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 Abstract 

This research paper investigates an approach for sustainable energy management 
in smart grids using machine learning by forecasting renewable energy generation 
using Long Short-Term Memory (LSTM) networks. An energy management 
system is developed that collects real-world time-series data from renewable sources 
(solar and hydro) and then applies data pre-processing techniques, including 
dropout regularization and normalization, to build an LSTM model that predicts 
generation trends. To validate the accuracy and sustainability impact of the 
model, performance metrics such as Mean Squared Error (MSE), Mean Absolute 
Error (MAE), and Mean Absolute Percentage Error (MAPE) are determined. 
This specific model enables switching between renewable sources and conventional 
grid supply, which is based on predicted generation demand. The results indicate 
enhanced resource utilization, reduced dependency on fossil fuels, and support for 
smart grid automation. 
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INTRODUCTION
There has been a significant shift in global energy 
consumption, driven by growing energy demands 
and an increasing need for environmental 
sustainability. Due to concerns about carbon 
emissions and the finite resources of fossil fuels, 
there has been a growing concern that has led to a 
movement towards cleaner, renewable sources of 
energy, such as solar, hydro, wind, and biomass [1]. 
Since renewable technologies are more economical 
and environmentally friendly, they help meet both 
climate goals and energy security [2].   Smart grids 
offer a promising solution for handling multiple 
renewable energy sources while maintaining 
reliability, efficiency, and resilience [3]. They have 

emerged as the backbone of modern energy systems 
by integrating advanced automation, bidirectional 
communication, real-time monitoring, and 
decentralized control. Smart grids have enabled the 
strategic balancing of supply and demand, facilitating 
consumers' stated needs through active participation 
in demand response programs and the integration of 
distributed energy resources [4]. However, despite 
these advancements, efficiently managing renewable 
energy through smart grids remains a challenging 
task due to the variable nature of sources such as 
solar and hydropower [5]. To address these issues, a 
machine learning data-driven technique is employed 
to predict generation patterns and inform real-time 
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operational decisions [6]. Long Short-Term Memory 
(LSTM) networks are among the techniques; they are 
a specialized form of Recurrent Neural Network 
(RNN) that has shown remarkable success, 
particularly in time-series forecasting, due to their 
ability to capture temporal dynamics and long-term 
dependencies [7].   
This research study proposes a practical approach to 
utilizing a robust LSTM-based framework for 
forecasting renewable energy generation, which 
enables dynamic switching between renewable and 
conventional power sources based on scenarios of 
supply and demand. This model supports intelligent 
energy transfer by accurately predicting renewable 
energy availability, resulting in grid stability, 
optimized resource utilization, and reduced 
dependency on fossil fuels [8]. This research provides 
practical insights into the implementation of 
machine learning for real-time, sustainable energy 
management, building upon a growing body of 
literature in smart grids [9]. 

 
LITERATURE REVIEW 
There has been a significant transformation in the 
modern electric grid, from a fossil-fuel-based 
infrastructure to a more sophisticated, sustainable, 
and intelligent framework. This framework is also 
known as the smart grid, which utilizes advanced 
communication, real-time control technologies, and 
automation. Numerous researchers have employed 
data-driven methods, particularly machine learning, 
to enhance forecasting and ensure efficient energy 
management. This is because the integration of 
renewable energy sources, particularly solar and 
wind, which are naturally variable, is complex; 
therefore, managing such energy generation and 
consumption can become increasingly complex [10]. 
A one-way energy flow model was used in traditional 
power systems, where energy flowed from generators 
to consumers. The bi-directional energy flows 
became necessary with the introduction of renewable 
energy sources, electric vehicles and distributed 
generation [11]. To facilitate the optimal integration 
of green energy, avoid grid instability, and enable 
accurate and efficient load scheduling, it is critical to 
have an accurate forecast of both supply and demand 
[12].  Auto-Regressive Integrated Moving Average 
(ARIMA), linear regression and exponential 

