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 Abstract 

The diagnosis of Alzheimer's Disease (AD) using neuroimaging has difficulties 
owing to the intricate retrieval of features and the critical need for accuracy 
within the class boundaries. This research analyzes the effect of applying deep 
learning model techniques, such as CNNs, Transformers, and 3D CNNs, to a 
dataset of 16,000 images containing normal and pseudo-RGB synthesized 
neuroimaging data, including neuroimaging data. The models that were tested 
were EfficientNetV2, ResNet50, ResNet101, DenseNet121, DenseNet201, 
Swin Transformer, MedViT and 3D CNN. Their Measurements calculated were 
accuracy, precision, recall, F1-score, and specificity while the evaluation metrics 
defined were specific to measuring diagnosis performance. The most important 
findings are that MedViT outperformed all models with head-turning accuracy of 
98.5% while Swin Transformer came second at 97.1% which had better learning 
of global features. 3D CNN was the lowest performer with 93.5% accuracy and 
was struggling because of weak handling of volumetric data. The findings Med-Vit 
models on diagnosed AD offered the best performance indicate that model results 
confirm that hybrid transformer-CNN architectures, Med-Vit which is a new 
hybrid model developed with encourages researchers for further researches distracts 
from the point. 
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INTRODUCTION
Alzheimer's Disease (AD) is a chronic 
neurodegenerative condition that affects millions of 
people globally, and its incidence will grow 
dramatically as the global population ages. AD causes 
cognitive impairment, especially in memory, 
language, and problem-solving capacity, culminating 
in significant disability in everyday functioning and 
necessitating full-time care. Being one of the major 
reasons for dementia, AD poses a great challenge 
both in clinical diagnosis and therapeutic 
intervention. It is necessary to diagnose Alzheimer's 
early since it makes way for interventions that might 
halt the advancement of the disease, leading 
eventually to the enhancement of patients' quality of 
life. Nevertheless, diagnosing AD during its initial 

phases continues to be challenging because its early 
symptoms are indistinctive. Such conventional 
diagnostic procedures, like clinical evaluations and 
psychometric tests, also tend to miss the disease 
when it is most responsive to treatment, i.e., in its 
initial stages. These diagnostic tests are very 
dependent on subjective interpretation, and 
therefore many Alzheimer's cases go undetected until 
well after the disease has progressed significantly [1]. 
Early diagnosis cannot be stressed enough, as the 
most effective treatments are often only available in 
early stages, before the heavy neuronal loss that takes 
place later in the disease process. Clinical exams and 
cognitive tests, although significant, tend to fall short 
in identifying subtle brain changes in the initial 
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phases of Alzheimer's. Because there is no specificity 
in distinguishing Alzheimer’s from other forms of 
dementia or aging, these tests are highly vulnerable 
to misdiagnosis. Thus, the advancement of 
neuroimaging technology has been vital in the 
primary diagnosis of Alzheimer’s disease(MD). For 
instance, MRI and PET scans aid in furnishing 
Alzheimer’s patients with vital information about the 
functioning of their brain and its worse imbalances, 
like the amyloid plaques, tau tangles, and cortical 
atrophy associated with Alzheimer’s disease. These 
techniques enable pathological assessment of the 
brain's structural changes over time, thereby 
reinforcing their use for diagnosing and monitoring 
Alzheimer's disease. Despite the advantages 
neuroimaging provides, the extremely sophisticated 
and vast neuroimaging data impose the need for 
reliable advanced computational methods of data 
interpretation. This is where deep learning (DL) 
methods applied to neuroimaging data have shown 
great promise for automating the analysis and 
ensuring timely and accurate diagnosis of the 
condition [2]. 
Deep learning approaches such as Convolutional 
Neural Networks (CNNs) and transformers allow 
flexible classification of neuroimaging data from 
Alzheimer's patients. In automated medical imaging, 
the ability of CNNs to recognize spatial features has 
made them popular. These networks are particularly 
adept at identifying certain specific complex 
structures within photos which meets the 
requirements for Alzheimer's associated brain 
changes. Moreover, there is some popularity gained 
by Vision Transformers (ViT) as people began 
understanding their capabilities of identifying long-
distance dependencies in images. These are thus 
specialized in learning global features and because 
context and spatial relation across wider regions of 
the scanned brain are critical for determining the 
diagnosis, they excel at comprehending intricate 
diagrams such as MRIs. The combination of CNNs 
and ViTs, where CNNs deal with local information 
while ViTs deal with global feature extraction, can 
significantly increase the accuracy of AD 
classification as these models merge the strengths of 
both approaches, retaining the best aspects of local 
and global information, to optimize the 

