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Clustering algorithms are frequently employed in the fields of
data processing as unsupervised learning algorithms. Density-
based spatial clustering of applications with noise (DBSCAN), a
typical method based on density clustering, can build clusters by
finding densely populated regions divided by sparsely populated
regions based on cluster density. However, the DBSCAN
algorithm has an inherent flaw that cannot be avoided. Because
the clustering performance is highly sensitive to the DBSCAN
parameters settings i.e. Eps and Minpts, there is no theory to
guide the setting of these parameters. To optimize the settings of
these parameters, this study proposed a hybrid algorithm that
combines the DBSCAN method with the Multiobjective Lemurs
Optimizer (MOLO). This method approaches the matter of
clustering as a multiobjective optimization challenge to minimize
particular cluster validity indices, expressed as objective
functions characterizing the quality of the clustering solutions.
This made it feasible to determine the correct values for the
DBSCAN parameters. The outcomes indicate that the suggested
MOLO-DBSCAN is still effective in achieving the most accurate
settings for these parameters.
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Introduction
Clustering significance to information analysis is
expanding every day, as a result of the rapid
development of data mining, machine learning
(ML), artificial intelligence, and other disciplines
[1]. The goal of clustering is to group a collection of
data objects based on how similar or close they are,
without any prior knowledge [2]. Clustering
algorithms are frequently employed in a variety of
industries, including healthcare [3], document
management [4, 5], marketing [6, 7], and pattern
recognition [8, 9].
The fundamental goal of clustering is to group
related data objects while keeping distinct objects
separate. A distance metric, such as Euclidean
distance or cosine similarity, is used to measure the
similarity of data objects. There are numerous
clustering algorithms available, each with its own
set of strengths and drawbacks, and they are

generally classified into five categories:
partitioning-based, hierarchical-based,
density-based, model based, and grid-based
algorithms [10].
However, the main focus is on the density-
based method, specifically the density-based
noise application spatial clustering algorithm
(DBSCAN).
They are able to find clusters by examining
data point density and do non-convex
clustering. According to their density
characteristics, data entities are arranged
using the DBSCAN method, which was
created for clustering by Ester et al. [11]. It
defines a cluster as a region that is heavily
occupied with data items and is divided into
smaller zones of lower density. It is able to
recognize groups of various shapes.
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DBSCAN is superior to other clustering approaches
in several ways, including its skill at handling noise
and its resistance to abnormalities. However, using
DBSCAN presents the difficulty of adjusting its
parameters. The two main parameters of the
DBSCAN method are represented by the symbols
Eps andMinpts [12, 13].
According to the characteristics of the data and the
user’s domain knowledge, the values of Eps and
Minpts are frequently determined individually. This
method, nevertheless, can be time-consuming and
may not always produce the best results. The
parameters for DBSCAN are to be tuned using an
adaptive method that is suggested in this research.

1.1. Literature Review

The primary issue concerning the automatic
selection of input parameters for the DBSCAN
algorithm presents a significant challenge.
Nevertheless, achieving an appropriate selection of
parameter values is essential, involving the
utilization of both Minpts and Eps.To address the
issue of parameter configuration, and various
frameworks have been created. In order to start, Fan
et al. [14] presented a framework for modifying
parameters within the clusters of stochastic block
models. They used cross-validation to choose the
ideal number of clusters, concluding the model
selection procedure for a specific clustering
situation.
Ditton et al. [15] proposed a similar cross-
validation-based methodology to evaluate cluster
reliability across several samples that made use of
inter-cluster validity indices. Notably, they focused
on domain-specific assessments inputted during
param-eter refinement rather than external data or
ground truth labels when making their judgment.
The DBSCAN algorithm’s broad application is
accordingly constrained within a narrow scope due
to the manual intervention required for the complete
parameter selection approach which draws from
research experiments or extensive trial and error
[12]. Numerous academics have responded by
introducing automated algorithms for choosing
DBSCAN parameters to get around this problem. A
KD tree data format was proposed by Mitra and

Nandy [16] to find clusters of varying densities.
This structure served as the foundation for the k-dist
display and aided in calculating the Eps parameter
value. The technique significantly reduced noise
and automatically recognized regions of different
densities by using pattern distances to their k-nearest
neighbors to find points of convergence or knees in
the plot.
The grid partition method was employed by the
grid-based DBSCAN approach to select appropriate
clustering parameters. Its objective was to improve
the efficiency and impartiality of choosing the Eps
and Minpts parameters for the DBSCAN algorithm.
The algorithm could discriminate between noise and
clusters with arbitrary shapes due to the autonomous
calculation of these parameters, leading to more
depend-able clustering results. However, the
comprehensive effectiveness of This approach was
not thoroughly investigated across a broader
spectrum of datasets. [17]. To compute the
DBSCAN parameters, the Gaussian mean was
employed. The Gaussian mean was used to calculate
the DBSCAN parameters. By utilizing the benefits
of Gaussian means, the shortcomings of DBSCAN
were to be addressed. To estimate the DBSCAN
parameters and create compact clusters with
pinpointed cluster centers, Gaussian means were
used. For datasets containing non-linear or
irregularly formed clusters, arithmetic mean and
circular clustering algorithms may be less useful
[18].
According to [19], the LP-DBSCAN method was
used to establish the DBSCAN parameters.
Although it requires a user-defined cutoff range, this
approach locates data density peaks. While the
earlier described heuristic techniques likewise
require user-specified parameters and don’t fully
automate, more current methods have added
metaheuristic algorithms to gradually improve
clustering results. By incorporating metaheuristic
algorithms, researchers have optimized DBSCAN,
allowing for better clustering outcomes and
automated optimization of DBSCAN settings.
The modified ant clustering algorithm (ACA) and
the point density-based method were merged to
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approach was