smoothing were grounded in statistical techniques. 
Although they were effective in capturing simple 
trends, these models struggled with nonlinear and 
stochastic behaviour that is quite common in 
modern energy systems [13]. Unlike conventional 
models, machine learning has emerged as a 
transformative tool in innovative grid applications. It 
can capture nonlinear patterns from large datasets 
and adapt to changing input dynamics [14]. 
Artificial Neural Networks (ANNs) were developed 
by Awais et al., who created a short-term load 
forecasting model that outperformed linear 
regression in modelling daily and hourly 
consumption variations [15]. Furthermore, Ahmed et 
al. proposed a hybrid machine learning-based 
approach that utilized Support Vector Machines 
(SVM) and Decision Trees for wind energy 
forecasting, highlighting how learning techniques 
can enhance forecasting accuracy exponentially 
under variable meteorological conditions [16].  
Random Forest (RF), Gradient Boosting Machines 
(GBM), and k-Nearest Neighbours (kNN) were 
among the other models that gained traction. Zhang 
et al. evaluated the performance of tree-based 
models, such as Random Forest and Gradient 
Boosting Machines. He utilized smart meter data and 
observed superior results compared to linear 
baselines, especially when working with high-
dimensional feature sets [17]. 
Deep learning (DL) models, such as Recurrent 
Neural Networks (RNNs) and Long Short-Term 
Memory (LSTM) networks, have become essential for 
time-series data, including energy generation and 
demand [18]. LSTM networks, with their memory 
cell and gated mechanism, can be adapted to learn 
temporal dependencies over long sequences. Khan et 
al. achieved a significant reduction in Mean Squared 
Error (MSE) compared to SVM and ANN baselines 
when they implemented an LSTM model for solar 
power forecasting [19]. A bi-directional LSTM (Bi-
LSTM) was proposed by Liu et al. for short-term load 
forecasting, enabling the model to access both past 
and future contexts. Resulting in more robust peak 
demand predictions [20]. CNNs are used to extract 
local temporal features, and the LSTM models 
extract sequential dependencies. The hybrid deep 
learning models have been developed by combining 
CNNs and LSTMs. When dealing with multivariate 
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inputs, such as combined historical load, 
temperature, humidity, and solar irradiance data, 
these models are very effective.  
Weather conditions have a significant impact on 
energy consumption and renewable energy 
generation. The performance of solar panels and 
wind turbines is greatly affected by solar irradiance, 
temperature, wind speed, and humidity. Therefore, it 
is crucial to integrate meteorological data into 
forecasting models to enhance their predictive 
capabilities [21]. 
Morales et al. addressed these challenges by using 
Quantile Regression Neural Networks (QRNN) to 
create forecasts of solar output based on probability. 
QRNN models provide prediction intervals rather 
than producing a single-point estimate, offering 
valuable insights into forecasting uncertainty 
[22].  Moreover, spatial forecasting methods that 
integrate Geographic Information Systems (GIS) are 
employed to enhance the model's applicability across 
different regions. 
This research presents a comprehensive proposal and 
implementation of a machine learning-based 
framework for sustainable energy management in 
smart grids, focusing on the prediction and 
optimization of power generation from diverse 
energy sources.  The LSTM model aligns closely with 
real energy generation profiles to accurately predict 
and capture daily trends in the predicted 24-hour 
generation.  
 
METHODOLOGY 
A. Data Pre-processing 
Data pre-processing is one of the most crucial phases 
in any data-driven system, particularly in time-series 
forecasting, where noise, temporal integrity, scale, 
and completeness have a significant impact on model 
performance. Careful pre-processing was required to 
clean and structure the data effectively for this 
research, which integrates both energy consumption 
(load) and meteorological data for use with deep 
learning models, such as LSTM. In most cases, real-
world datasets are rarely complete due to sensor 
faults, which create gaps in load consumption 
records. Weather datasets retrieved from sources like 
NOAA may contain missing entries due to poor 
signal quality or inadequate equipment 
maintenance.  A forecasting model requires 

synchronized load and weather inputs. Load data is 
recorded on an hourly basis, whereas the weather 
data is available at varying intervals (hourly or every 3 
hours, depending on the station and parameter). To 
merge these datasets, Resampling is used to 
standardize all features to an hourly frequency, and 
the weather data is interpolated to match the 
timestamps of the load dataset. Once aligned, these 
features are merged using inner joins on the 
timestamp columns; as a result, a dataset is created 
that preserves time ordering and consistency 
required for sequential modeling. 
To improve model performance, the calendar 
features are used to encode the day of the week and 
the hour of the day, thereby pinpointing whether the 
day was a weekend or a holiday. These variables 
helped capture periodic trends and anomalies in 
load consumption. For the average, rolling statistics 
were used, along with tolling standard deviations for 
variables such as load and temperature, over intervals 
of 3, 6, 12, and 24 hours. These features gave short-
term trend information to the model. Interaction 
features were utilized where some features were 
synthesized based on domain knowledge, such as 
interaction terms between wind speed and time of 
day, to enhance the photovoltaic generation patterns. 
 
