neighbors within a fixed window (e.g., two nodes on 
either side), creating a localized and dense 
neighborhood. Such local connectivity is essential for 
preserving spatial continuity and allows the model to 
focus on fine-grained structural patterns, crucial in 
identifying subtle variations between normal, benign, 
and malignant nodules in ultrasound images. This 
combination of CNN for spatial encoding and GAT 
for relationship modeling makes the architecture 
particularly powerful for medical image analysis, 
where capturing both feature content and contextual 
dependencies is key. 
 
3.6 Assessment Criteria 
Performance was evaluated using four key metrics: 
a. Accuracy 
Accuracy is a metric that measures the overall 
correctness of a classification model. Its 
mathematical form is shown in Equation 3. It is 
calculated by taking the sum of true positives (TP) 
and true negatives (TN), and dividing it by the total 
number of predictions, which includes true positives, 
true negatives, false positives (FP), and false negatives 
(FN). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (3) 

b. Precision 
Precision focuses on the positive predictions made by 
the model. It is calculated by dividing the number of 
true positives by the total number of predicted 
positives (true positives + false positives). Precision 
answers the question:” Of all the instances the model 
predicted as positive, how many were positive?” as 
shown in Equation 4. 

        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                 (4) 

c. Recall 
Recall describes how well the model is capable of 
detecting all the relevant (positive) examples in the 
database. It is particularly useful in situations where 
missing a positive case would be dangerous, such as 
in disease detection, as shown in Equation 5. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                     (5) 

d. F1 Score 
F1 Score is the harmonic mean of precision and 
recall. It is a useful metric when we want to find a 
balance between precision and recall, and it is more 
informative than accuracy in cases where there are 
many more negative cases than positive ones, as 
shown in Equation 6. 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                          (6) 

4. RESULTS 
This section presents the experimental outcomes of 
the hybrid CNN-GAT model for thyroid disease 
classification using ultrasound images. It includes 
quantitative performance metrics, comparative 
analysis with baseline models, and a detailed 
discussion of the results. All evaluations were 
conducted on the Algeria Ultrasound Images 
Thyroid Dataset (AUTD), with rigorous adherence 
to reproducibility protocols. 
 
4.1 Experimental Results 
The hybrid CNN-GAT model achieved state-of-the-art 
performance on the AUTD test set. Key metrics are 
summarized below in Table 2. The table presents a 
comparative evaluation of two deep learning models 
for classification tasks, measured across four standard 
metrics, such as accuracy, precision, recall, and F1-
score. The Sequential CNN with K-Means 
achieved an 
Accuracy of 81.50%, Precision: 97.40% (excellent at 
minimizing false positives), Recall: 83.10% (moderate 
sensitivity to true positives), and F1-score: 
89.60% (balanced precision-recall 
performance). 

 
Table 2: Performance Comparison of Thyroid Abnormality Detection Models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Sequential CNN + K-Means 81.50 97.40 83.10 89.60 
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Hybrid CNN-GAT (Proposed) 92.48 93.64 92.48 92.87 

 
Figure 2. Accuracy progression during training (20 epochs) 

 
Figure 2 visualizes the performance of our proposed 
model. In contrast, the proposed Hybrid CNN-GAT 
(Proposed Model) achieved Accuracy: 92.48% (12% 
improvement over Sequential CNN), Precision: 
93.64% (consistent high-quality positive predictions), 
Recall: 92.48% (9% improvement in detecting true 
positives), and F1-Score: 92.87% (3% better balance 
than Sequential CNN) as shown in Table 2. 
 
4.2 Confusion Matrix 
The image displays a confusion matrix that evaluates 
the performance of a classification model across three 

categories: Benign, Malignant, and Normal. This 
matrix helps to visualize how well the model 
distinguishes between these classes. The diagonal 
elements represent the correct predictions — 56 
Benign cases, 269 Malignant cases, and 7 Normal 
cases were correctly classified. Off-diagonal elements 
indicate misclassifications, with 4 Benign cases 
wrongly predicted as Malignant and 23 Malignant 
cases misclassified as Benign. Notably, the Normal 
class was classified perfectly with no errors, as shown 
in Figure 3. 
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Figure 3. Confusion Matrix 

 
4.3 Multi-Class ROC 
The Receiver Operating Characteristic (ROC) curves 
for the same three classes. The curves represent the 
trade-off between the true positive rate and the false 
positive rate at different threshold values. The area 
under the curve (AUC) of each curve is an important 
measure that indicates the ability of the model to 

classify between classes. The AUC values are 
remarkable: 
0.98 for benign and malignant, and a perfect 1.00 for 
the normal class. These values show that the model 
has very good discriminatory power, particularly for 
the Normal class, which is consistent with the perfect 
classification seen in the confusion matrix as shown 
in Figure 4. 

