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 Abstract 

Early and precise detection of rice diseases is vital in preventing losses and 
promoting food security. In this research, we contrast the performance of three 
current CNN architectures—DenseNet121, YOLOv8s, and ConvNeXtBase—on 
a rice disease dataset that contains six different classes. We compare the 
performance of all models based on vital performance indicators such as 
classification accuracy, precision, recall, and validation loss. Our experiments 
demonstrate that DenseNet121 and ConvNeXtBase have competitive accuracy 
levels of up to 82% and 96% on validation data, but YOLOv8s surpasses them 
by a large margin by recording a top-1 accuracy of 99% and top-5 accuracy of 
100% at with very minimal computational cost. This renders YOLOv8s an 
ideal candidate for real-time, resource-limited applications like mobile or edge 
deployment. Contrasted with previous works that usually drew on heavier or less 
precise models for the same tasks, our findings demonstrate the efficacy of 
lightweight object detection models such as YOLOv8s for specialized 
classification contexts. This study not only assists in deepening deep learning 
methodologies for agricultural diagnosis but also the development of efficient and 
scalable solutions for deployment in the field. 
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INTRODUCTION 
Rice (Oryza sativa L.) is a critical food crop 
around the globe and the mainstay of nutrition 
for over half the world's population [1]. It is 
particularly crucial in Asia, with nearly 90% of all 
global consumption, but rice crop production is 
threatened by numerous diseases that can result 
in substantial losses in yield and impact food 
security and livelihood for farmers [2]. These 

bacterial leaf blight (Xanthomonas oryzae), leaf 
blast (Magnaporthe oryzae), brown  
spot (Bipolaris oryzae), leaf Scald and narrow 
brown spot and may be devastating if they are not 
found and controlled at an early stage.  
Conventional methods of detecting diseases are 
dependent on visual examinations by farmers or 
agricultural specialists and are time consuming, 
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subjective, and in many cases not very practical 
for big-scale farming. 
Latest advancements in computer vision and 
deep learning have created new opportunities for 
automated plant disease identification. 
Convolutional Neural Networks (CNNs) have 
proved to be highly successful in image 
classification problems owing to their potential to 
learn high-level features from visual data [3]. Yet, 
using these methods in agriculture raises specific 
challenges, such as restricted and unbalanced 
datasets, high computational expense, and 
variability in disease symptoms because of 
environmental conditions. Most of the current 
CNN models are computationally intensive and 
hence challenging to implement in resource-
limited farming settings. 
To overcome these issues, this research suggests a 
deep learning-based framework for efficient and 
precise rice disease classification using a six-class 
disease dataset which includes 3712 images 
divided in three categories training (2793 
images), validation (489 images) and testing (250 
images) [4].  The work emphasizes data 
preprocessing and augmentation to improve 
model generalization, followed by comparative 
analysis of three state-of-the-art CNN 
architectures: DenseNet121, YOLOv8s, and 
ConvNeXtBase. These models were chosen for 
their singular strengths—DenseNet121 for reuse 
of features, YOLOv8s for real-time performance, 
and ConvNeXtBase for new architectural 
advancements. The performance of each is 
measured with critical metrics like validation loss, 
validation accuracy, precision, recall, F1 score, 
and per-class accuracy. 
In this research we compare the two classification 
models DenseNet121 and ConvNeXtBase with 
YOLOv8s which is a detection and classification 
model, YOLOv8s achieves an exceptional 
accuracy of 99% while maintaining low 
computational requirements, making it highly 
suitable for real-world deployment in agricultural 
settings. The success of this model demonstrates 
the potential of lightweight deep learning 
solutions for precision agriculture, enabling early 
disease detection and reducing crop losses. This 
work adds to the general area of AI-based farming 

by presenting a cost-efficient and scalable 
solution that can be applied to mobile apps, 
drones, and IoT monitoring systems. 
The applied value of this research goes beyond 
rice disease diagnosis, providing a framework that 
can be generalized for other crops and 
agricultural purposes [5]. Potential future 
directions for research might involve multi-modal 
data fusion (integrating RGB, thermal, and 
hyperspectral imaging) and edge AI deployment 
for real-time field analysis [6]. By using advanced 
deep learning methodologies, this work facilitates 
sustainable farming, enabling farmers to make 
informed decisions based on data to optimize 
crop health and productivity. 
 