representation of the brain's structure and function 
[3]. 
Prior research suggests deep learning models may aid 
in the diagnoses of Alzheimer’s disease. For instance, 
Aryal (2025) developed a multimodal deep-learning 
framework using MRI data, attaining an F1 score of 
0.99 on predicting early stage Alzheimer’s [4]. This 
illustrates the capabilities of deep learning to 
improve diagnostic precision, particularly in the pre-
symptomatic phases of the disease. In the same 
manner, SinhaRoy and Sen (2023) utilized CNNs 
and GANs to process Alzheimer’s MRI scans with an 
accuracy of 99.7% in distinguishing AD patients 
from control subjects [5].  
Besides CNNs, Vision Transformers (ViTs) have 
been helpful for AD detection as well. 
Mubonanyikuzo et al. (2025) demonstrated the 
usefulness of ViTs with a sensitivity of 92.5% and 
specificity of 95.7% regarding the distinction of 
Alzheimer's patients [6]. The VITs ability to extract 
features is of great importance for the understanding 
of complex brain structures where context as well as 
the interaction between different areas in the brain is 
important for effective classification. The viability of 
combining ViT and CNN into a hybrid model on 
Vision Transformer AD classification systems is 
promising because CNNs are effective at local feature 
extraction while ViTs model global context 
effectively. Also, there is a growing interest in 
classifying Alzheimer’s using multimodal data. 
Multimodal data refers to the combination of various 
types of information such as structural and 
functional neuroimaging data, including clinical 
biomarkers. The inclusion of such data enhances the 
predictive power and generalizability of models. For 
instance, Lashkary et al. (2025) showcased the 
performance of ConvMixer models for classifying the 
stages of Alzheimer’s disease with Structural MRI 
scans and achieved an accuracy of 99.88% [7]. This 
suggests that employing various imaging modalities 
improves diagnosis tools for Alzheimer’s disease. 
Likewise, it is hypothesized that combining MRI data 
with clinical assessments and demographic data, as 
proposed by Modi and Mahajan in 2025, improves 
classification accuracy and lessens overfitting and 
data imbalance issues [8]. 
The methodology of interest in this research 
implements a hybrid deep model that captures both 
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local and global features of a large database MRI 
scans of Alzheimer patients. The results are quite 
good at an accuracy of 98.5%, greater then a single 
CNN (95.6%) and ViT (97.1%) [9]. It also helps in 
minimizing overfitting problems as well as the 
requirements for clinically deployable systems that 
are scalable in real-time [10]. The model supports 
changing from one set of experiments to another, 
which adds to the expectation for use in a clinical 
setting for enabling early diagnosis and aiding precise 
treatment interventions. Regardless of increased 
accuracy achievable with the infusion of AI within 
clinical workflows, diagnosis remains challenging. 
The sheer volume of users beyond the specialist as 
well as capturing the general population’s age and 
geographic diversity are prominent challenges. From 
such intricate automatic AD dementia stage 
classification becomes a very tempting notion, but far 
more attention is required on the explainable and 
transparent designs for clinicians [11-13]. 
In summary, Alzheimer's disease is still a significant 
challenge for contemporary medicine, and accurate 
and early diagnosis is crucial for better patient 
outcomes. The union of neuroimaging with state-of-
the-art deep learning methods provides a promising 
solution for improving the accuracy and efficiency of 
AD diagnosis. By taking advantage of both 
Convolutional Neural Networks and Vision 
Transformers' strengths in a hybrid approach, we can 
enhance classification performance, allowing for 
more accurate and trustworthy early detection of 
Alzheimer's disease. Although there are challenges to 
be overcome, including interpretability, 
generalizability, and deployment in real-world 
settings, ongoing development of AI technologies in 
combination with neuroimaging is very promising to 
transform the diagnosis and treatment of Alzheimer's 
disease [13]. 
 