create the innovative hybrid algorithm known as
PACA-DBSCAN during the data pre-processing
stage. Addressing DBSCAN’s shortcomings is the
goal. The database is split into N segments
according to data density using this method, and
each segment is then subjected to DBSCAN. Five
datasets were used to compare PACA-DBSCAN’s
outcomes to those of DBSCAN and PDBSCAN.
PACA-DBSCAN provides superior clustering
accuracy, according to the experimental data. Using
met-rics like the F-Measure and a certain criterion
(ER), the algorithm’s effectiveness was evaluated.
According to the analysis, PACA-DBSCAN
performs far better than DBSCAN [12]. It was
suggested by Hosseini Rad and Abdolrazzagh-
Nezhad [20] to combine the earthworm
optimization algorithm EWOA and DBSCAN, or
EWOA-DBSCAN, and utilize this combination to
determine the proper values of DBSCAN’s
parameters for grouping data cubes. This study
highlights the adaptability and autonomy of
DBSCAN in detecting no convex clusters. A new
similarity metric is created, addresses are assigned
to the cube cells, and 3D data is converted into a 2D
dataset as part of the preprocessing techniques.

Zhu et al. [46] presented a K-DBSCAN clustering
algorithm. By applying the widely used harmony
search optimization (HS) algorithm to improve the
DBSCAN parameters, this strategy tries to deal with
the challenges posed by nonconvex clustering and
local optimum. By adding the harmony search
method to DBSCAN, K-DBSCAN offers superior
clustering results with a predetermined number of K
classifications. This study highlights a few K-
DBSCAN shortcomings that should be addressed in
subsequent research, In order to find the ideal
clustering parameters for huge datasets, the
innovative HS optimization technique may need to
do several rounds, which can take time. The
clustering performance of K-DBSCAN on high-
dimensional datasets was the second problem.

Xiong et al. [22] suggested a multi-density
clustering approach that incorporates the density
levels and calculates the Eps for every group based
on characteristics of density variation. This

developed to address issues with the traditional
DBSCAN algorithm.
With updated DBSCAN and Density Peak (DP)
algorithms, Li et al. [23] suggested a two-stage
clustering method (TSCM), which uses a bat
optimization strategy to improve only the Eps
parameters of DBSCAN. The Eps and Minpts
variables in particular can have an impact on the
DBSCAN algorithm’s performance. The Silhouette
Index [24] is used as a fitness function in this
method’s bat optimization technique to determine
the parameters.
The experiments’ findings show that the TSCM
outperforms DP and DBSCAN, which effectively
eliminates the necessity for manual assistance with
DP’s cluster center selection and the robustness of
DBSCAN parameter selections. Determining a cut-
off distance was not discussed, though. We would
strictly abide by the recommended cutoff distance.
In essence, cut-off distance (dc) is chosen so that an
average quantity of neighboring individuals of each
data point accounts for between (1%-2%) of the
total. The term neighbors here refer to the data
points that were just dc distant from one another.
This assertion was beneficial and arbitrary. As a
result, attention must be paid to the TSCM
algorithm’s automatic selection of the cutoff
distance parameter.

For superior clustering findings, parameter Minpts
should also be visualized, as the aforementioned
two algorithms merely identified the issue with the
Eps parameter and its selection criterion.
The optimal selection of DBSCAN parameters is
facilitated by an adaptive clustering approach which
integrates the nearest neighbor function with a
genetic algorithm [25]. The approach uses
DBSCAN directly to cluster datasets, a genetic
algorithm (GA) for improving DBSCAN’s
parameters, and factor analysis (FA) to minimize
the number of dimensions. To lessen the
uncertainty, DBSCAN’s settings need to be adjusted.
The precision and entropy of the clustering results
were compared to assess the hybrid approach
FA+GA-DBSCAN. The results show that the
information found in this type of dataset was
practically meaningless because the entropy
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variance was low.

To determine the optimal number of clusters, a
novel hybrid automatic clustering system named
GFO-DBSCAN was developed by Balavand [26]. It
had a two-step foundation. The grouper-fish-
octopus algorithm (GFO) was utilized in the first
stage to generate values for the DBSCAN method’s
parameters. The DBSCAN method was used to do
clustering in the second stage using similar
parameter values, and the CH validity index was
used to assess the effectiveness of the clustering.
The results of the trial showed that GFO-DBSCAN
consistently locates the actual number of clusters.
GFO-DBSCAN demonstrated efficiency owing to
DBSCAN’s capability to detect non-convex clusters
and remove outliers during clustering. However,
when examining each dataset, there was a lack of
distinct clustering patterns.

Through the use of the bird swarm optimization
method, Wang et al. [27] developed an adaptive
DBSCAN. The ideal Eps parameter neighboring
values were chosen by using the bird swarms
approach’s global search capability. By enhancing
the clustering process through adaptable parameter
optimization, human participation was also made
unnecessary. Using simulated and actual datasets
with a range of clustering evaluation index values,
tests were conducted on BSA-DBSCAN’s
clustering efficiency. The simulation studies
indicate that the BSA-DBSCAN strategy finds the
optimal Eps parameter value more successfully and
with more precision than other approaches. The
amount of the Minpts parameter must still be
manually modified for the BSA-DBSCAN
algorithm, though. As therefore, complete
optimization for the same dataset might not be
achievable when applying various Minpts settings.
The effectiveness of DBSCAN depends on the set
parameters Eps and Minpts, which can be difficult
to determine correctly for various clustering objects.