B. Data Splitting 
For time-series problems, one of the most important 
components is data splitting, as time-series data must 
preserve chronological order to simulate real-world 
forecasting conditions, unlike random splits that are 
commonly used in traditional machine learning. 
This research highlights the strategy employed to 
divide the dataset into training, validation, and test 
sets. The datasets were divided into three non-
overlapping chronological segments because LSTM 
models learn from temporal dependencies; therefore, 
shuffling the data before splitting would result in 
data leakage.  
Since we had a temporal dependency between 
observations, a standard k-fold cross-validation 
technique could not be used on time-series data; 
therefore, a more suitable approach was to use a 
walk-forward validation or expanding window 
approach. Therefore, we simulated the effects of full 
walk-forward validation by repeating training with 
different cut-off dates and verifying consistency in 
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performance.  The dataset is resampled depending 
on the forecasting objectives (e.g., one hour ahead, 
24 hours ahead). For 1-hour ahead forecasting, the 
sequences of 24 hours predicted the next hour. A 
larger period (72 hours) was used to predict hourly 
targets for the next day. The splitting strategy 
remained constant, even though each configuration 
resulted in a different input-output mapping. The 
line plots of load and weather features were 
generated for each subset to ensure uniform 
distribution.  
 
C. Data Cleaning 
To build a robust machine learning model, it is vital 
to perform effective data cleaning, especially in 
domains such as time-series forecasting, like 
renewable resource prediction and energy 
consumption. In this study, we combined 
environmental parameters from NOAA and load 
consumption data from ERCOT. These datasets had 
various inconsistencies, although they were rich in 
information; for instance, they contained missing 
values and outliers. Therefore, a comprehensive data 
cleaning process was carried out to ensure high-
quality inputs for our LSTM-based forecasting model 
in several phases.  
Missing and null values was one of the most 
common issues faced during dataset analysis as they 
appeared in both the environmental data (humidity, 
temperature, wind speed) and the load consumption 
data (mostly in hourly readings). These missing 
values would disrupt the sequential integrity of the 
data and create significant problems in the learning 
process if left untreated.  To locate and handle the 
missing values, we used detection, forward fill, 
backward fill, and interpolation. Furthermore, a 
column or row was removed if it had more than 30% 
missing values in the sequence to ensure minimal 
distortion of data quality. Therefore, by applying 
these methods, we ensured that the continuity of the 
dataset was preserved without compromising its 
temporal structure. 
 
D. Handling Duplicates, Timestamp 
Normalization, and Outlier Detection 
In the load data, we encountered certain hours that 
were logged more than once due to a system error, 
which was identified as duplicate timestamps. 

Duplicates can distort sequential learning, which can 
be detrimental to a time-series model that is sensitive 
to chronological order. To counter this, we used the 
'drop duplicates' function (subset=’timestamp', 
keep=’first'). We retained the first instance or 
averaged the timestamp when its duplicates had 
varying values, depending on the consistency of 
neighboring entries.  To align the weather data (from 
NOAA) and load data (from ERCOT), both 
required consistent timestamps. To achieve this, we 
had to address two significant challenges: different 
time zones (some in UTC, others in local time) and 
various date and time formats (e.g., MM/DD/YYYY 
HH: MM vs. ISO 8601). To counter this, we 
standardized all timestamps to UTC and converted 
them into datetime objects. This allowed us to merge 
datasets seamlessly, resulting in the accurate 
generation of lag features.  In the raw data, some 
features were represented as the day of the week and 
the hour of the day. For compatibility with the 
downstream model input, these were converted to 
integer types or encoded using Label Encoder. For 
example, days were considered as integers from 0 
(Monday) to 6 (Sunday). Categorical weather 
conditions were one-hot encoded, which helped 
reduce model complexity and memory usage. 
 