2.0 Literature Review 
In [14], a CNN model was applied for the early-stage 
detection of AD using MRI scans. The model was 
able to diagnose Alzheimer’s disease (AD) accurately 
due to automated feature extraction processes from 
the MRI images which exhibited cortical thinning, 
hippocampal atrophy, and other atrophic changes 
consistent with the diagnostic criteria for AD. The 
researchers compared other approaches with CNNs 

and underlined the benefits of these systems for 
alarming early detection. Some of the issues 
regarding class imbalance, overfitting, and the 
necessity of multimodal data were presented in the 
systematic review conducted by Fathi et al. [15]. 
These researchers further suggested that including 
MRIs and PET scans as fMRI functional 
neuroimaging imaging substrates could enhance 
deep learning models. This technique blends 
structural imaging with functional neuroimaging 
which increases model accuracy, stability, and 
reliability. Structural and functional neuroimaging 
data were used to support Fathi's claims and defend 
the relevance of AD diagnosis put forth by 
Ebrahimighahnavieh et al. [16]. They reasoned that 
functional MRIs, supplemented with standard MRIs, 
improve model performance because functional 
imaging captures active processes while structural 
imaging captures passive ones like cortical atrophy 
and hippocampal shrinkage. Arafa et al. most 
recently After gaining insights from unrelated 
domains such as Natural Language Processing, [17] 
proposed employing transformer based models. 
Correctly staging Alzheimer’s Disease (AD) is 
essential to create suitable treatment plans and track 
its progression. Some investigators have tried using 
deep learning algorithms for multi-stage AD 
classification, starting from normal cognition (NC) 
and going through the stages of dementia. Bringas et 
al. [18] applied a deep learning model for AD 
diagnosis and staging at PET and MRI modalities 
using a multimodal approach. Their results indicated 
both imaging methods improved classification 
accuracy. As previously mentioned, PET gives 
essential functional metabolic information, and MRI 
provides significant structural information, making it 
easier for the model to differentiate between various 
stages of AD. A few other researchers based 
themselves on the work of a case study that built a 
multi-stage diagnosis model with transfer learning, 
which employs known models designed to address 
smaller data challenges. These researchers mentioned 
that transfer learning increased the accuracy of stage 
classification, thus allowing the model to use 
knowledge from previous extensive datasets. With 
their model, the detection and classification of AD 
stages was accessible for advanced monitoring from 
MCI through later stages. Finally Ramzan et al. [20] 
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used deep learning with residual networks on resting-
state fMRI images to address multi-class AD stage 
classification problems. 
With their framework, users are classified as 
Alzheimer’s Disease (AD), Mild Cognitive 
Impairment (MCI), or normal cognitive functioning 
individuals. Here the utility of resting-state fMRI 
scans is implemented, capturing brain activity for 
monitoring and detection purposes. The simplistic 
and less computational techniques employed to 
study the AD problem are a pointer towards time 
optimization issues with decision-making tools in 
actual clinical settings. Zhang et al. [21] showed how 
the application of focus on CNN architecture 
zoomed into the elements of streamlined models 
would aid in achieving a high degree of accuracy in 
the diagnosis of Alzheimer’s disease. Incremental 
modifications to the deep learning frameworks 
significantly improved the ability to detect and stage 
AD with greater efficiency. El-Sappagh et al. [22] 
proposed modifications on the previously developed 
MCI-CNN model and termed it longitudinal model 
that tracks the progression toward AD by merging 
CNNs and RNNs. This model could monitor spatial 
changes in MRI data with the CNNs and temporal 
changes with the RNNs, enabling better forecasting 
on disease progression. This model benefited these 
advanced patients who could be temporally 
monitored with varying dynamic predictions for 
future alterations in the disease course. An algorithm 
based on deep learning for the early diagnosis of 
Alzheimer’s disease was created by Murugan et al. 
[23] , who also refined it using data augmentation 
techniques.  
Venugopalan et al. [24] have applied a deep learning 
approach to the early detection of Alzheimer’s 
disease using a multimodal strategy that employed 
both MRI and PET scans. This research 
demonstrates that the use of both structural and 
functional imaging modalities greatly improves the 
diagnosis accuracy of patients with early-stage 
Alzheimer’s disease. Their model captured the 
metabolic and anatomical changes associated with 
Alzheimer’s disease to enable early detection that 
single modality imaging often fails to support, 
thereby significantly enhancing the accuracy of early 
detection using multi-modal imaging. Hazarika et al. 
[25] encountered the sparsity of labeled datasets 