Yang et al.[28] designed an improved DBSCAN
optimized utilizing an arithmetic optimization
algorithm (AOA) with opposition-based learning
(OBL) (OBLAOA-DBSCAN), which was the
solution to this constraint. By applying standard
functions, the OBLAOA optimizer’s improved

exploration capabilities were demonstrated in
comparison to conventional AOA and other meta-
heuristic methods.
An adaptive DBSCAN approach was proposed by
Karami and Johansson [29] that integrated a binary
differential evolution optimization strategy for
selecting DBSCAN parameters. The DBSCAN
lgorithm uses this optimization method to get the
ideal Eps value for each unique Minpts. Notably,
the tournament-based selection method used in this
approach produced superior outcomes in terms of
cluster validity indices like purity, entropy, and the
Dunn Index, surpassing previous methods. With
purity levels varying from 89.4% to 99%, the
approach achieves the highest level of precision.
The findings recommend the use of further cluster
validity criteria, the fusion of DBSCAN with
different metaheuristics tools, and varied data sets
for testing the BDE-DBACAN approach.

Multi-Verse Optimizer (MVO) a variable update
method suggested by Lai et al.[30] that aims to
enhance the optimization of the DBSCAN
parameters, is known for its outstanding
optimization performance. The improved MVO was
designed to swiftly determine the optimal Eps
interval and locate DBSCAN’s optimum clustering
accuracy. According to the experimental results, the
updated MVO effectively optimizes the DBSCAN
settings, which raises clustering performance. The
external validity index of purity is used as the goal
function in this hybrid technique. This approach
cannot be used with real-life data sets because
clusters are not predetermined.In an effort to
optimize the DBACAN parameters, Falahiazar et al.
[31] used a similar approach with a MOGA
application. This deployment, in contrast to the
approach suggested by Karami and Johansson [29],
sought to choose the best parameters to verify the
results without requiring any external ground facts.

The proposed method was put to the test using a
multiobjective evolutionary algorithm, which
assesses optimization based on numerous fitness
factors. Genetic algorithms use the Outlier index,
the Dunn [32], and the silhouette indices [24] as
fitness functions.
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The initial boundaries of the DBSCAN parameters
are set using the Delaunay triangulation procedure,
which does not need any input parameter.
The experimental findings indicate that the
DBSCAN parameters are efficiently and precisely
optimized using the MOGA-DBSCAN method. The
adaptability of the technique should be investigated,
and more developments in parameter estimation and
visualization are needed in order to assess how well
it handles huge datasets.

1.2. The Gap

The No Free Lunch (NFL) theorem states that there
is no approach that can solve all optimization issues.
The DBSCAN clustering algorithm’s performance
was still improving. A combination of more robust
ML techniques and metaheuristic algorithms are
required to automatically optimize the DBSCAN
algorithm settings in order to get correct clustering
results.

1.3. The Contribution

This study proposed a novel multiobjective
metaheuristic improvement technique called
MOLO-DBSCAN to fine-tune DBSCAN’s
parameters, which combines the benefits of
multiobjective Lemurs and DBSCAN. DBSCAN
also improved with MOLO and performed well
across a variety of datasets, depending on the results
of the experiment. As a result, the following are the
contributions of this article:

(1) The development of the MOLO-DBSCAN
clustering algorithm, which does automatic
parameter exploration and clustering.

(2) Multiple external cluster validity indices are
used during the clustering process, which enhances
the clustering results. An objective function is used,
which is the internal cluster validity index.

(3) The suggested MOLO-DBSCAN technique is
capable of outperforming traditional metaheuristic
optimization algorithms in terms of clustering
performance

1.4. The Layout of the Paper

The following sections are arranged as follows:
Section 2 provides insights into the operational
mechanisms of the DBSCAN and MOLO
algorithms. In Section 3, the MOLO-DBSCAN
algorithm that is being proposed is presented. Moving
on to Section 4, the efficacy of the suggested
algorithm is showcased across six distinct datasets.
This is achieved by employing various cluster
validity indices, thereby facilitating a comparative
analysis with several considered metaheuristic
optimization algorithms. In Section 5 case study was
performed by incorporating real real-life data set for
further visualization of the proposed MOLO-
DBSCAN algorithm. Finally, Section 6 concisely
highlights the main contributions, assesses the
implications, and suggests possible directions for
further research.

2. Related Concepts

2.1 Density-Based Spatial Clustering of
Applications with Noise

A well-known density-based clustering technique
called DBSCAN is used to group together data
points that are adjacent to one another in high-
density regions while classifying data points in low-
density regions as noise or outliers. The method
locates dense areas in the data space and establishes
neighborhoods around data points. The approach is
beneficial in situations where the number of clusters
is unknown beforehand because it does not require
the user to specify it previously.

1. Eps The greatest distance between the two
locations at which one is deemed to be in closest
proximity of the other. It specifies a data point’s
nearest neighbors.

2. Minpts The minimum number of data points
required to form a dense region. Points with at
least MinPts points within distance Eps are
considered core points.

The working of the DBSCAN algorithm involved
the following terms:-
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Core Point: A point with at least MinPts neighbors
within Eps distance, forming the basis of a cluster.
Density-Reachable: A point reachable from
another through a chain of core points within Eps
distance.
Border Point: A non-core point within a core
point’s Eps radius, helping define cluster edges but
not forming clusters independently.