 
Figure 4. Multi-Class ROC 
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5. DISCUSSION 
The proposed hybrid CNN-GAT model 
outperformed all baseline architectures, achieving an 
F1-score of 93.42% and accuracy of 93.04%. Key 
factors contributing to its superiority 
include: 
 
5.1 Why Hybrid CNN-GAT Performs Better on 
AUTD? 
5.1.1  Feature Synergy 
The EfficientNet-B4, a state-of-the-art convolutional 
neural network, serves as the backbone for extracting 
high-resolution spatial features from ultrasound 
images. These features capture local texture, shape, 
and structural patterns in thyroid nodules. However, 
CNNs alone are limited in modeling non-local 
relationships. To address this, the extracted features 
are passed through Graph Attention Network (GAT) 
layers, which are designed to model the inter-feature 
dependencies using self-attention mechanisms. GAT 
enables the model to weigh the importance of 
different features dynamically, allowing it to attend 
more to relevant pathological patterns. This 
combination of spatial feature extraction (from CNN) 
and relational reasoning (from GAT) results in a 
richer and more discriminative feature 
representation, especially useful for identifying subtle 
differences between benign and malignant nodules. 
 
5.1.2 Dynamic Graph Construction 
In the hybrid model, a dynamic graph is constructed 
over the spatial feature maps where each node 
corresponds to a region in the ultrasound image. The 
GAT component links each node to its neighboring 
nodes within a defined range (e.g., |i−j| ≤ 2), 
forming a local neighborhood graph. This localized 
connectivity is essential in medical imaging because it 
allows the model to capture the spatial context and 
structure of surrounding tissues. By attending to 
neighboring features, the model can more effectively 
recognize patterns that are indicative of malignancy, 
such as irregular margins or heterogeneous 
echotexture. This context-aware feature modeling 
improves the model’s ability to distinguish between 
normal and abnormal cases, even when visual 
differences are subtle. 

5.1.3 Robust Augmentation 
To prevent overfitting and enhance the generalization 
ability of the model—especially given the class 
imbalance in AUTD (1,098 malignant cases vs. 
1,575 normal cases)—various data augmentation 
techniques were employed during training. These 
include random rotations, horizontal and vertical 
flipping, and color jittering. Such transformations 
force the model to learn invariant and robust features, 
rather than memorizing specific patterns seen during 
training. This is particularly important for the 
minority malignant class, where diversity in the 
training data is limited. Augmentation artificially 
increases the diversity of the dataset and helps 
balance the learning process between classes. 
 
5.1.4 Optimization Strategy 
The model training was carefully tuned using the 
AdamW optimizer, which introduces weight decay 
(set to 10 (4) to reduce overfitting by penalizing large 
weights. Additionally, gradient clipping with a 
maximum norm of 1.0 was applied to prevent 
exploding gradients, which can destabilize training in 
deep networks. This optimization strategy ensures 
that learning is stable and efficient, leading to better 
convergence and improved performance on unseen 
test data. 
 
6. CONCLUSION & FUTURE WORK 
This study has presented a comprehensive approach 
to early thyroid disease detection using deep learning 
techniques. The proposed research demonstrates the 
effectiveness of combining convolutional neural 
networks with graph attention mechanisms for 
analyzing medical imaging data. The developed 
system achieves promising results in classifying liver 
conditions, offering potential benefits for clinical 
diagnosis and patient care. The efficacy of the hybrid 
CNN-GAT framework through comprehensive 
benchmarking. The model achieved 93.04% accuracy 
and 93.42% F1-score on the AUTD test set, 
surpassing conventional CNNs and machine 
learning baselines. The integration of graph 
attention mechanisms with deep feature extraction 
proved particularly effective for thyroid ultrasound 
analysis. 
In the future, the model architecture could be 
enhanced through the incorporation of more 
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advanced attention mechanisms. Additional clinical 
data sources could be integrated to improve 
diagnostic accuracy. More extensive testing across 
diverse patient populations would help validate the 
generalizability of our approach. 
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