challenge as a combination of deep learning and 
feature engineering hybrid model sought to address. 
This model, dubbed the resource-constrained model, 
outperformed all other models where data was 
limited by combining cognitive data, neuroimaging 
data, and labels in claimed constrained conditions.  
Modi and Mahajan [26] implemented a deep 
learning framework for multi-stage Alzheimer’s 
disease (AD) classification using MRI and fMRI data, 
highlighting the functional-structural interplay of 
imaging neurobiology, achieving enhanced model 
performance at multiple stages of AD. Alongside 
clinical information, their model performed 
exceptionally well at the National Alzheimer’s 
Coordinating Center (NACC) and Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) datasets 
[28]. Mmadumbu et al. [27] developed a hybrid 
model consisting of feedforward neural network 
(FNN) for static data and long short term memory 
(LSTM) networks for time series data. Even though 
the application of deep learning techniques to the 
diagnosis of Alzheimer’s disease has brought 
substantial innovations, some issues remain. One of 
them is clinical validation, which is a model that 
needs to be tested with sufficient variety in the 
patient population to ensure reliability and 
generalizability [29]. Furthermore, in trying to act on 
trusting the predicted information, robust reasoning 
needs to exist to take necessary actions, which brings 
us to model interpretability [30]. Fixing the problem 
of data heterogeneity based on how the hardware 
utilized alongside the scan protocols and available 
demographic information are used makes the 
neuroimaging data diverse. 
Models were published in 2020 where it was shown 
that modifications without reauthorization caused a 
marginal change in models and the issues raised 
around datasets [31]. In addition, the merging of 
multimodal data sets poses its own challenges 
because data coming from different sources needs to 
be accurately combined and depict the whole of the 
disease [32]. Other works also need to address 
monitoring and tracking of AD in real-time through 
continuous data collection such as cognitive 
assessments, biomarker measurements and 
neuroimaging [33]. This would enable timely 
intervention and personalized treatment plans. 
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3.0 Methodology 
This part explains how the evaluation of the hybrid 
deep learning models was carried out using both 
standard and simulated neuroimaging data. Here the 
focus is how the Alzheimer’s disease classification 
tasks are altered by the effect of pseudo-RGB 
transformation image enhancement. This 
methodology integrates collection of datasets, design 
of model structure, training techniques, and 
assessment into one framework. 
3.1 Dataset Preparation and Preprocessing 
This study's dataset consists of T1-weighted MRI 
brain scan images divided into two interdependent 
subsets: normal grayscale images and pseudo-RGB 
images synthesis. Each of the four categories of 
Alzheimer’s disease NonDemented, 
VeryMildDemented, MildDemented, and 
ModerateDemented contains 2,000 normal and 
2,000 synthesized images, amounting to 4,000 
images per class, which sums up to 16,000 images 
altogether. Such a balanced composition fosters 
unbiased training and evaluation for all classification 
models. 
To structure the images in a proper way, they are 
saved in folders which are named according to their 
disease categories. A pre-defined folder structure is 
used alongside a data loader which retrieves the 
images and translates them into class numbers. 
During the first split and the following cross-
validation, stratified sampling was applied to retain 
the balance of each class. This stratification avoids 
biased learning, which enables the model to perform 
consistently regardless of the different severity levels 
of Alzheimer’s disease. 
Preprocessing images is a step that must be 
performed separately for each model. 
 

x′ =
x −  μ

σ
 

In the case of two-dimensional models, images are 
transformed into 224×224-pixel squares, transformed 
into grayscale or RGB as needed, and normalized 
with respect to ImageNet (mean = [0.485, 0.456, 
0.406], standard deviation = [0.229, 0.224, 0.225]) to 
avoid drifting during training.  

For 3D CNNs, volumetric data is read as tensors 
with the shape [D × H × W] and reshaped to [1 × D 
× H × W] to form grayscale channels.  