Algorithm 1 The DBSCAN Algorithm

Require: Dataset D, Eps,Minpts
Ensure: Clusters of data points
1. Initialize the visited set as empty
2. Initialize the clusters list as empty

3. For each unvisited point P in D:
a. Mark P as visited

b. N← REGIONQUERY (P, Eps)
c. If |N| < MinPts:

i. Mark P as noise
d. Else:

i. Create a new cluster C and add P to C
ii. For each point Q in N:
1. If Q is not visited:

a. Mark Q as visited
b. N′← REGIONQUERY(Q, Eps)
c. If |N′| ≥ MinPts:
- Add all points in N′ to N

2. If Q is not yet a member of any cluster:
a. Add Q to cluster C

iii. Add cluster C to clusters

4. Return clusters
5. Function REGIONQUERY(P, Eps):
Return the set of points within distance Eps from

point P

2.2 Multiobjective Lemurs Optimizer

In order to produce a single optimal solution, the
single-objective lemurs optimizer algorithm only
optimizes one goal during the search process [33].
However, while solving a large number of real-world
issues, it is necessary to simultaneously optimize
anumber of conflicting objectives. In order to deal
with the problems in real-world set-tings, multi-
objective optimization methodologies are used.
According to the standard definition, the multi-
objective optimization problem is defined by
Maulik et al. [34] and Kalyanmoy [35].

The technique of simultaneously optimizing a
system for many conflicting objectives is known as
“multiobjective optimization.” A multiobjective
optimization issue can be mathematically stated as
follows given a set of choice variables z:

Minimize f (z) = [f1(z), f2(z), ..., fm(z)]
Subject to:

��(�) ≤ �, � = �, �, . . . , �,

( ) = , = , , . . . , ,
where ��(�) stands for the objective function that
must be minimized, ��(�) for the equality condition
that must be met, and ℎ�(�) for the equality
condition.

2.3 Pareto Dominance

Finding the set of non-dominated solutions usually
referred to as the Pareto front, that indicates a
conflict between the competing objectives is the
goal of multi-objective optimization. It is said that a
solution x dominates the other solution if it
dominates another solution y in at least one
objective and is superior in none [36].
Formally, one solution x is said to dominate another
y if:

��(�) ≤ ��(�), � = �, �,… , �, ���

( ) < ( ) .
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The group of non-dominated solutions governed by
Erfani and Utyuzhnikov [37] is usually referred to
as the Pareto front, sometimes known as the Pareto
set. When solving a multiobjective optimization
problem, there is no one perfect solution. The final
selection is made in place of this based on the
decision-maker’s interests and objectives from a
collection of non-dominated alternatives.

2.4. Crowding Distance

Crowding distance as described by [35], is a metric
used to assess the diversity of solutions in the
objective space after non-dominated sorting in
evolutionary algorithms. Solutions with larger
crowding distances are preferred as they indicate
greater diversity. It is calculated by sorting solutions
by each objective and summing the normalized
distances between neighboring solutions across all
objective dimensions.

This study applies the Pareto dominance approach
to the lemurs optimizer algorithm, which uses
crowding distance and non-dominated sorting [38].
The objective functions must be properly
formulated, and any appropriate modifications to
the parameters must be made before the procedure
can begin. In order to ensure a more uniform
distribution of lemurs across the search space, an
initial population of n lemurs is generated. The
iteration process begins with the evaluation of the
jumping rate, known as the Free Risk Rate, once
either the tolerance threshold or a predefined
number of iterations has been reached. The formula
for this coefficient is as follows:

FRR = FRR(High Risk Rate) − Curr Iter ×

1. Dance-HupBehavior (Exploitation Phase)

This phase aims to intensify the search around high-
quality solutions. The algorithm first applies non-
dominated sorting to identify the first Pareto front,
then selects the solution with the highest crowding
distance to preserve diversity. The selected solution
is refined using the following update equation:

�(�) = �(�, �) + |�(�, �) − ������������(�)| ×
(�����. �) × � (2)

If the updated solution L(j)L(j)L(j) yields better
fitness than the previous one, it replaces the
original.

2. Leap-Up Behavior (Exploration Phase)

To encourage diversity and global exploration, the
algorithm re-applies non-dominated sorting and
selects a diverse subset of solutions from each front
based on crowding distance. The movement of each
selected lemur is then guided by the following
equation:

�(�) = �(�, �) + ���(|�(�, �) − ��(�)|, |�(�, �) −
��(�)|) × (���� − �. �) × � (3)

3. The proposed MOLO-DBSCAN

3.1. Solution Formulation and Search Area
The initializing phase is completed in the MOLO-
DBSCAN method, similar to other algorithms,
before moving on to the main phases. Given that the
metaheuristic algorithm’s search space is continuous
and our parameters for tuning are mixed integers, a

�������� ���� − ������� ������� ���� (1) constraint should be applied to the corresponding
search space as described by Marler and Arora [38]

The search space is divided into two behavioral
phases dance-hup and leap-up similar to the single-
objective case [33].

which is a similar approach to [39, 40]. Every
possible outcome has two parameters, Minpts and
Eps, which reflect a predefined range of each
solution parameter.
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3.2 Validity Indices as objective functions
The objective function defines the clustering quality
metrics that will be simultaneously optimized in the

The CVDD index is defined as follows:

optimization of the DBSCAN parameters. The ∑� ( )
( ) = = .

