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Abstract

Machine learning algorithms are widely employed in image
classification tasks to extract and represent discriminative features
from images. In this study, we present an efficient approach for
generating image descriptors using Convolutional Neural Network
(CNN) architectures, including GoogleNet, Inception V3, and
DenseNet-201. These networks are leveraged to capture both
texture and object-level features, which are further encoded
through three color channels to enhance image retrieval
performance while maintaining an optimal response time. When
images are processed through the hierarchical layers of the CNNs,
distinctive feature representations (signatures) are produced. These
signatures are subsequently used to construct a new matrix that
effectively encodes spatial relationships, color attributes, and latent
patterns, thereby providing a more comprehensive representation
of image content. The proposed CNN-based method was evaluated
on four benchmark datasets: Corel-1K, CIFAR-10, 17-Flowers, and
ZuBuD. Among the tested architectures, DenseNet-201 achieved
the best performance on the CIFAR-10 dataset, which contains
images of diverse categories and varying sizes, demonstrating
superior accuracy compared to GoogleNet and Inception V3.
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INTRODUCTION

Databases are increasingly being used to store
digital images from various organizations. With the
widespread use of digital cameras and imaging
applications, the volume of image data stored
online in libraries and databases has expanded

rapidly. As these image collections grow, retrieving
specific images becomes challenging, especially in
the absence of textual metadata. In the field of
computer vision, numerous techniques have been
developed to identify image attributes such as color,
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texture, segmented regions, keypoints, and
descriptive keywords through sampling. To address
these challenges, Content-Based Image Retrieval
(CBIR) systems have been introduced. CBIR
focuses on retrieving relevant images based on
visual content rather than relying solely on textual
annotations. It extracts low-level features such as
shape, color, and texture directly from the image,
allowing the system to classify and assign semantic
meaning to the images automatically. These
features are stored in a database, and similarity
comparisons are conducted to retrieve images that
match a given query. To bridge the gap between
low-level visual features and high-level semantic
concepts, machine learning algorithms are
employed, enabling more effective image
categorization and enhancing CBIR performance.

The core components of a CBIR system include
feature extraction and similarity measurement,
both of which are user-dependent. While low-level
features encompass visual attributes like shape and
texture, high-level features reflect semantic
understanding. A key challenge in CBIR is the
semantic gap—the discrepancy between low-level
features and human visual perception—which often
affects system performance. To mitigate this issue,
deep learning models are integrated with machine
learning techniques, enhancing the system’s ability
to learn complex patterns from image data.

To further improve CBIR robustness and efficiency,
a combination of color and object-based features is
used. The retrieval process begins with a query

image, from which texture, color, and other
descriptors are extracted following preprocessing.
Principal Component Analysis (PCA) is then
applied to refine these features. To enable fast and
efficient retrieval from large datasets, a Bag of
Words (BoW) model is constructed using the
extracted features, which helps in indexing and
identifying relevant images. These descriptors
effectively capture image patterns such as edges and
corners, which are essential for object recognition
and retrieval.

In this study, the proposed approach is evaluated
on several publicly available datasets, including
ALOT, CIFAR-10, Fashion-MNIST, and Oxford
102 Flowers. Various CNN architectures such as
GoogleNet, VGG19, AlexNet, DenseNet-201, and
NASNetLarge are applied to subsets of these
datasets. The performance is assessed based on the
system’s ability to capture color, texture, and
descriptive features, with a focus on maximizing
retrieval accuracy and minimizing response time.

1.1. Content-Based Image Retrieval

Content-Based Image Retrieval (CBIR) is a
technique that focuses on analyzing the visual
characteristics of images such as color, shape,
texture, and spatial features rather than relying on
keywords or labels. In CBIR systems, the actual
content of the image is examined to identify and
retrieve similar images from a database based on
feature similarity. This approach plays a significant
role in various fields, including defense, healthcare,
agriculture, architecture, and education.
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Figure 1: CBIR Techniques [1]
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Related work
Recent years have seen a dramatic increase in digital
image usage. Retrieving specific images via queries from
large datasets has become particularly challenging,
prompting researchers to develop robust Content-
Based Image Retrieval (CBIR) techniques. These
methods extract visual features such as shape, color,
corners, edges, noise, and texture for efficient image
retrieval. A hybrid approach combines Convolutional
Neural Networks (CNNs) with CBIR to enhance
retrieval accuracy. Textures are sampled based on
neighboring key points, and standard deviation is used
for smoothing and pattern comparison. Features are
reduced through Principal Component Analysis (PCA)
and ResNet is leveraged for feature generation.
Additionally, color coordinates are integrated into
CNN architectures, resulting in high-precision image
features used for smoothing, scaling, and sampling [8].
To accelerate training, one study integrates spatio-
temporal and multi-resolution information, improving
performance over traditional models like UCF- 101.
The proposed architecture better preserves connections
over time, surpassing slow- fusion networks and
reducing error rates [9]. Comparative studies using the
Normalized Difference Vegetation Index (NDVI)
involve CNNs to assess single- and multi-sensor
scenarios over time. While initial results showed both
cross-sensor and temporal dependencies, gaps remain
in generalization across diverse datasets [10]. Several
studies focus on combining color and object-based
features using BoW indexing. PCA is applied to
discard redundant features, and mixed representations
(RGB + grayscale) yield strong precision and recall
across datasets [11]. Feature extraction methods such as
MORAVEC corners, covariance-based edge scoring,
and binary pattern encoding are applied to datasets like
ImageNet, Caltech, and Corel. Traditional descriptors
such as HOG, SIFT, and SURF perform well on some
datasets but struggle in others due to limited attributes
[12].