Xinput = R1 × D × H × W 
The scans are also normalized to a constant voxel 
intensity value across all scans. The complete 
implementation is done with Python 3.x. The 
primary deep learning framework is PyTorch, while 
Torchvision and Timm are used for accessing 
pretrained model's architectures. Scikit-learn was 
used for training the model and calculating the 
evaluation metrics as well as image processing with 
Pillow and OpenCV. 
 
3.2 Data Splitting 
An initial 70:30 split is applied to divide the dataset 
into the training and validation sets with stratified 
sampling ensuring equal representation from each 
class. The training subset is further refined through 
5-fold stratified cross-validation. This form of 
validation guarantees that each fold has a roughly 
equal representation of the class distributions, 
permitting the model to be both trained and 
validated on various partitions of the data. Such an 
arrangement improves statistical reliability and 
mitigates the variability of the performance 
measures. 
 
3.3 Model Architectures and Implementation 
Different types of 2D and 3D models are investigated 
to evaluate their effectiveness in classifying 
Alzheimer’s disease through brain scans. 
3.3.1 EfficientNetV2-S 
Due to its compound scaling prowess which 
optimally adjusts depth, width, and resolution in 
unison, EfficientNetV2-S is identified. Its classifier 
head is altered to yield four logits for each of 
Alzheimer’s stratifications. Its input layer can be 
configured to accept either 1-channel grayscale or 3-
channel RGB images. EfficientNetV2 comprises 
squeeze-and-excitation blocks and depth wise 
convolutions, which improves the model’s learning 
capabilities for pseudo-RGB enriched enhanced 
contrast and structured sharpened images. The Table 
1 shows the hyperparameters for the efficientNetV2-
S. 

Model Dimension: d = αϕ, w = βϕ,

r = γϕ subject to α ⋅ β2 ⋅ γ2 ≈ 2 
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3.3.2 ResNet50 and ResNet101 
ResNet utilizes identity-based residual connections 
which solves the degradation problem in deep 
networks [34]. In this case, both ResNet50 and 
ResNet101 by replacing the final fully connected 
layer with a 4-class classifier. They help in analyzing 
the depth of the model in relation to the 
performance metrics. The formulation of the 
residual block structure is as follows: 

y = F (x, {Wi})  + x 
where F is the residual mapping to be learned and x 
is the input to the block (see Table 1 for 
hyperparameters). 
 
3.3.3 DenseNet121 and DenseNet201 
DenseNet facilitates layer-to-layer interconnectivity in 
a feed-forward manner, which assists in reusing 
features and enhances the flow of gradients [35]. 
Review of DenseNet121 and DenseNet201 includes 
modifications to the first convolution which can be 
switched to grayscale input. Its compactness makes 
DensNet favorable in the analysis of medical images 
where minute changes are of concern  (see Table 1 
for hyperparameters).. 

xl = Hl([x0, x1, . . . , xl−1]) 
 
3.3.4 Swin Transformer 
The Swin Transformer is a hierarchical vision 
transformer that segments images into several non-
overlapping windows and computes self-attention 
both locally and globally via window shifting [36]. 

This self-attention technique can capture fine and 
deep details of structural patterns in brain images. A 
specific classification head with 4 output classes is 
also included. The model can accept 1-channel 
grayscale or 3-channel color inputs (see Table 1 for 
hyperparameters).. 

Attention(Q, K, V) = Softmax(dQK⊤/ √d)V 
 
3.3.5 MedViT 
The MedViT model is a transformer specially 
optimized for medical image domains [37]. It even 
serves as proof of concept here, built with a 
neuroimaging design that accommodates sparsity and 
irregular structures. The implementation begins with 
a convolutional input block, followed by a 
transformer encoder and a classification head  (see 
Table 1 for hyperparameters). 

 ŷ = Softmax (Head (Transformer (Conv(X)))) 
 
3.3.6 3D ResNet (R3D-18) 
To utilize spatial coherence within volumetric scans, 
this study used the 3D ResNet model. This model 
executes 3D convolutions, which enables capturing 
information across slices of the brain [38]. The input 
tensor shape is [1 × D × H × W], and the output 
layer reduces features to 4 class mappings. Its 
capabilities in recognizing longitudinally evolving 
patterns characteristic of disease advancement make 
it highly powerful (see Table 1 for hyperparameters).. 
 