1. RELATED WORK 
Image-based automatic detection of rice disease 
has been a major area of interest in the past few 
years with the increasing demand for effective, 
scalable, and economical agriculture diagnostics. 
Early work in this area was based mostly on 
handcrafted feature extraction and traditional 
classifiers like SVM or k-NN, which, while being 
quite useful, were not robust and scalable enough 
for practical use [7]. With the arrival of deep 
learning, Convolutional Neural Networks 
(CNNs) are the go-to. Ferentinos [8] applied deep 
CNNs such as VGG and AlexNet for plant 
disease diagnosis, such as rice diseases, and 
achieved encouraging accuracy. Yet, the models 
are computationally intensive and not suited for 
real-time or edge deployment. Hossain et al. [9] 
used a CNN-based system for the classification of 
rice diseases and attained more than 90% 
accuracy although the model did not have the 
capability to localize in space. Likewise, Islam et 
al. [10] used transfer learning with ResNet50 and 
InceptionV3 and obtained satisfactory 
performance but still had huge computational 
cost, which made them less preferable for 
situations involving resource limitations. 
Most existing studies have only addressed 
classification tasks and have not investigated 
recent light-weight object detection architectures 
capable of classifying and localizing plant diseases 
at the same time. Moreover, comparative analysis 
of newer CNN variations or hybrid transformer-
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based CNNs is also lacking. This work fills these 
gaps by comparing three models of state-of-the-art 
architecture—DenseNet121, YOLOv8s, and 
ConvNeXtBase—on a rice disease dataset with six 
classes. 
 
2. RESEARCH METHODOLOGY 
In this study, an end-to-end deep learning 
pipeline was developed to identify and classify 
rice plant diseases from leaf images. As shown in 
Fig. 1, the proposed methodology started with 
pre-processing, where all images were resized to a 
standard resolution and normalized to have 
uniform pixel intensity values [11]. Label 
encoding was used to label images with their 
respective disease classes. To augment the 
diversity of the training set and to minimize 
overfitting, the data augmentation methods 
including rotation, horizontal and vertical 
flipping, brightness change, zooming, and adding 
Gaussian noise were used [12]. This process 
mimicked real-world variability in environmental 
factors and image acquisition conditions. For the 

modelling step, three contemporary deep 
learning frameworks were employed: DenseNet 
due to its frugal feature propagation and lower 
number of parameters; YOLO for its object 
detection in real-time and thus suitability for 
deployment in the field; and ConvNeXtBase, an 
up-to-date convolutional base that integrates the 
power of a conventional CNN and the wisdom 
learned from transformer frameworks [13]. All 
three models were modelled and checked for 
validation over the augmented set under the same 
conditions to prevent any variability in results. 
Model assessment was performed by employing 
metrics including accuracy, precision, recall, F1-
score, and mean Average Precision (mAP), in 
order to measure both classification and 
localization performance [14]. A comparison of 
these models at the final level was done in order 
to ascertain the best balance between detection 
accuracy and computational complexity, 
ultimately establishing the best-performing 
architecture for real-time rice plant disease 
diagnosis. 

 
Fig. 1. Research Process 

 
2.1. Data or Image Processing: 
2.1.1. Image Resolution Verification and 
Standardization: 
To guarantee consistency in training and 
evaluation of models, it is imperative that all 
images within the dataset have the same 
resolution. For this reason, an initial data 
integrity test and image size examination was 
carried out across the rice leaf disease dataset. A 