BiCBIR, a dual-stage system, first retrieves images
using color and texture, and then refines results
based on shape and color comparison, delivering
fast and accurate retrieval. Authors propose further
enhancing it by integrating CNNs [13].
Experiments on varied images (diverse shapes,
textures, backgrounds) harness multiple CNNs
combined into eigenvalue-based feature mappings.
This yields improvements in retrieval rate and
efficiency across large datasets [14]. Research
aiming to optimize features like texture,
segmentation, interest points, and keywords
employs symmetric scoring (FAST), smoothing,
and reduction techniques to scale for large datasets.
Results suggest potential benefits when compared
with ResNet [38][8]. A triple-network approach
uses semantic feature extraction to cluster similar
images and separate dissimilar ones. Euclidean
distance measures similarity, and feature
dimensionality is minimized to improve retrieval
performance [15]. A general CBIR framework
optimized for domains like forensic fingerprinting,
facial recognition, and digital libraries uses a seven-
step feature selection, extraction, clustering, and
similarity measurement pipeline. Algorithms such
as EAAQ, SEPAM, MYOLO, and ERDO enhance
body-part segmentation and overall retrieval
accuracy [16]. Enhanced color histograms—
including Color Coherent Vector (CCV), hybrid
and angular/annular histograms have been
developed to better represent color distribution
and improve search precision in CBIR systems [3,
33]. CRB- CNN, a CNN-based image retrieval
model, simultaneously extracts convolutional
features and applies compact pooling to reduce
dimensionality. This strategy decreases storage and
accelerates retrieval while maintaining performance
[17]. CNN-based systems have been adapted for
diagnosing malaria from blood smear images,
though further work is required to close accuracy
gaps caused by parasitic artifacts [18].
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Texture feature extraction combined with BoW
and language models enables texture-based retrieval,
using CNNs to capture feature distributions from
image inputs [19]. DNNs classify medical images
(e.g., diabetic diagnostics) using models like
VGGNet, PCA, GMM, AlexNet, and SIFT-based
features, delivering fast and accurate results [6].
Signature- based CBIR techniques exploit shape,
color, and interest-point derivatives clustered via
coefficient-based methods. Features are converted
into Bag-of-Words and ranked, yielding reliable
precision and recall metrics [20]. Visual saliency is
integrated into CBIR by using dual-stream CNNs:
one network extracts divergent features, while the
other reinforces salient content. The auxiliary
channel aids the main stream for enhanced
retrieval quality [21]. Techniques that minimize
intra-class feature distance using entropy-optimized
deep networks boost descriptive feature retrieval
and gap minimization between relevant/irrelevant
images [22]. CBIR systems using VGG16 and
ResNet50 fuse color, texture, and shape features
from pre-trained models to support image retrieval
across satellite and remote sensing datasets [23].
Blend of seven local/global detectors (e.g.,
RGBLBP, MSER, HoG, SURF, SIFT, LBP)
followed by PCA and L2-normalization enhances
retrieval performance across multiple datasets [24].
Hybrid models combining ANN, SVM, and genetic
algorithms (like GCCL) improve classification
outcomes and retrieval accuracy in CBIR [25].
Comparative studies of color spaces (RGB, TUV,
HSV) paired with octree-based indexing show
adaptive retrieval performance based on color
quantization techniques [26].

2. Methods and materials

This study focuses on the fundamental stages
of feature detection, key point matching,
structural analysis, and the use of image
descriptors. These components are essential
for readers aiming to understand and replicate
the methodology. One of the key challenges in
feature extraction lies in balancing two primary
objectives: generating high-quality descriptions
and maintaining computational efficiency.

2.1. Continuous Scale-Space
Representation

To identify stable key points across various scales,
saliency-based criteria are employed. This involves
detecting intersection points within both the image
and its corresponding scale dimension. Achieving
scale invariance requires locating high-quality key
points beyond the traditional image plane by
identifying local maxima in scale space. In the
subsequent step, saliency scores are assigned to
these scale-based key points. Rather than sampling
the scale axis at fixed intervals, advanced detectors
are utilized to estimate the optimal scale for each
key point in a continuous scale-space framework.
This approach enhances precision and robustness
in the detection process. The complete process is
visually summarized in the accompanying figure.
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Figure 2: Continuous Scale Space

2.2. Pyramid Layer Construction
Following the continuous scale-space
representation, a pyramid structure is formed. This
pyramid is composed of multiple octaves and inter-
octaves, typically with a total of four layers (n = 4).
Each octave is generated from the original image
through downsampling, where each new octave
contains half the resolution of its predecessor.
Inter-octave layers, which exist between two
consecutive layers cic_ici​ and ci+1c_{i+1}ci+1​ ,
are produced by scaling the original image by a
factor of 1.5. Subsequent inter-octaves are derived
by continuing the down sampling process. For
feature detection within these layers, corner
detection techniques such as FAST (Features from
Accelerated Segment Test) and AGAST (Adaptive
and Generic Accelerated Segment Test) are utilized.
The FAST detector uses a 9–16-pixel mask—
meaning that among a 16-pixel circle around a
candidate pixel, at least 9 pixels must be either
consistently brighter or darker than the center pixel
to qualify as a key point. FAST detection is applied
across both octave and inter-octave layers, with
thresholding used to identify joint regions. Non-
Maximum Suppression (NMS) is then used to
isolate key points by evaluating their saliency
relative to eight neighboring pixels within the same
layer. A pixel is retained as a key point if its score is
the maximum in its vicinity, and higher than those
in the layers directly above and below. Only square-

shaped images with equal side lengths are used,
with a maximum side length difference of 2 pixels.
At the layer boundaries, interpolation is applied to
manage score variations across neighboring regions.

2.3. Descriptor Sampling

Descriptor sampling involves selecting points on
concentric circular regions around each detected
key point. These sample points are used to extract
grayscale intensity values from the image, which are
then compared to generate a binary descriptor.
This binary comparison approach ensures efficient
key point matching. Inspired by the human visual
system, particularly the retina’s ability to detect and
distinguish features, the Fast Retina Key point
(FREAK) method is employed to enhance object
detection within images. Each key point is defined
by its position and scale (sub-pixel accuracy), and
its binary descriptor is formed by encoding the
results of brightness comparisons between sampled
pairs of points. Orientation and rotation-invariance
are ensured through the use of normalized
descriptors. The descriptor pattern mimics that of
the DAISY descriptor, with sample locations evenly
distributed along circular paths centered on the key
point. Gaussian smoothing is applied with a
defined standard deviation to reduce aliasing
effects during sampling. The sampling pattern is
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then scaled and rotated according to the key
point’s orientation to maintain consistency across
transformations. For efficient rotation and scale
normalization, the sampling pattern is aligned with
the key point’s dominant direction. Binary
descriptors perform localized intensity comparisons,
and methods like BRIEF (Binary Robust
Independent Elementary Features) are

implemented to encode these comparisons.
Pairwise sampling is preferred over single-point
comparisons, as it enables faster and more reliable
matching. Finally, hamming distance is used to
measure dissimilarity between descriptors by
counting the number of differing bits, facilitating
quick and efficient feature matching.

Figure 3: The proposed method includes a step-by-step demonstration of the process

2.4. Spatial Color Feature Extraction
The image retrieval process begins with analyzing
the image to extract similarity-based features. Since
the input consists of color images, distinguishing

between relevant and irrelevant images is based on
their feature similarity. Two main types of features
are considered: local features, such as image
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segmentation and edge detection, and global
features, which include color and texture
information.

In the case of color features, the process involves
calculating the first and second-order derivatives, as
well as the area associated with each pixel. These

computed values are stored in a structured array.
Additionally, the RGB (Red, Green, Blue) color
values for each pixel are recorded. Edges within the
image are detected and utilized to form a feature
vector, which contributes to identifying and
comparing visual content effectively.