Model Hyperparameters 

EfficientNetV2 
Input Channels: 1 or 3 (grayscale or RGB), Optimizer: Adam (learning rate = 1e-4), Loss 
Function: CrossEntropyLoss, Batch Size: 32, Epochs: 20, Image Resize: 224x224, 
Normalization: Mean = [0.485, 0.456, 0.406], Std = [0.229, 0.224, 0.225] 

ResNet50 

Input Channels: 1 or 3 (grayscale or RGB), Optimizer: Adam (learning rate = 1e-4), Loss 
Function: CrossEntropyLoss, Batch Size: 32 
Epochs: 20, Image Resize: 224x224, Normalization: Mean = [0.485, 0.456, 0.406], Std = 
[0.229, 0.224, 0.225] 

ResNet101 
Input Channels: 1 or 3 (grayscale or RGB), Optimizer: Adam (learning rate = 1e-4), Loss 
Function: CrossEntropyLoss, Batch Size: 32, Epochs: 20, Image Resize: 224x224, 
Normalization: Mean = [0.485, 0.456, 0.406], Std = [0.229, 0.224, 0.225] 

3D CNN (3D ResNet) 
Input Channels: 1 (volumetric data), Optimizer: Adam (learning rate = 1e-4), Loss Function: 
CrossEntropyLoss, Batch Size: 32, Epochs: 20, Image Resize: Volume Size = [D x H x W], 
Normalization: None 

Swin Transformer 
Input Channels: 1 or 3 (grayscale or RGB), Optimizer: Adam (learning rate = 1e-4), Loss 
Function: CrossEntropyLoss, Batch Size: 32, Epochs: 20, Image Resize: 224x224, 
Normalization: Mean = [0.485, 0.456, 0.406], Std = [0.229, 0.224, 0.225] 
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DenseNet121 
Input Channels: 1 or 3 (grayscale or RGB), Optimizer: Adam (learning rate = 1e-4), Loss 
Function: CrossEntropyLoss, Batch Size: 32, Epochs: 20, Image Resize: 224x224, 
Normalization: Mean = [0.485, 0.456, 0.406], Std = [0.229, 0.224, 0.225] 

DenseNet201 
Input Channels: 1 or 3 (grayscale or RGB), Optimizer: Adam (learning rate = 1e-4), Loss 
Function: CrossEntropyLoss, Batch Size: 32, Epochs: 20, Image Resize: 224x224, 
Normalization: Mean = [0.485, 0.456, 0.406], Std = [0.229, 0.224, 0.225] 

MedViT 

Input Channels: 1 (grayscale), Optimizer: Adam (learning rate = 1e-4), Loss Function: 
CrossEntropyLoss, Batch Size: 32, Epochs: 20, Image Resize: 224x224, Normalization: Mean 
= [0.485, 0.456, 0.406], Std = [0.229, 0.224, 0.225], Conv Layer: Kernel size = 7, Stride = 2, 
Padding = 3 

General Hyperparameters 
Cross-Validation: 5-fold Stratified K-Fold, Train/Test Split: 70% Training, 30% Validation, 
Image Format: PNG, JPEG 

Table 1: Summary of key hyperparameters used for different deep learning models in Alzheimer's disease 
classification. 
 
3.4 Training Protocol 
To allow fair evaluation, all models are created under 
the same configuration. The loss function applied is 
categorical cross-entropy, which is formulated as: 

LCE = −∑i = 1Cyilog (yi) 
Where C denotes the number of classes, yi is the true 
label (one-hot), and y^i is the predicted probability 
associated with class iii. 

The optimizer employed for the task is Adam, 
chosen because of its adaptive learning rates and 
faster convergence towards stationary objectives. A 
learning rate of 1x10−41 \times 10^ {-4}1x10^ {-4} is 
used. All models undergo training for 20 epochs 
with a batch size of 32. There is an early stopping 
indicator based on the validation F1 score which 
retains the model with the best generalization 
capability. 
 

 
Figure 1. Flowchart of the Alzheimer’s Disease Classification Pipeline. 