Python script with the os and PIL (Python 
Imaging Library) packages was utilized to 
systematically iterate through the dataset 
directory, check each image, and establish both 
the minimum and maximum image size [15]. 
The script procedurally goes through every 
subdirectory within the dataset and excludes files 
containing usual image formats (.png,.jpg,.jpeg). 
For each encountered image, there is a two-part 
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operation taken: Firstly, the image undergoes 
verification with the PIL's verify () function 
without reading valid files into memory in case 
it's a broken or invalid one. Secondly, if it passes 
as an accepted image, for the good files, the 
program opens up the file and gathers its width, 
height. These dimensions are compared with 
stored minimum and maximum values, which are 
dynamically updated to determine the overall size 
range in the dataset. 
During this process, any erroneous or corrupt 
images that were unable to be processed are 
logged and counted. This ensures that all images 
employed for training are both structurally valid 
and within expected input size limits. 
When run, the analysis showed that all images 
were correct (no faulty images) and all had the 
same resolution of 640 × 640 pixels. This 
uniformity in size obviates the need for extra 
resizing as part of preprocessing and allows for 
effective batch training for deep models. 
This process not only assists in the verification of 
the dataset but also ensures that the model input 
conforms to architectural specifications, thus 
avoiding dimension-related errors at training and 
enhancing computational efficiency [16]. 
 
2.2. Data Loading and Augmentation 
Visualization: 
To improve the ability of the deep learning 
models to generalize and reduce overfitting, 
image data augmentation was incorporated into 
the training pipeline [17]. Augmentation was 
carried out using the ImageDataGenerator class 
from the TensorFlow Keras library. Prior to 
starting augmentation, the dataset was loaded 
from the given directory structure using a custom-
defined function, and all images were resized 
uniformly. 
A function, load_and_preprocess_data, was 
created to take care of the data loading and 
preprocessing process. This function called the 
ImageDataGenerator with the rescaling value set 
to 1/255, scaling the pixel values from the native 
range of 0–255 into a normalized 0–1 range, 
necessary for stable convergence during training. 
The generator was set to load images from a 
directory organized according to class labels 

(train/ folder), auto-infer the class from 
subdirectory names. Images were resized to a 
target input size of 224×224 pixels, which is 
supported by typical convolutional neural 
network models like DenseNet121, YOLOv8s, 
and ConvNeXtBase. Optimizing training speed 
and memory usage, a batch size of 32 was utilized, 
and the class mode='categorical' configuration 
was enabled to accommodate multi-class 
classification over the six rice leaf disease classes. 
Following successful data loading (2973 images 
from six classes), the research had incorporated a 
function, visualize augmentation, to evaluate 
qualitatively how effective the augmentation 
methods are. A batch of images was picked from 
the generator and shown using Matplotlib. This 
function generated a grid of sample images to 
visually evaluate the diversity brought in via 
augmentation [18]. While the augmentation 
setting in this case was minimal (only rescaling), 
the visualization infrastructure is set up to enable 
such enhancements as random rotation, flipping, 
zooming, and brightness changes in the future. 
By incorporating this augmentation and 
visualization pipeline, the preprocessing stage 
made it possible for the model to be exposed to a 
diverse range of image conditions, more 
realistically modeling real-field conditions where 
manifestations of rice leaf diseases could occur at 
varying sizes, orientations, and illumination. 
 
2.3. CNN Architectures for Rice Disease 
Classification: 
This phase is about choosing and applying 
various CNN architectures depending on the 
research goal. 
a) DenseNet121: A deep CNN model that 
connects each layer to all other layers to 
encourage feature reuse and mitigate vanishing 
gradient issues [19]. 
 
b) YOLOv8s: A real-time object detection 
model that scans whole images in one pass, best 
suited for tasks involving localization and 
classification [20]. 
 
c) ConvNeXtBase: An updated variant of 
CNNs drawing inspiration from transformer-like 
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architecture with enhanced training scalability 
and performance [21]. 
All models are fine-tuned through transfer 
learning with pre-trained weights over ImageNet, 
and then specific dense layers for classification or 
detection depending on the dataset. 
 
2.4. Models Comparison 
The testing of the putative CNN models 
DenseNet121, YOLOv8s, and ConvNeXtBase 
was conducted on the basis of various 
performance measures so that an understanding 
of every model's limitation as well as merit could 
be accessed [22]. Such metrics were precision, 
recall, F1-score, confusion matrix, and training 
time. 
 