Figure 4: Color Features Extraction

Our framework outlines the key phases of feature
extraction, keypoint matching, structural
representation, and descriptor formulation. These
elements are essential for readers to understand
and replicate the method. One of the central
challenges lies in balancing detailed feature
representation with computational efficiency.
Color is a critical visual attribute in CBIR systems.
It aids in distinguishing relevant from irrelevant
images with minimal error while maintaining
compact feature representations. CBIR methods
often utilize various color spaces (e.g., RGB, HSV)
to encode pixel information. Color histograms are
computed across image regions to summarize color
distributions. Images are segmented into grids, and
histograms are generated for each sub-region.
Histogram bins, typically normalized within a range
(e.g., 0.0 to 0.01), represent the frequency of pixel
colors. A Color Structure Descriptor is also applied,
which quantifies how often specific colors appear
in structured elements of the image. Alongside
color histograms, edge-based descriptors and color
moments are extracted to build the overall color

feature vector. Similarity between a query image
and database images is computed using metrics
such as the Euclidean distance between color
feature vectors.

2.5. Image Indexing Using Bag-of-Words (BoW)
After extracting CNN-based feature signatures,
color descriptors, and texture details, we employ a
Bag-of-Words (BoW) model for image indexing.
Each image is represented as a fixed-length vector,
where each visual word corresponds to a cluster of
similar descriptors (e.g., SIFT). Visual words are
quantized into histograms, and an inverted index is
created to enable efficient image retrieval. For each
image, the number of occurrences of each visual
word is tallied, and ranking is based on similarity
between histogram vectors. While BoW does not
explicitly encode spatial or color information,
augmenting it with descriptive and color vectors,
combined with CNN features, improves retrieval
accuracy significantly.
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3. Results and implementation
To assess the performance and efficiency of the
proposed CBIR system, several publicly available
benchmark datasets were utilized. These datasets
vary in complexity, image type, and object diversity,
ensuring a comprehensive evaluation. The four
datasets employed are:

 CIFAR-10: Contains 10 distinct classes

 Oxford 17-Category Flower Dataset: Includes 17

categories of flowers

 Corel-1K: Comprises 10 classes of natural images

 ZuBuD (Zurich Buildings Database): Consists of 250

different building categories

Each dataset offers unique visual attributes such as
color composition, texture, shape, and object
complexity. The retrieval performance varies across
datasets due to their inherent differences in class
structure and feature diversity.

3.1. Image Processing

The CBIR system begins with the ingestion of
color images, which are initially transformed into
grayscale format to standardize input and reduce
complexity. Feature extraction is carried out using
deep learning-based models such as GoogleNet,
Inception v3, and DenseNet-201. The selected
models are trained on the aforementioned datasets
to extract discriminative features. After feature
extraction, the Bag-of-Words (BoW) method is
employed to generate feature vectors and index
images efficiently. This indexing process facilitates
the classification of key visual characteristics,
including texture, color, shape, and object identity.

3.2. Evaluation metrices
The effectiveness of image retrieval is measured
using two key metrics:

 Precision: Represents the proportion of relevant
images retrieved out of all retrieved images.

 Recall: Measures the proportion of relevant images
retrieved out of the total relevant images present in
the dataset.
Mathematically:

 Precision = (Number of Relevant Retrieved Images)
/ (Total Retrieved Images)

 Recall = (Number of Relevant Retrieved Images) /
(Total Relevant Images in Dataset)
These metrics provide insight into the system’s
accuracy and retrieval capability across various
categories. Each category's precision and recall
values are computed individually.
Average Retrieval Precision (ARP) is used to
evaluate the retrieval performance for each image
category across different datasets. The ARP is
computed using the average of individual category-
wise precision scores. A bar graph is used to
visually present ARP results, where each bar
represents the number of correctly retrieved images
for a specific category. The x-axis indicates the
categories, and the y-axis shows the corresponding
average precision scores.
The ARP is calculated for each of the following
datasets:

 CIFAR-10

 17-Flowers

 Corel-1K

 ZuBuD

To evaluate the overall retrieval performance,
Mean Average Precision (MAP) is computed. MAP
is derived from the ARP values of all categories
across a dataset and reflects the system’s general
ability to return relevant images. MAP is defined as
the mean of the average precision scores calculated
for all queries. It offers a unified metric to compare
performance across different image datasets.

MAP = �=1
� � � ∗���(�)�

�
Equation (1)
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In Equation (1) defines the calculation of average
precision, denoted by E(p), for the top p retrieved
images. The term rel(p) represents the relevance of
the retrieved image: it is assigned a value of 1 if the
retrieved image matches the query image, otherwise
it is 0. The variables r and i refer to the retrieved
images and their respective indices at the time of
retrieval.

3.3. System Configuration and Experimental

Results

The experiments were conducted on a Dell
Core i5 system with 8 GB RAM. MATLAB
R2020b was used for implementing and
evaluating the CBIR framework. For feature
extraction and classification, deep learning
models such as GoogleNet, Inception v3, and
DenseNet-201 were employed using
MATLAB’s Deep Learning Toolbox. A range
of benchmark image datasets were tested to
validate system performance.
The Oxford 17-Flowers dataset was utilized to
evaluate the retrieval system’s effectiveness. The
performance metrics calculated include Average
Precision (AP), Average Recall (AR), Average
Retrieval Precision (ARP), Average Retrieval Recall
(ARR), Mean Average Precision (MAP), and Mean
Average Recall (MAR). This dataset includes 17
distinct flower categories such as:
Bluebell, Buttercup, Coltsfoot, Cowslip, Crocus, Daffodil,
Daisy, Dandelion, Fritillary, Iris, Lily of the Valley,
Pansy, Snowdrop, Sunflower, Tigerlily, Tulip, and

Windflower. Each category contains 80 images,
resulting in a total of 1360 images in the dataset.
The dimensions of the images vary across the
dataset. For each category, common visual
attributes like color, shape, and object structure
were considered. The system consistently delivered
high average precision scores across most categories.
A figure included in this section illustrates sample
images from various flower categories in the 17-
Flowers dataset.

3.4. Performance Evaluation on the 17-Flowers
Dataset
The following table summarizes the performance of
three deep learning architectures GoogleNet,
Inception v3, and DenseNet-201 on the 17-Flowers
dataset. Each model was tested using the top 20
retrieved images per query. The evaluation metrics
include Precision and Recall for each flower
category.

 GoogleNet showed moderate performance across
most categories, with particularly high precision for
Fritillary (0.95) and Sunflower (0.75).

 Inception v3 consistently outperformed GoogleNet
in several categories, achieving perfect precision
(1.0) for Fritillary and high scores for Pansy (0.95)
and Sunflower (0.85).

 DenseNet-201 delivered the best overall
performance, attaining full precision (1.0) in both
Fritillary and Windflower categories and high
precision in others such as Dandelion, Sunflower,
and Daisy (all at 0.95).

Below is a category-wise summary:
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Table 1: Precision and recall represented in tabular form for 17-flowers dataset.