objective function guides the search for an ideal
pairing of Minpts and Eps that balances various = ( )

aspects of clustering quality and aids in the
identification of a varied selection of effective
alternatives. A detailed description of the two
objective functions is stated below:-
3.2.1 Davies Bouldin Cluster Validity Index
(DBI)
Davies and Bouldin [41] develop DBI. It is used to
gauge cluster separation and compactness. In the
framework that is being suggested, the main goal of
DBI is to maximize inter-cluster distance while
minimizing intra-cluster distance, which measures
the distance between data points that are a part of
the same cluster. The DBI’s range lies between 0
and 1. Clustering results with a lower DBI value
suggest greater intra-cluster similarity and lower
inter-cluster dissimilarity.DBI would be calculated
as:-

The proposed internal validity index, CVDD,
measures the average performance (π) across all
clusters. It can also be calculated by first evaluating
each cluster’s performance individually, averaging
those results, and then computing the final index. A
higher CVDD(π) value indicates better clustering
quality. As noted in [43], the duality principle is
useful here it allows the same optimization method
to be used for either maximization or minimization
by simply adjusting the objective function (e.g.,
multiplying by -1), rather than modifying the entire
algorithm. Therefore, the proposed CVDD index is
structured to support minimization problems
through this straightforward transformation.

3.3 Parameter Bounds Settings

= = ∑���( + )
In setting the parameters for DBSCAN, past studies
suggest that for two-dimensional datasets,MinPts is

Where:
=

�≠� fixed at 4, and Eps is calculated as (2 × dim − 1)
[44].For datasets with more than two dimensions,
MinPts is adjusted to 2 × dim. Choosing Eps is

• m is the total of all clusters
• sj represents the average distance between the
cluster centroid and each sample in the cluster j.
• sk The average distance between the centroid of
a cluster and its samples is shown
by item sk.
• Mjk is the distance between the centroids of
cluster j and cluster k.

3.2.2 Cluster Validity Density Involved
Distance (CVDD)

The density information of the data items is taken into
consideration via a new internal validity metric
called CVDD [42]. The average distance between
sites is calculated while taking into account the
local density of points within a neighborhood.

more complex, as it needs to be small enough to
ensure only a portion of data points fall within that
distance, allowing the algorithm to detect
meaningful clusters. It's important that the number
of resulting clusters does not exceed a user-defined
maximum [46] and the values of MinPts and Eps
should enable most data points to form valid clusters
[45].

Traditional or statistical methods for setting these
values can be time-consuming and imprecise, which
is why metaheuristic approaches are preferred. In
MOLO-DBSCAN, a metaheuristic method is used to
search for optimal MinPts and Eps values within a
normalized, predefined range derived from earlier
research.

∑
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3.4. Framework of MOLO-DBSCAN

In this part, a multiobjective Lemurs technique is
used to optimize the two DBSCAN parameters Eps
and Minpts. Algorithm 2 contains the pseudocode
for the suggested MOLO-DBSCAN approach.

Algorithm 2MOLO-DBSCANAlgorithm

Require: Dataset (d), Population size (N), Number
of iterations (t_max), Number of dimensions (dim),
lower bound (lb), upper bound (ub), high-risk rate,
low-risk rate

Ensure: Clustering findings, visualization, and
processing.

1: Generate population of n lemurs y_i, where ( i =
1,……. N).
2: Apply the objective functions to the results of the
DBSCAN algorithm after running it with a
combination of Eps and MinPts: DBSCAN(d, Eps,
MinPts).
3: Set itr = 1.
4: while (itr < t_max) do
5: Sort lemurs using non-dominated sorting based
on their objective function values.
6: Assign crowding distance values to lemurs
based on distances from their neighbors in the same
rank. Then, calculate Free Risk Rate (FRR) using
Eq. 1.
7: Select lemurs with best rank and crowding
distance to update global best lemurs list (gbl).
8: for each lemur i do
9: Update best nearest lemurs (bnl) by
selecting the one with best crowding distance
among closest lemurs.
10: for each decision variable j in lemur i do
11: if rand(0,1) < Free Risk Rate then
12: Modify decision variable j usingEq.2.
13: else
14: Modify decision variable j usingEq.3.
15: end if
16: Apply boundary limitation to ensure
variable j remains within bounds [lb, ub].

17: end for
18: Evaluate the objective function for the
updated lemur i.
19: end for
20: Update population if new fitness value <
previous fitness value.
21: Rank existing Pareto-optimal global best
solutions and locate them.
22: Increment iteration: itr ← itr + 1
23: Determine optimal DBSCAN
parameters.
24: end while

3.5 Comparision Algorithms

We have chosen a few well-known multiobjective
algorithms and compared them to a suggested
approach for DBSCAN parameter optimization in
order to assess the performance of the proposed
MOLO-DBSCAN algorithm.
The algorithms are listed below:-
3.5.1 Multiobjective Cuckoo Search
(MOCUCKOO):
MOCUCKOO is a nature-inspired multiobjective
optimization algorithm based on cuckoo breeding
behavior. It evolves a population of candidate
solutions using Lévy flights and random walks,
applying non-dominated sorting and crowding
distance to maintain diverse trade-off solutions.
Clustering is used post-optimization. Key parameters:
Lévy exponent β = 1.5, 30 nests, discovery
probability = 0.25.

3.5.2 Multiobjective Firefly Algorithm
(MOFIREFLY):
MOFIREFLY mimics firefly flashing behavior for
multiobjective optimization. Each firefly represents
a solution, with brightness linked to objective
performance. Movement is guided by relative
brightness and proximity, iteratively finding Pareto-
optimal solutions. Clustering follows for further
analysis. Parameters: α = 1.0, θ = 0.98 (alpha decay),
β = 1.0 (attractiveness), γ = 0.1 (absorption).
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4 Experiments and Performance Evaluation

4.1 The Datasets
This section employs five synthetic data sets and
one real data set to assess the performance of our
optimization technique MOLO-DBSCAN. Table 1
displays the specifics of the datasets, including their
instances, dimensions, and various clusters,which
were taken from the clustering benchmark resource
[49, 50]. We employed datasets with real labels to
analyze the results of this evaluation with the real
labels and the clustered labels to determine how
effective the algorithm was. In Table 2 the threshold
ranges for the preceding data sets are provided.