3. RESULTS 
3.1. DenseNet121 Analysis 
3.1.1. Analysis of Accuracy and Loss Curves 
The [Fig 2.] illustrates DenseNet121 model 
training and validation performance over 30 
epochs of training. The performance is illustrated 
in two-line plots: 
 
 
 
 

a) Training And Validation Accuracy 
The graph on the Fig. 2(a) shows the behavior of 
the accuracy of the model over epochs on training 
and validation sets. First, the training accuracy 
begins at approximately 0.66 and increases 
steadily, crossing 0.90 at epoch 5 and crossing 
approximately 0.99 at epoch 30. The accuracy of 
validation also increases very quickly during the 
initial epochs to a plateau of 0.96–0.97 after 
epoch 10. The proximity of the training and 
validation accuracy curves, especially after epoch 
10, indicates good generalization performance 
and minimal overfitting. 
 
a) Training & Validation Loss 
The graph in Fig. 2(b) plots the training and 
validation loss curves. The training loss drops 
significantly within the initial epochs, from more 
than 0.9 to less than 0.1 by epoch 15, and to 
almost 0.03 by the final epoch, indicating 
successful learning and convergence. The 
validation loss also starts with a similar trend, but 
stabilizes at epoch 15, with minor fluctuations 
between 0.10 and 0.15, with minor increases in 
subsequent epochs. These fluctuations can be a 
sign of the start of small overfitting [23]. 

 
Fig. 2(a). DenseNet121: Training & Validation Accuracy curve 
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Fig. 2(b). DenseNet121: Training & Validation Loss Curve 

 
3.1.2. Performance Evaluation using 
Confusion Matrix: 
To analyze the performance of the DenseNet121 
model in classifying rice leaf diseases, we obtained 
Precision, Recall, and F1-Score for each class in 
the confusion matrix presented in Fig 3. The 
metrics provide an overall idea about the 
performance of the model in classifying each type 
of disease correctly. 
 
 
 

The metrics are defined as: 
 Precision = TP / (TP + FP) 
 Recall = TP / (TP + FN) 
 F1-Score = 2 × (Precision × Recall) / 
(Precision + Recall) 
TP (True Positives): Correctly predicted instances 
of a class. 
FP (False Positives): Instances incorrectly forecast 
to be of a specific class. 
FN (False Negatives): Actual instances of a class 
incorrectly predicted as some other class. 
 

Class Precision Recall F1-Score 
Bacterial Leaf Blight 1.000 1.000 1.000 
Leaf Scald 1.000 1.000 1.000 
Brown Spot 0.849 0.978 0.909 
Narrow Brown Spot 0.973 1.000 0.986 
Healthy 0.979 0.979 0.979 
Leaf Blast 1.000 0.843 0.915 

Table 1. Per-Class Evaluation of DenseNet121 
 
The DenseNet121 model was able to achieve 
almost perfect recall and precision for most of the 
classes, particularly for Leaf Blast, Leaf Scald, and 
Narrow Brown Spot, with highly accurate 
classification. There was minimal 
misclassification between Brown Spot and Leaf 
Blast that impacted Leaf Blast recall and Brown 
Spot precision to some extent. These could be 
because of visual similarity among symptoms of 
these diseases. To summarize overall model 

performance, macro-averaged metrics were 
calculated: 
 Macro Precision: 0.967 
 Macro Recall: 0.967 
 Macro F1-Score: 0.965 
Overall, the DenseNet121 model demonstrates 
excellent classification capability with good 
generalization capacity to other rice disease 
classes [24]. 
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Fig. 3. DenseNet121 Confusion Matrix 

 
3.2. YOLOv8s Analysis  
3.2.1. Analysis of Accuracy and Loss Curves 
a) Classification Accuracy 
This plot shows in Fig. 4(a), the Top-1 
classification accuracy of YOLOv8s on the 
validation set at training time. The accuracy gets 
significantly better during the early training 
stages, from around 0.90 to 0.96+ by the first 10 
epochs. After some early oscillation, the precision 
stabilizes and is higher than 0.98 from roughly 
epoch 18. The uniformity of high accuracy values 
in the latter half of training indicates high model 
generalization and classification capacity [25]. 
 