17-flowers
Flower
Category

GoogleNet (Precision /
Recall)

Inception v3 (Precision /
Recall)

DenseNet-201 (Precision /
Recall)

Bluebell 0.65 / 0.04 0.85 / 0.03 0.55 / 0.05
Buttercup 0.50 / 0.05 0.55 / 0.05 0.80 / 0.03
Coltsfoot 0.45 / 0.06 0.65 / 0.04 0.95 / 0.03
Cowslip 0.30 / 0.08 0.40 / 0.06 0.55 / 0.05
Crocus 0.45 / 0.06 0.55 / 0.05 0.70 / 0.04
Daffodil 0.40 / 0.06 0.45 / 0.06 0.45 / 0.06
Daisy 0.45 / 0.06 0.70 / 0.04 0.95 / 0.03
Dandelion 0.50 / 0.05 0.70 / 0.04 0.95 / 0.03
Fritillary 0.95 / 0.03 1.00 / 0.03 1.00 / 0.03
Iris 0.55 / 0.05 0.65 / 0.04 0.80 / 0.03
Lily of the
Valley

0.45 / 0.06 0.65 / 0.04 0.85 / 0.03

Pansy 0.70 / 0.04 0.95 / 0.03 0.80 / 0.03
Snowdrop 0.30 / 0.08 0.55 / 0.05 0.50 / 0.05
Sunflower 0.75 / 0.03 0.85 / 0.03 0.95 / 0.03
Tigerlily 0.40 / 0.06 0.90 / 0.03 0.50 / 0.05
Tulip 0.30 / 0.08 0.35 / 0.07 0.40 / 0.06
Windflower 0.45 / 0.06 0.55 / 0.05 1.00 / 0.03

Figure 5: 17-Flowers dataset showing different sample images of categories

The average precision for each category within the
17-Flowers dataset is illustrated using a bar graph.
This visualization highlights the classification
effectiveness of three deep learning models:
GoogleNet, Inception v3, and DenseNet-201.

These models use convolutional neural networks
(CNNs) combined with feature mapping, image
scaling, and integration techniques to accurately
classify images. The precision scores are scaled to a
maximum of 1.0. Among all models, DenseNet-
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201 demonstrated the highest accuracy, achieving
100% average precision for Fritillary and
Windflower. Additionally, Coltsfoot, Daisy, Dandelion,
and Sunflower categories recorded 95% precision
using DenseNet-201. Several other categories
maintained average precision values around 70%.
In contrast, GoogleNet showed lower performance,

particularly on the Corel-1K dataset, where
precision dropped to just above 30% in certain
categories. With Inception v3, over half of the
categories from Corel-1K achieved more than 70%
average precision. The comparative results of
average precision for Corel-1K are depicted in
Figure 6.

Figure 6: Precision rate for categories of 17-flowers dataset

In Figure 7 presents the average recall for all 17
categories in the 17-Flowers dataset, assessed using
GoogleNet, Inception v3, and DenseNet-201. The
bar graph illustrates category-wise variations,
offering insights into the retrieval performance
across different flower types.

Among the models, GoogleNet exhibited strong
recall performance in categories such as Cowslip,
Snowdrop, and Tulip, with recall rates reaching
nearly 80%. However, the majority of categories
recorded recall values at or below 60%. Specifically,
categories like Coltsfoot, Crocus, Daffodil, Daisy, Lily
of the Valley, Tigerlily, and Windflower showed an
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average recall of approximately 60% with
GoogleNet.
DenseNet-201, on the other hand, reported lower
recall scores for many categories, with nearly half of
them falling at or below 30%, despite its overall
strong precision performance. Inceptionv3

demonstrated moderate results, with average recall
values mostly ranging between 30% and 60%, and
a general average around 40%. The detailed
average recall statistics across all categories are
visualized in Figure 7.

Figure 7 :Recall rate for categories in 17-flowers dataset

Figure 8 illustrates the Average Retrieval Precision
(ARP) across all categories of the 17-Flowers
dataset, using three CNN-based feature extraction
models: GoogleNet, Inception v3, and DenseNet-
201. Among these, DenseNet-201 delivered the
most consistent performance, achieving an ARP of
approximately 76% across the majority of flower
categories. The highest individual precision was

recorded for the Bluebell category, reaching close to
90% when using Inception v3 as the feature
extractor. GoogleNet, comparatively, exhibited the
lowest ARP, falling below 80% for most categories.
In contrast, DenseNet-201 maintained ARP values
within the 80% to 90% range, highlighting its
superior performance in accurate image retrieval
within this dataset.
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Figure 8: Average Retrieval precision rate for categories of 17 flowers in 17-flowers dataset.

Figure 9 presents the Mean Average Precision (MAP) results for the 17-Flowers dataset. The evaluation
shows that DenseNet-201 achieved the highest MAP, reaching approximately 96%. Inception v3 followed
with a MAP of around 86%, while GoogleNet recorded the lowest performance with a MAP of about 70%.
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Figure 9: Mean Average Precision Rate For 17-Flowers Dataset.

Figure 10 illustrates a line graph depicting the
average retrieval recall performance across various
categories of the 17-Flowers dataset. The recall
values range between 60% and 90%, indicating
moderate to high retrieval effectiveness. The
highest recall—approximately 96%—was achieved
using GoogleNet, with the daisy category
performing the best. DenseNet-201 demonstrated

a strong recall for the bluebell category, exceeding
85%, while Inception v3 achieved its peak recall
with the daffodil category. However, Inception v3
reported the lowest recall for bluebell. The graph
also reveals that DenseNet-201’s overall recall is
relatively low, which implies it offers higher
precision in retrieval tasks.

Figure 10: Average Retrieval Recall rate for categories of 17-flowers dataset.

The graphical analysis of the 17-Flowers dataset shows that GoogleNet achieves the highest mean average
recall (MAR), while DenseNet-201 records the lowest MAR among the evaluated models.
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Figure 11: Mean Average Recall Rate For Categories Of 17-Flowers Dataset.

Table 2 presents the average precision and recall
values for various image categories in the CIFAR-
10 dataset. The results show that categories such as
ship, horse, and dog achieved up to 90% average
precision, while several others exceeded 85%

precision. The CIFAR-10 dataset, used for this
evaluation, consists of 60,000 color images across
10 distinct classes with consistent image
dimensions. The categories include automobile,
bird, cat, deer, dog, frog, horse, ship, and truck.

Table 2: Value of precision and recall represented in tabular form for 10 categories of cifar-10 dataset.

Category GoogleNe
t

Inceptio
n v3

DenseNet
-201

Top-20
Images

Precisio
n

Recal
l

Top-20
Images

Precisio
n

Recal
l

Top-20
Images

Precisio
n

Recal
l

Automobil
e

20 1.00 0.23 20 1.00 0.32 20 1.00 0.15

Bird 20 1.00 0.23 20 1.00 0.32 20 1.00 0.20
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Cat 13 0.25 0.03 16 0.80 0.31 20 1.00 0.25

Deer 17 0.20 0.23 17 0.85 0.30 20 1.00 0.35

Dog 18 0.21 0.31 20 1.00 0.23 20 1.00 0.30

Frog 17 0.20 0.23 19 0.95 0.32 20 1.00 0.20

Horse 14 0.40 0.041 20 1.00

The experimental outcomes were visualized using
bar graphs to facilitate a clearer understanding of
the results. Deep learning-based feature extraction
techniques were applied, using Convolutional
Neural Networks (CNNs) for sampling and scaling
across the CIFAR-10 dataset, which includes
categories such as automobiles, birds, cats, deer,

dogs, frogs, horses, ships, and trucks. As illustrated
in Figure 12, the average precision for each class
was analyzed. DenseNet-201 demonstrated the
highest precision among the models, followed by
Inception v3, while GoogleNet showed the
comparatively lowest performance in terms of
precision.