Table 1 Properties of the dataset

Datasets Instance Dimension Cluster

Aggregation 788 3 7
Spiral 251 3 7
Flame 240 3 2
Diamond9 3000 3 9

Table 2 Parameter Bounds

Datasets Eps Minpts

Aggregation [0.1,0.5] [4,10]
Spiral [0.2,2.1] [4,12]
Flame [0.11,0.8] [4,10]
Diamond9 [0.1,0.5] [4,15]

4.2 The External Cluster Validity Index

External Cluster Validity Index (CVI) evaluates
clustering effectiveness by comparing cluster
assignments to external data like ground truth labels.
When such labels are absent, internal validation
metrics are used, though they have limitations. This
study employs both internal and external CVIs.
External CVIs measure alignment between
clustering results and actual data structure using
metrics like accuracy, Rand Index, Purity, V-
Measure, Homogeneity, and Completeness.

Accuracy
It is a proportion of true data points gathered from the
complete data set. By analyzing the cluster label K
with the actual label C, the data is correctly
clustered.

Rand Index
It is a metric that is used to determine how closely
two data groupings resemble one another. It is often
created by contrasting the clustering with the
benchmark labels [20, 53]. It assesses the extent of
conformity between two data points regarding the
clusters to which they belonged. Given two
clustering’s:

• A true or benchmark clustering label, often
represented as a set of ground truth labels.

• A developed or experimental clustering label,
produced by a clustering algorithm.

RI = +

+ + +

 W: Pairs in the same cluster in both clusterings.
 X: Pairs in different clusters in both clusterings.
 Y: Pairs in the same cluster in the first

clustering, but different in the second.
 Z: Pairs in the same cluster initially, but

different in the second clustering.

Purity Rate
Purity measures how well clustering results match
true class labels. It is defined as:

������= ∑���|��∩ ��|,

 N: total data points
 ��: data points in cluster K
 ti: data points in true class i
 ∣⋅∣: set size
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A purity of 1 indicates perfect clustering (each
cluster contains only one class); lower values imply
more mixed-class clusters.

Homogeneity
The homogeneity metric measures the extent to
which every cluster exclusively contains data points
from an identical class. If a cluster has only one
kind of data point, it is said to be homogenous. The
homogeneity score is a numeric value between 0
and 1, where 1 indicates that all clusters only
include data points from one class. Its formula is

V-Measure
The V-Measure, also referred to as the V-Measure
score or the V-Statistic is a metric used to rate the
accuracy of clustering results [56]. Some of the
challenges associated with V-Measure are solved by
combining homogeneity and completeness. It has a
value range from 0 to 1, with 1 signifying
completeness and perfect homogeneity.

� × (� × �)
=

stated as: where,
+

� = � −
( | )
( )

• H denotes the homogeneity score.
• C denotes the completeness score.

where,
�(�) = −∑� (������(��)) Experimental Results

The MOLO-DBSCAN results are evaluated against
c is the collection of actual labels; item x is the
collection of predicted labels.
H(c) is the entropy of the actual labels

Completeness
This metric evaluates how well each class’s data
point is assigned to a particular cluster [55]. When
all of the data points in the same class are clustered
together, the clustering process is considered
complete. The completeness results fall between 0 to
1, where 1 indicates that every data point belonging
to the identical class is gathered. Its formula is
stated as:

( | )
� = � −

( )

the best results produced by two metaheuristic
algorithms, the MOCUCKOO Search DBSCAN
Algorithm and the MOFIREFLY DBSCAN
Algorithm, in this section. Implementation of the
suggested MOLO-DBSCAN algorithm is done using
Matlab 2021b software. The maximum number of
iterations and population size for each method are set
to 1000 and 30, correspondingly.

The MOCUCKOO-DBSCAN, MOFIREFLY-
DBSCAN, and MOLO-DBSCAN meta-heuristic
algorithms were used to improve the DBSCAN
settings for six different datasets, which are
displayed in Table 3. The parameters being
improved for each dataset and operation are Eps
and M i n p t s . The highlighted parameter values
have been chosen as the optimized parameter values
for the appropriate method and dataset.

• � is the group of actual labels.
• � is the group of predicted labels.
• �(�) is the expected labels’ entropy.
• �(�|�) evaluates the uncertainty of the class
labels provided the clustering placements.
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Table 3 Optimized DBSCAN parameters for six datasets tuned by different
metaheuristic algorithms

Datasets Parameter Values MOCUCKOO-
DBSCAN

MOFIREFLY-
DBSCAN

MOLO-
DBSCAN

Aggregation Eps 0.19 0.4 0.16
Minpts 7 9 8

Spiral Eps 0.25 0.24 0.310
Minpts 5 6 4

Flame Eps 0.27 0.6 0.28
Minpts 5 7 4

Diamond9 Eps 0.1 0.2 0.1
Minpts 10 9 11

(a) (b)

Fig. 1 Plot (a) shows the clustering results for the aggregation data set using theMOLO-DBSCAN
algorithm, while plot (b) displays the density clustering results.
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Table 4 The performance evaluation of multiobjectivemetaheuristic algorithms among
six external indices tested on six datasets for optimized DBSCAN