b) Classification Loss 
Loss plot shows in Fig. 4(b) the pattern of 
training loss over the 30 epochs. There is a 
dramatic drop in early epochs, from an early 

value above 1.0 to less than 0.2 by epoch 10. The 
loss continues to decrease steadily and plateaus at 
around 0.05 in the final epoch, indicating stable 
learning and convergence. The smooth and 
continuously declining pattern of loss without 
any sign of sudden change implies good 
optimization and minimal overfitting [26]. 
 
c) Final Impression 
The YOLOv8s model converges quickly with 
excellent classification performance in the early 
training phase. The almost-saturation of Top-1 
accuracy and stabilized, low loss suggest that the 
model is well-regularized and highly effective for 
the classification task at hand [27]. This learning 
process assures the model's capability to extract 
discriminative features efficiently in shorter time 
and learn effectively from the dataset. 

 
Fig. 4(a). YOLOv8s: Classification Accuracy Curve 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Mir et al., 2025 | Page 1204 

 
Fig. 4(b). YOLOv8s: Classification Loss Curve 

 
3.2.2. Performance Evaluation using 
Confusion Matrix: 
This confusion matrix indicates the overall 
accuracy of the YOLOv8s model [Fig. 5.] in 
classifying six rice leaf disease classes. True 
positives are represented by the diagonal 
elements, and misclassifications by off-diagonal 
values. The model demonstrates great accuracy 
across all the classes with especially good 
performance on: 

 Bacterial Leaf Blight, Healthy, Leaf 
Scald, and Narrow Brown Spot: all proper 
examples classified correctly or almost correctly. 
Some confusion exists: 
 Brown Spot has 3 misclassifications as 
Healthy. 
 Leaf Blast has 3 occurrences incorrectly 
reported as Brown Spot. 
 

Class Precision Recall F1-Score 
Bacterial Leaf Blight 1.000 1.000 1.000 
Healthy 0.939 0.979 0.959 
Brown Spot 0.915 0.935 0.925 
Narrow Brown Spot 1.000 1.000 1.000 
Leaf Scald 1.000 1.000 1.000 
Leaf Blast 1.000 0.941 0.970 
Table 2. Per-Class Evaluation of YOLOv8s 
 
The YOLOv8s model's confusion matrix 
determining its classification accuracy in six rice 
disease classes. The model possesses excellent 
classification accuracy with almost perfect 
performance in all classes. In particular: 
 Bacterial Leaf Blight, Leaf Scald, and 
Narrow Brown Spot were identified with 100% 
accuracy and recall. 
 There were some slight misclassifications 
of Brown Spot and Leaf Blast, which were often 

confused with the lookalike types of Healthy and 
Brown Spot, respectively. 
Overall performance metrics reflect the stability 
of the YOLOv8s model: 
Macro Precision: 0.976 
Macro Recall: 0.976 
Macro F1-Score: 0.976 
These results validate the accuracy of YOLOv8s 
in precise and generalizable rice leaf disease 
detection, rendering it appropriate for real-time 
agricultural use. 
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Fig. 5. YOLOv8s: Confusion Matrix 

 
3.3. ConvNeXtBase Analysis 
3.3.1. Analysis of Accuracy and Loss Curves 
Fig. 6(a) and Fig. 6(b) shows the training and 
validation performance of the ConvNeXtBase 
model for 30 epochs in terms of accuracy and 
loss. On the left plot, the training accuracy rises 
steadily, beginning from approximately 48% and 
reaching up to around 84% in the last epoch. The 
validation accuracy also remains on a growing 
trend, converging to around 81%, which 
indicates great generalization to novel data and 
smooth learning path. 
The proper plot indicates a corresponding 
reduction in the training and validation loss 

values. The training loss decreases considerably 
from around 1.3 to below 0.4, whereas the 
validation loss decreases from 1.0 to around 0.45. 
Interestingly, the training and validation loss 
curves stay close to one another along the way, 
with very little divergence, meaning that the 
model is not affected by overfitting [28]. 
In combination, these plots illustrate how the 
ConvNeXtBase model can reach high prediction 
performance and convergence efficiency. The 
consistent increase in accuracy and decrease in 
loss over epochs guarantees that the training 
process is stable and effective to the task of rice 
disease classification. 