 
3.5 Validation Strategy 
Validation is carried out with 5-fold stratified cross-
validation, which partitions the training data into 
five subsets. In each iteration, one subset is held out 
as the validation set while the other four are used for 
training. This technique gives a robust estimate of 

model generalization and data sampling variance in 
performance, mitigating performance variability. 
After each fold, model checkpoints with maximum 
validation F1-scores are retained. 
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3.6 Regularization 
This research does not concentrate on explicit 
regularization methods such as dropout or weight 
decay. Instead, these forms of regularization are 
accomplished implicitly through architecture such as 
batch normalization and cross-validation. The 
learning dynamics are supported with the use of the 
Adam optimizer, which helps reduce overfitting in 
the absence of a validation set for hyperparameter 
adjustments. 
 
3.7 Evaluation Framework 
A collection of different metrics is used to evaluate 
how well the model is performing, some of the most 
relevant are: 
 
3.7.1 Accuracy 
Measuring accuracy checks out the ratio of correct 
predictions (both true positives and true negatives) 
over the total of predicted values [39].  

Accuracy =
TP +  TN

TP +  TN +  FP +  FN
 

3.7.2 Precision 
Precision shows the correct predictions of positive 
instances (true positive) out of all the predicted 
positive instances [40].  

Precision =
TP

TP +  FP
 

3.7.3 Recall 
Recall shows the ratio of correctly predicted positive 
instances out of all the actual positive instances [41].  

Recall =
TP

TP + FN
   

3.7.4 F1-Score 
F1-Score is the combination of precision and recall 
by averaging the two metrics through harmonic 
mean [42].  

F1 − Score =  2 ∗
Precision ∗ Recall

Precision +  Recall
 

3.7.5 Specificity 
Specificity shows the correctly predicted negative 
instance out of the actual negative instance [43].  

Specificity =
TN

TN + FP
 

All these metrics would help to paint a complete 
picture of how effective the model is, if not all, some 
of the metrics such as F1 score and specificity are the 
ones that should be considered in clinical situations 
where false positive and false negative predictions 
can lead to very dire consequences. 
 
4.0 Results and Discussions  
The results  in table 2 shows the application of 
numerous deep learning techniques on the 
classification of Alzheimer's disease using a hybrid 
dataset of normal and synthesized pseudo-RGB 
images, incorporating both normal and synthesized 
images. As indicated in our methodology, we 
evaluate the impact of the approach on model 
performance through the lens of accuracy, precision, 
recall, F1 score, specificity, and other relevant model 
evaluation metrics.   
 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) 

EfficientNetV2 
96.2 
 

95.9 96.0 95.9 96.5 

ResNet50 
94.8 
 

94.5 94.7 94.6 95.0 

ResNet101 
95.6 
 

95.3 95.4 95.3 95.8 

3D CNN (3D ResNet) 93.5 93.2 93.0 93.1 93.8 

Swin Transformer 
97.1 
 

96.9 97.0 96.9 97.3 

DenseNet121 
95.9 
 

95.7 95.8 95.7 96.1 

DenseNet201 
96.4 
 

96.1 96.3 96.2 96.6 

MedViT 
98.5 
 

98.3 98.4 98.3 98.7 
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Table 2: Performance comparison of deep learning models for Alzheimer's disease classification. MedViT achieves 
the highest accuracy and specificity. 
 
The accuracy reflects how correct the model is in the 
overall classification of the data. Classification results 
provided by MedViT show that they achieved the 
highest accuracy of 98.5%. We assume that this 
dramatic achievement stems from the networks’ 
hybrid architecture which combines the strengths of 
CNN and TRANSFORMER for medical imaging. 
Swin Transformer (97.1%) comes in second 
leveraging its hierarchical feature learning and global 
attention. Competitive performers, relying on 
efficient scaling and dense connections, respectively, 

include EfficientNetV2 (96.2%) and DenseNet201 
(96.4%). ResNet101 (95.6%) shows improved 
performance over ResNet50 (94.8\%), capturing the 
benefits of deeper networks for feature extraction 
and suggesting that some residual networks and 
shallow networks are not efficient at model 
optimization. The 3D CNN (93.5%) 
underperformed, presumably because their 
volumetric data optimization approaches are not as 
advanced as 2D techniques, compared to 2D 
approaches, over. 