Dataset External Indices MOCUCKOO-
DBSCAN

MOFIREFLY-
DBSCAN

MOLO-
DBSCAN

Aggregation Accuracy 0.84 0.79 0.99
Rand index 0.9273 0.8936 0.9957
Purity rate 0.8274 0.7843 0.994
Completeness 0.96 0.86 1
Homogeneity 0.97 0.88 1
V-Measure 0.9056 0.889 1

Spiral accuracy 0.8365 0.5288 1
Rand index 0.8907 0.6850 1
Purity rate 0.8910 0.6891 1
Completeness 1 0.98 1
Homogeneity 0.84 0.54 1
V-Measure 0.92 0.6918 1

Flame accuracy 0.94 0.65 0.9583
Rand index 0.9510 0.5406 0.9669
Purity rate 0.983 0.645 0.9917
Completeness 1 0.998 1
Homogeneity 0.9417 0.6371 1
V-Measure 0.97 0.7786 0.9787

Diamond9 accuracy 0.8823 0.6650 0.9927
Rand index 0.9736 0.8512 0.9981
Purity rate 0.8837 0.6657 0.9948
Completeness 0.8887 0.888 0.880
Homogeneity 0.8820 0.7018 0.9933
V-Measure 0.8853 0.7840 0.9377
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(a) (b)
Fig. 2 Plot (a) shows the clustering results for the aggregation data set using the MOCUCKOO-DBSCAN algorithm, while plot (b)
displays the density clustering results.

(a) (b)
Fig. 3 Plot (a) shows the clustering results for the aggregation data set using the MOFIREFLY-
DBSCAN algorithm, while plot (b) displays the density clustering results.
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Fig. 4 Plot (a) shows the clustering results for the spiral data set using the MOLO-DBSCAN algorithm, while
plot (b) displays the density clustering results.

(a) (b)

Fig. 5 Plot (a) shows the clustering results for the spiral data set using theMOCUCKOO-DBSCAN algorithm,
while plot (b) displays the density clustering results.

(a) (b)

Fig. 6 Plot (a) shows the clustering results for the spiral data set using the MOFIREFLY-
DBSCAN algorithm, while plot (b) displays the density clustering results.
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(a) (b)
Fig. 7 Plot (a) shows the clustering results for the flame data set using the MOLO-
DBSCAN algorithm, while plot (b) displays the density clustering results.

(a) (b)
Fig. 8 Plot (a) shows the clustering results for the flame data set using the MOCUCKOO-DBSCAN
algorithm, while plot (b) displays the density clustering results.

(a) (b)
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Fig. 9 Plot (a) shows the clustering results for the flame data set using the MOFIREFLY-
DBSCAN algorithm, while plot (b) displays the density clustering results.

(a) (b)

Fig. 10 Plot (a) shows the clustering results for the diamond9 data set using theMOLO-DBSCAN
algorithm, while plot (b) displays the density clustering results.

(a) (b)

Fig. 11 Plot (a) shows the clustering results for the diamond9 data set using the MOCUCKOO-
DBSCAN algorithm, while plot (b) displays the density clustering results
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.

(a) (b)

Fig. 12 Plot (a) shows the clustering results for the diamond9 data set using the
MOFIREFLY-DBSCAN algorithm, while plot (b) displays the density clustering results.

The results of three different meta-heuristic
algorithms’ evaluations, which were utilized to
improve the DBSCAN clustering method on the
different data sets, are listed in Table 4.
The figures accompanying the tables depict clustering
results from the upgraded DBSCAN algorithm using
three meta-heuristic variants (MOLO-, MOCUCKOO-
,and MOFIREFLY-DBSCAN). Each figure contains
two visuals: the left showing clustered data points and
the right a heat map indicating density, darker shades
represent denser clusters.

Figures (1 - 3) show how the data points in the
aggregation data set cluster into 7 separate groups. Only
the MOLO-DBSCAN as opposed to others is the only
approach that correctly identifies all 7 clusters, with
its heat maps showing clear, compact groupings. On
the spiral dataset, MOLO-DBSCAN again performs
best, yielding accurate, pattern-aligned clusters, while
MOCUCKOO is moderately accurate and

MOFIREFLY is the least effective as seen in Figures
(4 - 6).. Density plots reinforce these findings: high-
density clusters appear darker, low-density clusters
lighter.

In the Flame dataset, MOLO- and MOCUCKOO-
DBSCAN outperform MOFIREFLY in metrics like
completeness and V-measure, generating well-shaped
clusters Figures (7- 9). On the Diamond09 dataset,
MOLO-DBSCAN achieves the highest accuracy
(0.9927), followed by MOCUCKOO and
MOFIREFLY. Rand Index values support these
results, indicating strong clustering similarity,
especially for MOLO-DBSCAN.

Final visualizations depicted in Figures (10 - 12),
clearly indicates that MOLO-DBSCAN forming tight,
accurate clusters, MOCUCKOO showing moderate
performance, and MOFIREFLY failing to reflect the
true data structure.
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(a) (b)

(c) (d)

Fig. 13 The assessment of Completeness, Homogeneity, and V-Measure metrics is conducted on six
different datasets using three distinct algorithms. These datasets are :(a) aggregation dataset (b) spiral
dataset (c) flame dataset (d) diamond9 dataset

a) All three algorithms perform similarly
well across all metrics, with MOLO-
DBSCAN slightly outperforming the
others, especially in Homogeneity and V-
measure.

b) MOLO-DBSCAN again shows higher
performance, with a noticeable drop in
MOFIREFLY-DBSCAN (Completeness
and Homogeneity < 0.6), making it less
reliable in this scenario.

c) All algorithms perform closely, with
MOLO-DBSCAN and MOCUCKOO-
DBSCAN slightly ahead.MOFIREFLY-
DBSCAN shows a small dip.

d) MOLO-DBSCAN consistently delivers
the highest scores across metrics, while
MOFIREFLY-DBSCAN remains weaker
in Homogeneity and V-measure
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5. Case Study

This study employs the DBSCAN algorithm to
cluster the locations of weather stations across
Canada. The primary objective is to identify
groups of weather stations with similar weather
conditions. This task involves spatial data, making
DBSCAN an ideal choice due to its ability to
discover clusters of arbitrary shapes and its
resistance to noise. The data set is extracted from
the Kaggle repository [57].