 
Fig. 6(a). ConvNeXtBase: Training & Validation Accuracy Curve 
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Fig 6(b). ConvNeXtBase: Training & Validation Loss Curve 

 
3.3.2. Performance Evaluation using 
Confusion Matrix: 
To critically examine the accuracy of the model's 
prediction, we have computed Precision, Recall, 
and F1-Score for each class from the confusion 

matrix. These are utilized to quantify the balance 
between the model's ability to correctly classify 
positive samples (recall), avoid false positives 
(precision), and attain overall performance (F1-
score). 

 
Fig. 7. ConvNeXtBase: Confusion Matrix 

 
Confusion matrix of the ConvNeXtBase model 
in Fig. 7., showing its performance for six rice leaf 
disease classes, namely bacterial leaf blight, brown 
spot, healthy, leaf blast, leaf scald, and narrow 
brown spot. The diagonal entries represent 
correct predictions, and off-diagonal entries 
represent misclassifications. The model displays 

high classification accuracy for the majority of the 
classes, especially bacterial leaf blight, brown 
spot, healthy, and narrow brown spot, with 35, 
39, 39, and 34 correctly classified samples 
respectively. The brown spot and leaf blast 
classes, however, display high confusion. More 
precisely, the model misclassified some brown 
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spot samples as leaf blast and bacterial leaf blight, 
and a substantial number of leaf blast samples 
were misclassified as healthy, brown spot, and 
bacterial leaf blight. Leaf scald also experienced 
low confusion, with limited samples misclassified 
as healthy and leaf blast. These misclassifications 
reflect symptom similarity between some of the 
diseases, which could compromise the 
discriminability of the model's performance. 
However, the ConvNeXtBase model achieved 
solid overall performance, which justifies its 
ability for plant disease classification, with room 
for improvement in discriminating visually 
similar disease classes. 
 
Macro Precision: 0.837 
Macro Recall: 0.887 
Macro F1-Score: 0.859 
These macro-averaged values indicate strong 
overall performance of the ConvNeXtBase model 
across all disease categories. 
 
Table 3 presents the ConvNeXtBase model's 
performance on six categories of rice leaf diseases 

with precision, recall, and F1-score. The model 
performs best in classifying leaf scald with a 
precision of 0.969 and an F1-score of 0.954, 
reflecting highly precise predictions. Narrow 
brown spot is also well classified with an F1-score 
of 0.931. Bacterial leaf blight achieves flawless 
recall (1.000), though at relatively lower precision 
of 0.761, indicating some false positives. The 
healthy class is identified with very high recall 
(0.886), though precision falls to 0.765 due to 
some misclassifications. Brown spot and leaf blast 
perform most poorly, with F1-scores of 0.795 and 
0.786 respectively, indicating the model's struggle 
to separate them distinctly. These outcomes 
suggest that the model works optimally with clear 
disease characteristics but not with visually 
identical symptom classes. Generally, the 
ConvNeXtBase model provides solid 
classification performance with potential for 
further improvement in class differentiation at 
the finer level. 
 

Class Precision  Recall F1-Score  
Bacterial Leaf Blight 0.761 1.000 0.864 

Brown Spot 0.825 0.767 0.795 
Healthy 0.765 0.886 0.821 
Leaf Blast 0.786 0.786 0.786 
Leaf Scald 0.969 0.939 0.954 
Narrow Brown Spot 0.919 0.944 0.931 
Table 3. Per-Class Evaluation of ConvNeXtBase 
 
4. COMPARISION 
4.1. Comparative Analysis Across Classes 
A comparative performance analysis of three 
models DenseNet121, YOLOv8, and 
ConvNeXtBase according to precision, recall, 
and F1-score on six classes of rice leaf diseases is 
shown in Fig 8. The upper chart indicates that 
DenseNet121 and YOLOv8 have perfect or close-
to-perfect precision in the majority of the classes, 
especially performing exceptionally well in 
Bacterial Leaf Blight, Leaf Scald, and Narrow 
Brown Spot. ConvNeXtBase, although it 
presents competitive performance in some classes 
such as Leaf Scald and Narrow Brown Spot, is 