 

 
Figure 1: Comparison of accuracy across various deep learning models 

 
Precision gauges the attempted avoidance of false 
positives. With MedViT (98.3%) again out in front, 
demonstrating the least misclassification of negative 
cases, it is evident that misclassification of negative 
cases is minimal. Alongside ResNet50 (94.5%), Swin 
Transformer (96.9%) and DenseNet201 (96.1%) 
exhibit strong precision, albeit Shosen relinquishes 

the lead he had among the 2D CNNs. The 3D CNN 
(93.2%) also struggles, most probably because the 3D 
feature extraction is more noise susceptible. As with 
other metrics, high precision in transformer based 
models indicates greater certainty in distinguishing 
subtle pathological features.   
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Figure 2: Comparison of precision across various deep learning models 

 
Recall measures the rate at which positive cases are 
detected. With MedViT (98.4%) excelling, it can be 
interpreted as delineating superb disease 
identification capability. Following MedViT, Swin 
Transformer (97.0%) and EfficientNetV2 (96.0%) 
sustain equilibrium and distribute their efforts 
equally. ResNet101 (95.4%) builds on the gains of 

ResNet50 (94.7%), demonstrating the appeal of 
tunnel vision and depth. Lagging slightly is the 3D 
CNN (93.0%), poofing their inefficiency at capturing 
discriminative features from volumetric data. What 
these figures underscore is that high recall in 
MedViT and Swin Transformer underscores the high 
degree of effective false negatives elimination.   

 
Figure 3: Comparison of Recall across various deep learning models 

 
The F1 metric equilibrates two clashing factors, 
precision and recall. MedViT (98.3%) has the 
dominant share which affirms her high performance 
reliability. Moderately trailing behind are Swin 
Transformer (96.9%) and DenseNet201 (96.2%) 
while straggling is ResNet50 (94.6). Remains the 

weakest, the 3D CNN (93.1), suggesting difficulties 
with generalizing volumumetric data. That these F1-
sore figures are high in transformer based models 
indicates better reconciliation of precision and recall 
measures. 
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Figure 4: Comparison of F1-Score across various deep learning models 

 
Specificity evaluates the true negative rate which is 
essential in preventing misdiagnosis. MedViT leads 
(98.7%), followed by Swin Transformer with a strong 
showing at 97.3%, showcasing excellent case 
identification for healthy patients. EfficientNetV2 

(96.5%) and DenseNet201 (96.6%) show decent 
results, while ResNet50 (95.0%) is the weakest 
among the CNNs. The 3D CNN also struggles at 
93.8%, reinforcing the limitations of this model for 
the task at hand. 

 
Figure 5: Comparison of Specificity across various deep learning models 

 
Reasoning about Alzheimer’s disease classification is 
especially sensitive to subtle pathological features 
that foster difficulties in long-range dependency 
capturing which helps explaining the superiority of 
transformer based models (MedViT and Swin 
Transformer) over CNNs. Models based on deeper 
architecture like ResNet101 and DenseNet201 
outperform shallower counterparts like ResNet50, 
though all face a performance ceiling in comparison 

to transformers, indicating convolutions struggle 
with these tasks. The 3D CNN model does not 
perform well, suggesting volumetric processing with 
current dataset sizes may require additional 
architectural sophistication or larger datasets to 
outpace 2D methods. The addition of pseudo-RGB 
augmentation is probably beneficial on 2D models 
by adding extracted features from rich feature sets in 
describing space such distinguishing algorithms 
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boosted model performance. MedViT stands out as 
the most precision-efficient model abolishing any 
doubts over the capability of transformer-based 
frameworks in dealing with medical images. 
Advanced Alzheimer's disease classification tasks 
necessitate using better 3D data handling techniques 
along with the hybridized designs of CNNs and 
transformers. 
5.0 Conclusion  
In summary, MedViT and Swin Transformer excel 
compared to other CNN approaches in Alzheimer’s 
disease classification with 98.5% and 97.1% 
accuracy, respectively, revealing their learned global 
and local feature capturing abilities at subtle 
pathological detail discrimination. Additionally, the 
poor results from 3D CNNs at 93.5% indicate that 
volumetric data processing requires more advanced 
architectures and larger datasets. Also, the pseudo-
RGB synthesis method greatly improved 2D model, 
specifically MedViT, performances, solidifying its 
adaptability as a superior choice for AD 
classification. Future efforts need to focus on the 
expansion of datasets for 3D models to increase their 
efficacy, alongside clinically validating pseudo-RGB 
augmentation and the integration of hybrid CNN-
transformer architectures. 
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