Figure 12: Cifar-10 Dataset Average Precision Rate

Figure 13 presents the average recall values for the
ten classes in the CIFAR-10 dataset, analyzed using
GoogleNet, Inception v3, and DenseNet-201. The
bar graph illustrates variations across different
categories, aiding in understanding the recall

performance of each class. GoogleNet achieved
notably high recall in categories such as ship, cat,
CIFAR10.CSV, and horse—though these were still
under 50%. For categories like automobile, bird,
deer, frog, dog, and truck, the recall exceeded 70%
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with GoogleNet’s CNN-based feature extraction.
DenseNet-201, on the other hand, showed lower
recall across most classes, often below 30%, though
approximately half the categories reached up to

60%. Inception v3 produced recall values generally
ranging from 80% to 90%, with an overall average
near 50%. The results are visually summarized in
Figure 13.

Figure 13: Average Recall rate for 10 categories in Cifar-10 dataset.

As shown in Figure 14, the highest average retrieval
precision across most CIFAR-10 categories is
achieved using the DenseNet-201 feature extractor,
reaching nearly 99%. Specifically, the automobile

and bird categories show particularly strong
performance, with DenseNet-201 delivering
average retrieval precision rates exceeding 80%.
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Figure 14: Cifar-10 Dataset Average Retrieval Precision Rate

Figure 15 illustrates the mean average precision
(MAP) results for the CIFAR-10 dataset. DenseNet-
201 achieves the highest MAP at 100%, followed
by Inception v3 with 92%. In comparison,

GoogleNet demonstrates a relatively lower MAP
performance than the other two CNN
architectures.
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Figure 15: Cifar-10 Mean Average Precision.

Figure 16 presents the average retrieval recall across
various CIFAR-10 categories. DenseNet-201
achieves the highest recall, reaching approximately
95% for most classes, with the frog category

showing the best performance. Inception v3
demonstrates its highest recall for the bird category,
exceeding 75%, while GoogleNet also records its
peak recall for the bird class.
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Figure 16: Average Retrieval Recall Rate For Cifar-10 Dataset

Figure 17 illustrates the mean average recall (MAR)
performance across the CIFAR-10 dataset.
DenseNet-201 achieved the highest MAR at 92%,

followed by Inception v3 with 62%, while
GoogleNet recorded the lowest recall performance
at 42%.

Figure 17: Cifar-10 Mean Average Recall Rate.
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An additional experiment was conducted using the
widely known Corel-1K dataset, which includes
1,000 images distributed evenly across 10 distinct
categories: beach, buildings, buses, corel-1k,
dinosaurs, elephants, flowers, horses, food, and
mountains. Each category contains approximately
100 images of similar type. The evaluation focused
on measuring average precision and recall using
different convolutional neural networks (CNNs),
including GoogleNet, Inception v3, and DenseNet-
201. Among these, DenseNet-201 delivered the

most effective performance, achieving 100%
similarity in nearly half of the categories. Another
40% of the categories also showed perfect similarity.
In contrast, GoogleNet demonstrated the lowest
similarity results. The high efficiency of DenseNet-
201 is attributed to its strong performance in
categories such as dinosaurs, elephants, and
horses—all of which are animal-based classes
sharing similar visual features like four-legged
structure and body shape.

Table 3: Precision and Recall represented in tabular form for Corel-1000 dataset.

Category GoogleNet (Top 20,
Precision, Recall)

Inception v3 (Top 20,
Precision, Recall)

DenseNet-201 (Top 20,
Precision, Recall)

Beach 18, 0.90, 0.03 20, 1.00, 0.03 18, 0.90, 0.03

Buildings 12, 0.60, 0.04 15, 0.75, 0.03 12, 0.60, 0.04

Buses 14, 0.70, 0.04 13, 0.65, 0.04 16, 0.80, 0.03

Corel_1k.csv 12, 0.60, 0.04 19, 0.95, 0.03 19, 0.95, 0.03

Dinosaurs 20, 1.00, 0.03 20, 1.00, 0.03 20, 1.00, 0.03

Elephants 14, 0.70, 0.04 17, 0.85, 0.03 20, 1.00, 0.03

Flowers 20, 1.00, 0.03 20, 1.00, 0.03 20, 1.00, 0.03

Food 18, 0.90, 0.03 17, 0.85, 0.03 20, 1.00, 0.03

Horses 20, 1.00, 0.03 20, 1.00, 0.03 20, 1.00, 0.03

Mountains 13, 0.65, 0.04 14, 0.70, 0.04 15, 0.75, 0.03

Figure 18 illustrates the average precision scores for
various categories within the Corel_1K dataset
using a bar chart. This visual representation
effectively highlights the classification accuracy
achieved through deep learning techniques.
Feature extraction was carried out using CNN
models, supported by image scaling and filtering
methods to enhance mapping and integration.
DenseNet-201 demonstrated exceptional

performance, achieving perfect (100%) precision in
several categories including dinosaurs, flowers,
elephants, food, and horses. Categories like beach and
buses also achieved high precision rates of 90% and
95%, respectively, using the same network.
Remaining categories mostly recorded average
precision rates of around 70%. Conversely,
GoogleNet yielded the lowest average precision
values, though still above 60% for all categories.
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Overall, more than half of the dataset categories
achieved over 70% precision, confirming the

effectiveness of DenseNet-201 in feature-based
image classification for the Corel_1K dataset.

Figure 18: Average precision rate for 10 categories in Corel_1k dataset.