behind in others such as Brown Spot and Leaf 
Blast. 
In the middle chart showing recall, YOLOv8 
once more presents high consistency in all classes, 
even performing better than DenseNet121 in 
Leaf Blast. ConvNeXtBase, however, has lower 
recall, particularly for the Brown Spot and Leaf 
Blast classes, indicating difficulty in being able to 
identify all instances of those diseases. 
The lower plot consolidates F1-scores, again 
supporting the conclusions from the first two 
metrics. YOLOv8 posts the overall highest F1 
performance across all disease classes with a 
balance of high precision and recall. 
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DenseNet121 is also very strong, particularly in 
Leaf Scald and Narrow Brown Spot. 
ConvNeXtBase has comparatively lower F1-
scores for many of the disease classes, suggesting 
the need for further tuning of its classification 
ability. As a whole, the figure emphasizes 
YOLOv8 as the strongest model for accurate and 
balanced disease classification in all the metrics 
considered. Comparison of DenseNet121, 

YOLOv8s, and ConvNeXtBase training times is 
shown in Fig 9. YOLOv8s has the minimum 
training time, so it can be used in real-time 
applications, while ConvNeXtBase, which has a 
longer training time, can provide greater 
accuracy. DenseNet121 balances between the 
two. These findings inform model choice 
depending on computational limitation as well as 
task demands. 

Fig 8. Comparative Evaluation Across Classes 
 
Comparison of DenseNet121, YOLOv8s, and 
ConvNeXtBase training times is shown in Fig. 9. 
YOLOv8s has the minimum training time, so it 
can be used in real-time applications, while 

ConvNeXtBase, which has a longer training time, 
can provide greater accuracy. DenseNet121 
balances between the two. These findings inform 
model choice depending on computational 
limitation as well as task demands. 

 
Fig. 9. Model Training Time Comparison 
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4.2. Comparative Analysis of Performance 
Metrics Between Models: 
The heatmap "Performance Metrics Comparison" 
compares three deep learning models 
ConvNeXtBase, DenseNet121, and YOLOv8 on 
several classes of diseases in plant pathology, 
employing F1-score, precision, and recall as main 
metrics shown in Fig. 10. 
4.2.1. General Trends in Performance: 

YOLOv8 posts perfect or near-perfect (1.0) scores 
on the majority of classes (e.g., Bacterial, Leaf 
Scald, Narrow Brown), reflecting better detection 
performance.                                                                                                
DenseNet121 is good but falls a bit behind in 
Brown Spot (Recall: 0.72) and Leaf Blast (Recall: 
0.65), implying issues with false negatives. 
ConvNeXtBase is inconsistent, performing very 
well in Leaf Scald (F1: 0.91) but doing poorly in 
Leaf Blast (F1: 0.71), perhaps because it's sensitive 
to texture-based features. 

 
Fig. 10. Performance Metrics Comparison Heatmap 

 
5. CONCLUSION 
The comparison of the three deep learning 
models shows differing performance profiles in 
plant disease detection. YOLOv8s is the best-
performing model, with highest precision, recall, 
and F1-scores in all but one disease category. Its 
better detection performance is shown through 
almost perfect classification rates (35/35 correct 
for bacterial leaf blight) and fast training times, 
making it well-suited for effective deployment in 
real-world scenarios. DenseNet121 provides a 
compromise solution, a decent accuracy with a 
moderate level of computational demands, albeit 
with some occasional confusion between visually 
related diseases such as brown spot and leaf blast. 
Its ability to be resource-friendly makes it a 

suitable candidate for edge device deployment. 
ConvNeXtBase provides more inconsistent 
outcomes, showing difficulty in differentiating 
complex diseases (especially between leaf blast 
and healthy leaves) but taking much longer to 
train. Yet, its ability to diagnose texture-based 
conditions such as leaf scald indicates promise for 
purpose-designed applications. These results as a 
whole serve to emphasize the need for choosing 
models in line with particular operating criteria, 
YOLOv8 being the best fit for most high-
precision applications, DenseNet121 providing a 
viable compromise for environments where 
resources are limited, and ConvNeXtBase 
holding promise for specific applications. 
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