E. Normalization and Scaling 
Neural networks are sensitive to the scale of input 
features. LSTM models contain variables with diverse 
units, so normalization is essential. For this reason, 
Min-Max Scaling was applied to rescale all numeric 
features into the [0, 1] range. Training data was 
scaled using scalers (e.g., MinMaxScaler) to prevent 
data leakage, and the same transformation was 
applied to the validation/test data. This improved 
model convergence, reduced training time, and 
ensured numerical stability. LSTM models require 
3D input (e.g., samples, time steps, features) to build 
their structure. Each sample has the previous 24 
hours of load, calendar indicators, and 
corresponding weather variables. These steps allowed 
the pre-processed tabular dataset to be transformed 
into a supervised learning format, which is required 
for sequential models. 
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SIMULATION RESULTS 
Dataset Selection: 
 
Table 1: Dataset showing the multiple means of power production

 
For smart grid forecasting, where temporal accuracy, 
environmental factors, and load variability play 
significant roles, it is crucial to ensure the highest 
quality of input data. This research focused on a real-
world dataset, as shown in Table 1, spanning the 
period from 1 January 2020 to 31 December 2022. 
Generation is provided for both by production type 
(natural gas, geothermal, solar, etc.) and in total. 
 
A. Visual Imbalance and Feature Suppression in 
un-normalized Data 
Table 2 highlights a multi-variant time series 
visualization where each feature is plotted over time. 

This plot exhibits overlapping and flat-lining because 
the values remain compressed near the bottom of the 
graph, relative to a more dominant signal. There is 
also a visual imbalance, which highlights how un-
normalised data can mislead both visual analytics 
and machine learning model during training. 
Therefore, if this dataset is fed to an LSTM model, it 
could cause the optimization process to favor 
features with higher magnitudes, and as a result, we 
could experience slower convergence and potentially 
higher training error. 
 

 
Table 2: Dataset before Normalization 

                                                                                                                                                                                                                    
 
B. Enhanced Visibility and Pattern Recognition 
through Normalization 
According to Table 3, all features are now scaled into 
the [0, 1] interval, and the visual structure of the 
time series becomes more interpretable, allowing 
patterns and periodic trends between variables to be 
more easily discerned. Most importantly, there is no 
feature compression, and the range of variability for 
each signal is preserved. Through normalization, we 

achieved a uniform contribution of features during 
training and faster convergence of gradients, which 
resulted in stable learning dynamics in the LSTM 
model. There is better detection of multi-variant 
dependencies in models that rely on a weighted 
combination of inputs, and we have enhanced 
forecasting accuracy as the network can more 
effectively learn temporal patterns without scale bias. 
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Typically, the dataset is split in a ratio of around 
70% for training and 30% for testing. 

 

 
Table 3: Dataset after Normalization 

 
 
 
C. Box plots 
Box plots, also known as box and whisker plots, are a 
graphical method used for visualizing the 
distribution, spread, and skewness of continuous 
numerical data. It provides us with a five-number 
summary of a dataset, which includes the minimum, 
first quartile (Q1), second quartile, third quartile 
(Q3), and maximum. Outliers are also displayed 
explicitly.  
In the following research, box plots were used to 
understand the underlying distribution of energy 
consumption across different time frames, including  
 

 
hourly, daily, and monthly, as part of the exploratory 
data analysis (EDA) phase. These visualizations 
helped to understand outliers, temporal trends, and 
variations that are critical for accurate time-series 
modeling in the smart grid context. For instance, box 
plots of daily, monthly, and yearly energy 
consumption are shown in Figures 1, 2, and 3, 
respectively. 
 
D. Box Plot Visualizations for Temporal Energy 
Patterns 
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Figure 1: Daily Average Energy Generation 
 

 
Figure 2: Monthly Average Energy Consumption 
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Figure 3: Yearly Average Energy Consumption 

OBSERVATIONS 
A. Central Tendency of Daily Load 
The box plot of daily energy consumption, shown in 
Figure 1, clearly indicates that the median line is 
situated around the center of most boxes, 
representing the typical daily load and serving as a 
baseline for forecasting models. This validates the 
presence of short-term volatility, and therefore, it is 
necessary to use memory-based models like 
LSTM.  In Figure 2, lower median values are 
observed during the late night and early morning 
hours (1:00 am to 5:00 am), indicating minimal 
activity. For Figure 3, the median energy 
consumption varied significantly across months, 
indicating a high electricity demand. 
 