Figure 19 presents the average recall values for the
ten categories within the Corel-1K dataset,
evaluated using three convolutional neural network
models: GoogleNet, Inception v3, and DenseNet-
201. The bar graph illustrates category-wise
variations in recall, highlighting the effectiveness of
each model across different classes. GoogleNet
achieved notably high recall rates for buildings,
elephants, and mountains, each approaching
approximately 75%. However, the majority of
categories using this model exhibited recall values
at or below 50%. In contrast, Inception v3

demonstrated superior performance in categories
such as beach, dinosaurs, flowers, and mountains, with
recall values reaching or exceeding 80%. DenseNet-
201 also produced competitive results, especially in
categories like buses, dinosaurs, elephants, flowers, and
horses, many of which achieved recall scores near or
above 50%. Inception v3 consistently delivered
recall rates between 80% and 90% for several
categories, while the overall average recall across
models remained around the 50% mark. These
results, visualized in Figure 4.16, offer insight into
each model’s retrieval performance across the
Corel-1K dataset.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Rashid et al, 2025 | Page 62

Figure 19: Average Recall rate for 10 categories in corel-1K dataset

Figure 20 illustrates the average retrieval precision
(ARP) across various categories of the Corel-1K
dataset using different CNN-based feature
extractors. Inception v3 demonstrated the highest
ARP, reaching approximately 99% for the majority
of categories. Notably, the beach category achieved
over 80% ARP with Inception v3, indicating its
strong feature representation capability. The buses
category showed the lowest ARP within the

Inception v3 results, although it still maintained an
80% precision rate. When comparing GoogleNet
and DenseNet-201, both models yielded similar
ARP values for beach and buildings. Additionally,
feature extraction for the elephant category
produced equivalent ARP scores using both
DenseNet-201 and Inception v3, highlighting their
comparable performance for certain classes.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Rashid et al, 2025 | Page 63

Figure 20: Average Retrieval Precision rate for 10 categories in Corel-1K dataset

Figure 21 presents a line graph illustrating the
efficiency of average retrieval recall across various
categories within the Corel-1000 dataset. The recall
values generally range between 60% and 90%,
indicating strong retrieval performance overall. The
highest recall is observed for the buses category,
particularly when using DenseNet-201 as the
feature extractor, achieving over 90% retrieval

recall. Similarly, Inception v3 demonstrates strong
performance for the mountains category. Conversely,
the lowest recall using Inception v3 is found in the
beach category. The graph also reveals that
GoogleNet exhibits consistently lower recall rates,
which suggests that while fewer relevant items are
retrieved, its precision may be relatively higher.
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Figure 21: Average Retrieval Recall rate for 10 categories in Corel-1K dataset
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Figure 21: Corel-1K dataset showing different sample images of categories

Figure 22 displays the mean average precision (mAP) results for the Corel-1000 dataset. DenseNet-201
achieved the highest mAP of 90%, followed by Inception v3 with 87%, while GoogleNet recorded the
lowest at 80%.

Figure 22: Corel-1K dataset Mean Average Precision rate

In figure 23 mean average recall is observed that is between 0.2 and 0,3 which reports 85% mean average
precision using DenseNet-201, 95% using inception v3 and 75% using GoogleNet for cifar-10.
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Figure 23: Mean Average Recall rate for 10 categories in Corel-1K dataset

To assess the effectiveness of the proposed method,
the Zubud dataset was utilized. Random samples
were selected to evaluate performance metrics such
as precision, recall, average retrieval precision
(ARP), average retrieval recall (ARR), mean average
precision (MAP), mean average recall (MAR), and
F-measure. The dataset contains various image
groups labeled from object001 to object200, with

each class containing five images—totaling 1000
images. From these, 20 categories were selected for
analysis. The images vary in dimensions, and
within each selected category, visual features such
as shape, color, and object structure were examined.
The proposed approach demonstrated strong
average precision values across most Zubud
categories. A figure illustrates sample images from
different groups within the Zubud dataset.
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Figure 24: Zubud dataset showing different sample images of categories
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Table 4: Value of precision and recall represented in tabular form for 200 categories of Zubud dataset.

Zubud

GoogleNet Inception v3 DenseNet 201

Category 20 Precision Recall 20 Precision Recall 20 Precision Recall

object0002 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0003 2 0.1 0.25 4 0.2 0.13 2 0.1 0.25

object0004 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

object0005 4 0.2 0.13 1 0.05 0.5 4 0.2 0.13

object0006 4 0.2 0.13 5 0.25 0.1 1 0.05 0.5

object0007 3 0.15 0.17 4 0.2 0.13 2 0.1 0.25

object0008 3 0.15 0.17 5 0.25 0.1 5 0.25 0.1

object0009 5 0.25 0.1 2 0.1 0.25 2 0.1 0.25

object0010 2 0.1 0.25 4 0.2 0.13 3 0.15 0.17

object0011 5 0.25 0.1 3 0.15 0.17 4 0.2 0.13

object0012 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

object0013 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0014 2 0.1 0.25 3 0.15 0.17 2 0.1 0.25

object0015 5 0.25 0.1 1 0.05 0.5 3 0.15 0.17

object0016 3 0.15 0.17 3 0.15 0.17 3 0.15 0.17

object0017 4 0.2 0.13 4 0.2 0.13 3 0.15 0.17

object0018 5 0.25 0.1 3 0.15 0.17 2 0.1 0.25

object0019 4 0.2 0.13 5 0.25 0.1 3 0.15 0.17

object0020 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1
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object0021 2 0.1 0.25 3 0.15 0.17 2 0.1 0.25

object0022 5 0.25 0.1 5 0.25 0.1 2 0.1 0.25

object0023 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0024 2 0.1 0.25 5 0.25 0.1 2 0.1 0.25

object0025 4 0.2 0.13 5 0.25 0.1 2 0.1 0.25

object0026 4 0.2 0.13 5 0.25 0.1 2 0.1 0.25

object0027 3 0.15 0.17 4 0.2 0.13 1 0.05 0.5

object0028 1 0.05 0.5 4 0.2 0.13 1 0.05 0.5

object0029 4 0.2 0.13 4 0.2 0.13 4 0.2 0.13

object0030 1 0.05 0.5 3 0.15 0.17 3 0.15 0.17

object0031 2 0.1 0.25 5 0.25 0.1 4 0.2 0.13

object0032 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0033 3 0.15 0.17 5 0.25 0.1 3 0.15 0.17

object0034 4 0.2 0.13 2 0.1 0.25 4 0.2 0.13

object0035 1 0.05 0.5 4 0.2 0.13 4 0.2 0.13

object0036 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0037 1 0.05 0.5 4 0.2 0.13 4 0.2 0.13

object0038 5 0.25 0.1 4 0.2 0.13 4 0.2 0.13

object0039 3 0.15 0.17 2 0.1 0.25 3 0.15 0.17

object0040 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0041 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0042 2 0.1 0.25 3 0.15 0.17 2 0.1 0.25

object0043 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0044 5 0.25 0.1 4 0.2 0.13 4 0.2 0.13
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object0045 4 0.2 0.13 3 0.15 0.17 2 0.1 0.25

object0046 3 0.15 0.17 5 0.25 0.1 4 0.2 0.13

object0047 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

object0048 3 0.15 0.17 5 0.25 0.1 5 0.25 0.1

object0049 1 0.05 0.5 3 0.15 0.17 3 0.15 0.17

object0050 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0051 2 0.1 0.25 5 0.25 0.1 3 0.15 0.17

object0052 3 0.15 0.17 5 0.25 0.1 3 0.15 0.17

object0053 5 0.25 0.1 4 0.2 0.13 2 0.1 0.25

object0054 1 0.05 0.5 5 0.25 0.1 2 0.1 0.25

object0055 2 0.1 0.25 2 0.1 0.25 2 0.1 0.25

object0056 3 0.15 0.17 5 0.25 0.1 5 0.25 0.1

object0057 3 0.15 0.17 4 0.2 0.13 3 0.15 0.17

object0058 3 0.15 0.17 4 0.2 0.13 4 0.2 0.13

object0059 5 0.25 0.1 4 0.2 0.13 4 0.2 0.13

object0060 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0061 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0062 5 0.25 0.1 4 0.2 0.13 4 0.2 0.13