The data frame comprised 1341 rows and 25
columns. The features incorporated in this study
include Min Temp(T n), Max Temp(T x), and
Mean Temp(T m).After dropping NAN values
from each row of the above features the data set
comprised of 1255 rows and 25 columns.

The longitudes and latitudes in our data frame are
further converted into x/y map projection

coordinates. These map projection coordinates will
serve as attributes for spatially clustering the data
points, in conjunction with temperature
information. The glimpse of various weather
stations in Canada is highlighted in Figure 14.
Afterward, the MOLO-DBSCAN algorithm is
applied to the weather data set which generates
nine clusters with parameter values of Eps = 0.29
and Minpts = 9 by passing temperature and map
coordinates as input to the clustering algorithm.
Nine clusters (Cluster 0–8) and noise points (-1)
were identified, each visualized with distinct
colors Figure 15. Average mean temperature was
calculated for each cluster, revealing spatial
temperature patterns, with details summarized in
Table 5. Cluster 0 showed the highest average
(≈6.24°C), and Cluster 8 the lowest (≈-0.55°C),
indicating warmer and colder regions,
respectively. This clustering highlights regional
temperature similarities among weather stations.

Fig. 14 Different weather stations in Canada plotted on a map
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Table 5 Summary of ClusteringResults for Mean Temperature

Number of Clusters Number of Stations Average Mean Temperature

Cluster # 0 177 6.240

Cluster # 1 22 -0.550

Cluster # 2 8 -2.949

Cluster # 3 250 -13.800

Cluster # 4 53 -4.190

Cluster # 5 319 -15.857

Cluster # 6 6 -22.845

Cluster # 7 9 -7.989

Cluster # 8 16 -4.706

Fig. 15 Temperature trend ofWeather Stations inCanada Clustered atEps = 0.29 andMinpts= 9
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The MOLO-DBSCAN algorithm is applied to the
weather dataset using temperature, precipitation,
and map coordinates as input features, with
parameters set to Eps = 0.48 and MinPts = 10.
The clustering process identifies four distinct
clusters (Cluster 0–3) and labels outliers as noise
(-1). These clusters are visually mapped (Figure
23) and analyzed for precipitation patterns

Table 6 Summary of Clustering Results for
Mean Temperature

Table 6, revealing whether data points within a
cluster share similar precipitation levels.
Precipitation plays a key role in both clustering
and interpretation, enabling spatial identification
of wetter or drier regions and offering insights into
typical weather conditions across clusters. Each
cluster is visually distinguishable on the map, as
depicted in Figure 16.

Number of Clusters Number of Stations Average Mean Temperature Average Mean Precipitation
Cluster # 0 79 7.663 127.332
Cluster # 1 725 -12.496 27.313
Cluster # 2 11 -25.609 10.008
Cluster # 3 14 -9.336 155.790

Fig. 16 Temperature and Precipitation trend of
Weather Stations in Canada Clustered at Eps =
0.48 and Minpts = 10
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6. Conclusion

This study has presented a novel and efficient
approach for optimizing the parame-ters of the
DBSCAN algorithm using the innovative
Multiobjective Lemurs Optimizer Algorithm. The
utilization of a multiobjective optimization
strategy addresses the challenges associated with
tuning DBSCAN parameters, which often involves
finding a delicate balance between density
thresholds and cluster radii, influencing the quality
and efficiency of clustering results. The MOLO
algorithm demonstrated its effective-ness in this
task, offering a powerful and flexible solution for
parameter optimization in the DBSCAN.

The testing findings demonstrated the proposed
approach’s superiority to both manual parameter
adjustment and traditional strategies. The Davies
Bouldin and Cluster Validity Density Involved
Distance indices are employed as the objective
functions that played a significant part in
outcomes correctness by exploiting the
multiobjective character of the lemurs optimizer
algorithm. The proposed approach achieves
improved clustering accuracy while simultaneously
enhancing the computational efficiency of the
DBSCAN algorithm.

This research not only contributes to the field of
clustering and data mining but also underscores
the significance of utilizing advanced optimization
algorithms to handle complex parameter
optimization tasks in machine learning and data
analysis. Furthermore, the insights gained from
this study have broader implications for other
clustering algorithms and optimization problems in
various domains. The adaptability and efficiency
of the MOLO algorithm suggest its potential for

addressing complex optimization challenges
beyond DBSCAN parameter tuning. The success
of this research highlights the importance of
exploring innovative techniques that har-ness the
power of nature-inspired algorithms for solving
real-world problems in data science.

However, it’s critical to recognize this study’s
constraints. The efficiency of the MOLO method
on advanced spatial data sets and in more
complicated clustering conditions should be
explored for additional research despite the
algorithm’s encour-aging results. Another area for
improvement could be to make the MOLO
algorithm more scalable by employing more
objective functions so that it can successfully
handle exceptionally large amounts of data.
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