B. Daily variability and Interquartile Spread 
The interquartile range (IQR) in Figure 1 highlights 
the spread of daily consumption values. A relatively 
wide IQR suggested significant day-to-day variability, 
which could stem from changes in consumer 
behaviour or weather. Furthermore, the whiskers are 
also extended from the boxes to show the minimum 
and maximum daily consumption values within 1.5 × 
IQR. These whiskers captured normal fluctuations in 
consumption. According to Figure 2, the highest 
medians and widest IQRs appeared during business 
hours, between 7:00 am and 9:00 pm, which relates 

to typical waking hours and peak load times. There 
has also been a sharp increase around 7:00 am and 
6:00 pm, which suggests that morning start-ups and 
returning home in the evening are more prevalent in 
residential areas; however, commercial zones show a 
flatter pattern during work hours. In the case of 
Figure 3, there were Peak medians in July and 
August, as well as in January and December, which 
reflect increased usage due to cooling and heating 
loads, respectively. On the other hand, lower 
consumption medians in April, May, and October 
suggest milder temperatures and thus less HVAC 
usage.  
 
C. Detection of Outliers 
Several outliers were outside the whiskers, as shown 
in Figure 1, particularly on holidays, weekends, or 
during extreme weather conditions. These outliers 
were necessary to identify, as they could indicate 
anomalies that needed to be removed for training 
the model. Therefore, this allowed us to develop 
robust pre-processing routines to handle daily-level 
anomalies and ensure the model could generalize 
across diverse usage situations. According to Figure 
2, in the early evenings, we observed extended 
whiskers and frequent outliers, which highlight 
unpredictable usage, primarily due to climate-based 
appliances (e.g., air conditioners during the 
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summer). Figure 3 clearly shows outliers in certain 
months, likely due to blackouts or unusually hot or 

cold years.   

 
Figure 4: Train validation curve before optimizations 

So, we used a multivariate nature of the dataset 
where each source acts as an input feature, and using 
both renewable and non-renewable energy sources, 
we can train the machine learning model to forecast 
the availability of green energy, determine switching 
points between sustainable and conventional 
sources, and optimize grid decisions based on 
reliability and variability of sources. Before 
optimization, we can get crucial information through 
the training validation curve about how the LSTM 
model behaves when trained without regularization 
techniques, as shown in Figure 4.  
During this phase, the model is trained using loosely 
configured settings such as higher learning rates and 
insufficient regularization. Our main goal was to 
observe how this model learns from past time-series 
data (e.g., power consumption and generation) and 

to analyze its generalization capability on unseen 
validation data. Before optimization, the LSTM 
model may have had too many hidden units, as 
LSTM networks can model very fine-grained aspects 
of the training data, including random noise, which 
may lead to poor generalization, as seen in Figure 4. 
In the pre-optimized form, the model uses low 
dropout rates. Dropout is a regularization method 
that randomly deactivates neurons during training, 
making the network learn more robust features. In 
its absence, the network might experience 
overfitting.  For the overfitting issue, various 
strategies were employed to enhance the model's 
ability to generalize. The goal was to achieve 
convergence between the training and validation 
losses, thereby maintaining low error on both curves.  
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Figure 5: Train validation curve after optimizations (i.e. underfitting) 

 

 
Figure 6: Predicted 24 hours of Total MWh starting from 29.06.24 10:20 AM 

 
After optimization, both the training and validation 
losses remain close together, with minimal reduction 
in error, which suggests that the overfitting issue has 
been resolved, as shown in Figure 5. Figure 6 shows 
the predicted total MWh for the next 24 hours.   To 
assess model performance, Mean Squared Error 
(MSE), Mean Absolute Error (MAE), and Mean 
Absolute Percentage Error (MAPE) were used, which 
help detect extreme deviations in energy predictions, 
express error as a percentage, and interpret 
performance relative to the actual energy demand. 
The visualization of predicted versus actual energy 
generation values shows that the model adapts well 
to seasonal variations. The simulation results validate 
the model's potential to forecast demand-supply gaps 
in real-time and prioritize renewable energy usage 

when availability is high. During periods of low 
green energy, it switches to backup (non-renewable) 
sources, which helps minimize carbon emissions and 
improve the sustainability index of the grid, 
supporting autonomous decision-making systems 
within modern smart grids.  
 
CONCLUSION 
This research study presents a comprehensive 
proposal and implementation of a machine learning-
based framework for sustainable energy management 
in smart grids, focusing on the prediction and 
optimization of power generation from diverse 
energy sources.  According to the simulation results, 
the LSTM model aligns closely with real energy 
generation profiles and accurately captures the 
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predicted 24-hour generation curves, reflecting daily 
trends. The convergence of training and validation 
loss curves further validated the reliability of the 
optimization techniques employed. In the future 
generation of sustainable power systems, the 
proposed framework can play an important role. 
Hence, to further enhance the accuracy of 
forecasting load inputs, implement the IoT-based 
sensor networks to capture real-time weather data. 
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