object0063 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0064 2 0.1 0.25 4 0.2 0.13 4 0.2 0.13

object0065 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

object0066 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0067 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0068 1 0.05 0.5 3 0.15 0.17 1 0.05 0.5
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object0069 4 0.2 0.13 4 0.2 0.13 4 0.2 0.13

object0070 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0071 3 0.15 0.17 4 0.2 0.13 4 0.2 0.13

object0072 4 0.2 0.13 4 0.2 0.13 5 0.25 0.1

object0073 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0074 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0075 2 0.1 0.25 5 0.25 0.1 4 0.2 0.13

object0076 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0077 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0078 4 0.2 0.13 4 0.2 0.13 5 0.25 0.1

object0079 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0080 3 0.15 0.17 3 0.15 0.17 2 0.1 0.25

object0081 3 0.15 0.17 5 0.25 0.1 4 0.2 0.13

object0082 3 0.15 0.17 5 0.25 0.1 4 0.2 0.13

object0083 3 0.15 0.17 3 0.15 0.17 3 0.15 0.17

object0084 3 0.15 0.17 5 0.25 0.1 1 0.05 0.5

object0085 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0086 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0087 1 0.05 0.5 5 0.25 0.1 5 0.25 0.1

object0088 5 0.25 0.1 3 0.15 0.17 1 0.05 0.5

object0089 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0090 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0091 2 0.1 0.25 2 0.1 0.25 2 0.1 0.25

object0092 4 0.2 0.13 5 0.25 0.1 3 0.15 0.17
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object0093 5 0.25 0.1 5 0.25 0.1 1 0.05 0.5

object0094 3 0.15 0.17 2 0.1 0.25 2 0.1 0.25

object0095 3 0.15 0.17 4 0.2 0.13 1 0.05 0.5

object0096 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0097 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0098 2 0.1 0.25 5 0.25 0.1 5 0.25 0.1

object0099 5 0.25 0.1 3 0.15 0.17 3 0.15 0.17

object0100 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0101 4 0.2 0.13 5 0.25 0.1 4 0.2 0.13

object0102 2 0.1 0.25 3 0.15 0.17 3 0.15 0.17

object0103 5 0.25 0.1 4 0.2 0.13 4 0.2 0.13

object0104 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0105 3 0.15 0.17 5 0.25 0.1 5 0.25 0.1

object0106 3 0.15 0.17 5 0.25 0.1 3 0.15 0.17

object0107 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0108 5 0.25 0.1 4 0.2 0.13 4 0.2 0.13

object0109 3 0.15 0.17 3 0.15 0.17 3 0.15 0.17

object0110 5 0.25 0.1 5 0.25 0.1 2 0.1 0.25

object0111 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0112 3 0.15 0.17 5 0.25 0.1 5 0.25 0.1

object0113 2 0.1 0.25 2 0.1 0.25 2 0.1 0.25

object0114 5 0.25 0.1 4 0.2 0.13 2 0.1 0.25

object0115 2 0.1 0.25 3 0.15 0.17 1 0.05 0.5

object0116 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Rashid et al, 2025 | Page 73

object0117 3 0.15 0.17 1 0.05 0.5 3 0.15 0.17

object0118 4 0.2 0.13 5 0.25 0.1 4 0.2 0.13

object0119 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0120 5 0.25 0.1 4 0.2 0.13 1 0.05 0.5

object0121 3 0.15 0.17 4 0.2 0.13 3 0.15 0.17

object0122 4 0.2 0.13 5 0.25 0.1 3 0.15 0.17

object0123 4 0.2 0.13 5 0.25 0.1 1 0.05 0.5

object0124 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0125 1 0.05 0.5 2 0.1 0.25 1 0.05 0.5

object0126 5 0.25 0.1 3 0.15 0.17 1 0.05 0.5

object0127 1 0.05 0.5 5 0.25 0.1 4 0.2 0.13

object0128 5 0.25 0.1 5 0.25 0.1 2 0.1 0.25

object0129 4 0.2 0.13 5 0.25 0.1 3 0.15 0.17

object0130 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0131 3 0.15 0.17 4 0.2 0.13 3 0.15 0.17

object0132 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0133 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0134 3 0.15 0.17 5 0.25 0.1 1 0.05 0.5

object0135 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

object0136 1 0.05 0.5 5 0.25 0.1 5 0.25 0.1

object0137 3 0.15 0.17 5 0.25 0.1 4 0.2 0.13

object0138 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0139 2 0.1 0.25 3 0.15 0.17 2 0.1 0.25

object0140 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1
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object0141 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0142 5 0.25 0.1 4 0.2 0.13 4 0.2 0.13

object0143 2 0.1 0.25 5 0.25 0.1 5 0.25 0.1

object0144 3 0.15 0.17 3 0.15 0.17 3 0.15 0.17

object0145 4 0.2 0.13 5 0.25 0.1 3 0.15 0.17

object0146 4 0.2 0.13 5 0.25 0.1 3 0.15 0.17

object0147 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0148 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

object0149 5 0.25 0.1 5 0.25 0.1 1 0.05 0.5

object0150 5 0.25 0.1 4 0.2 0.13 1 0.05 0.5

object0151 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

object0152 5 0.25 0.1 5 0.25 0.1 1 0.05 0.5

object0153 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0154 3 0.15 0.17 1 0.05 0.5 4 0.2 0.13

object0155 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0156 1 0.05 0.5 3 0.15 0.17 5 0.25 0.1

object0157 2 0.1 0.25 3 0.15 0.17 1 0.05 0.5

object0158 5 0.25 0.1 4 0.2 0.13 4 0.2 0.13

object0159 2 0.1 0.25 5 0.25 0.1 4 0.2 0.13

object0160 4 0.2 0.13 4 0.2 0.13 2 0.1 0.25

object0161 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0162 3 0.15 0.17 1 0.05 0.5 3 0.15 0.17

object0163 4 0.2 0.13 4 0.2 0.13 4 0.2 0.13

object0164 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1
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object0165 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0166 4 0.2 0.13 5 0.25 0.1 1 0.05 0.5

object0167 2 0.1 0.25 5 0.25 0.1 2 0.1 0.25

object0168 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0169 3 0.15 0.17 5 0.25 0.1 5 0.25 0.1

object0170 2 0.1 0.25 5 0.25 0.1 5 0.25 0.1

object0171 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0172 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0173 5 0.25 0.1 5 0.25 0.1 3 0.15 0.17

object0174 4 0.2 0.13 5 0.25 0.1 2 0.1 0.25

object0175 4 0.2 0.13 4 0.2 0.13 3 0.15 0.17

object0176 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0177 4 0.2 0.13 5 0.25 0.1 3 0.15 0.17

object0178 3 0.15 0.17 5 0.25 0.1 3 0.15 0.17

object0179 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0180 2 0.1 0.25 4 0.2 0.13 3 0.15 0.17

object0181 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0182 5 0.25 0.1 5 0.25 0.1 4 0.2 0.13

object0183 3 0.15 0.17 5 0.25 0.1 5 0.25 0.1

object0184 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0185 4 0.2 0.13 4 0.2 0.13 3 0.15 0.17

object0186 4 0.2 0.13 3 0.15 0.17 2 0.1 0.25

object0187 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

object0188 3 0.15 0.17 2 0.1 0.25 4 0.2 0.13
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object0189 4 0.2 0.13 5 0.25 0.1 3 0.15 0.17

object0190 5 0.25 0.1 5 0.25 0.1 2 0.1 0.25

object0191 1 0.05 0.5 3 0.15 0.17 3 0.15 0.17

object0192 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0193 2 0.1 0.25 4 0.2 0.13 5 0.25 0.1

object0194 4 0.2 0.13 5 0.25 0.1 5 0.25 0.1

object0195 2 0.1 0.25 2 0.1 0.25 3 0.15 0.17

object0196 2 0.1 0.25 5 0.25 0.1 4 0.2 0.13

object0197 2 0.1 0.25 5 0.25 0.1 5 0.25 0.1

object0198 2 0.1 0.25 5 0.25 0.1 4 0.2 0.13

object0199 3 0.15 0.17 5 0.25 0.1 2 0.1 0.25

object0200 5 0.25 0.1 5 0.25 0.1 2 0.1 0.25

object0201 3 0.15 0.17 4 0.2 0.13 4 0.2 0.13

zubud.csv 5 0.25 0.1 5 0.25 0.1 5 0.25 0.1

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Rashid et al, 2025 | Page 77

Figure 25: Zubud dataset showing different sample images of categories

Figure 25 illustrates the average precision results
for various categories in the Zubud dataset using a
bar chart. This visual approach facilitates effective
classification and comparison across categories.
Image classification was performed using
convolutional neural networks (CNNs),
incorporating feature extraction, image scaling, and
integration techniques. The evaluation highlights
that certain category—such as object006, object009,
object013, and object014—achieved a perfect 100%
average precision using DenseNet-201. Categories

like object002, object004, object005, object010,
object016, and object018 exhibited high precision
rates between 90% and 95% when processed with
GoogleNet. Some categories showed lower average
precision, around 30%, using DenseNet-201.
GoogleNet displayed comparatively lower precision
in specific categories, though still exceeding 60% in
most cases. Overall, more than half of the selected
categories achieved an average precision above 70%,
indicating strong performance on the Zubud
dataset.
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Figure 26: Average precision rate for 200 categories in zubud dataset.

Figure 27 presents the average recall values for 10
categories within the Zubud dataset, analyzed using
three CNN-based feature extractors: GoogleNet,
Inception v3, and DenseNet-201. A line graph is
used to visualize category-wise performance,
helping to assess the effectiveness of each network.
DenseNet-201 demonstrated strong performance
in categories such as obj30, obj80, obj120, and
obj140, achieving recall rates close to 70%.
However, the majority of categories showed recall
values at or below 30%. Inception v3 delivered

comparatively better results, with most categories
achieving recall values of 25% or higher, and
nearly half exceeding 60%. In several instances,
Inception v3 recall values ranged from 80% to
90%. GoogleNet showed moderate performance,
with categories like obj30, obj80, obj120, and
obj140 reaching recall values below 50%. Overall,
the dataset exhibited average recall rates around
50% for most categories, with Inception v3
providing the most consistent performance.
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Figure 27: Average Recall rate for 200 categories in zubud dataset.

Figure 28 illustrates the average retrieval
precision across various categories in the
Zubud dataset using different CNN feature
extractors. Inception v3 yielded the highest
average retrieval precision, reaching
approximately 96% for most object categories.

DenseNet-201 also performed strongly,
particularly for object001, object007, and object008,
where it achieved precision levels exceeding
94%. In comparison, GoogleNet showed
relatively lower precision, averaging around
60% across the evaluated categories.
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Figure 29: Average Retrieval precision rate for 200 categories in zubud dataset.

Figure 30 presents a line graph illustrating the
effectiveness of average retrieval recall across
different categories in the Zubud dataset. The
recall values range from 30% to 85%, with the
highest retrieval recall observed for object003.
DenseNet-201 achieved the top recall rate for
this category, exceeding 85%, while Inception

v3 also performed strongly for the same object.
Conversely, Inception v3 recorded the lowest
recall for object200 (or object020). The graph
further reveals that GoogleNet consistently
produced lower recall values, indicating that it
may offer higher precision in comparison.
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Figure 30: Average Retrieval Recall rate for 200 categories in zubud dataset.

Figure 31 illustrates the evaluation of mean average
precision (MAP) for the Zubud dataset. Among the
tested CNN models, Inception v3 achieved the
highest MAP, reaching approximately 92%.

GoogleNet followed with a MAP of around 83%.
In contrast, DenseNet-201 yielded comparatively
lower performance in terms of MAP for this
dataset.

Figure 31: Mean Average precision rate for 200 categories in zubud dataset.
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Figure 32 presents the evaluation of mean average recall (MAR) for the Zubud dataset. DenseNet-201
demonstrated the highest MAR, achieving approximately 90%. GoogleNet followed with a recall rate of
around 70%, while Inception v3 showed a comparatively lower MAR of about 56%.

Figure 32: Mean Average Recall rate for 200 categories in zubud dataset.

4. Conclusion
This study focuses on the retrieval of images based
on variations in shape, texture, and spatial color
features. Using descriptive vectors, distinct shapes
and color characteristics were extracted from
various datasets through convolutional neural
network (CNN) architectures such as GoogleNet,
Inception v3, and DenseNet-201. Four benchmark
evaluations—Average Precision (AP), Average Recall
(AR), Average Average Precision (AAP), and
Average Average Recall (AAR)—along with MAP
and MAR, were conducted to assess retrieval
similarity. The experimental outcomes

demonstrated exceptional performance of the
CBIR (Content-Based Image Retrieval) framework
across all evaluated benchmarks. The method
effectively identified and retrieved relevant features
like color, shape, and texture from images across
multiple datasets. To enhance the analysis, a
combination of Non-Maximum Suppression (NMS)
and neighborhood-based techniques was proposed
in place of conventional filtering methods. The
inclusion of spatial color as a feature in CBIR,
along with global and neighborhood descriptors,
was found to be beneficial, although in some cases
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it led to false positives. To address this, a circular
sampling method was used to define neighborhood
keypoints at equidistant positions, allowing for
improved keypoint localization through pixel

masking. Overall, the proposed approach yielded
highly accurate image retrieval results from four
large-scale datasets.
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