
Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1163

TASK SYNCHRONIZATION IN WIRELESS DISTRIBUTED NETWORKS
USING A SHARED-CLOCK ARCHITECTURE

Muhammad Amir1, Bilal Ur Rehman*2, Kifayat Ullah3, Muhammad Farooq4,

Humayun Shahid5, Muhammad Iftikhar Khan6

1, *2,3,4,6Department of Electrical Engineering, University of Engineering and Technology, Peshawar, KPK,
Pakistan.

5Department of Telecommunication Engineering, University of Engineering & Technology, Taxila, Pakistan

DOI: https://doi. org/10.5281/zenodo.16568400

 Abstract

Safety-critical embedded systems should exhibit robustness and fault tolerance.
Shared-clock (S-C) scheduling architectures have been developed to encapsulate the
above qualities in resource-constrained distributed systems which employ a time-
triggered (TT) architecture. Previous work in this area has targeted ‘wired’
communication mediums (e. g. local connections based on CAN). In this paper
we begin to consider whether S-C architecture can be adapted for use in wireless
environments. This work is at an early stage and the main aims of the paper are:
(1) to explain the operation of wired S-C designs; (2) to summarize the problems
which are faced when attempting to use a S-C algorithm in a wireless
environment; (3) to present some initial suggestions for ways in which a S-C
algorithm might be adapted for use in a wireless environment; (4) to describe the
design of a testbed which will be used to support further research in this area.

Keywords
Shared-Clock, Wireless, Task
Synchronization

Article History
Received on 29 April 2025
Accepted on 14 July 2025
Published on 29 July 2025

Copyright @Author
Corresponding Author: *
Bilal Ur Rehman

INTRODUCTION
Shared-clock scheduling schemes [1-3] have been
developed to address three major problems faced
during the development of multiprocessor
distributed applications.
Those three problems are as follows:
1. Clock Synchronization among nodes in the
system.
2. Error-free data communication between nodes.
3. Detection of errors on nodes in the network.
Figure 1 shows a multiprocessor arrangement in
which we can see one master node connected to N
slave nodes through a certain arrangement either
locally, through UART RS232/RS485 or through a
CAN bus) [1]. In this arrangement the master node
has an accurate clock which may (if required) take
the form of a temperature compensated crystal
oscillator (TCXO) or oven-controlled crystal

oscillator (OCXO). The use of a TXCO or OCXO
[4-5] is important in this case as we need a stable
frequency to run the master node. A single timer is
responsible for running the task scheduler on the
master node. Apart from running its own scheduler
the master node also generates “tick” messages.
These tick messages are used to (i) drive the
schedulers on the slave nodes, and (ii) transfer data
to the slave nodes. The slave nodes in this
arrangement have their own (low-cost) oscillators,
and their own schedulers: however, schedulers on
the slave are only updated when a tick message is
received. The tick messages include a slave ID: only
the slave with this ID will send back an
acknowledgement message to the master. Using
unique slave IDs ensures that although all the slaves
share a common communication channel only one
slave will send an acknowledge message.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1164

Figure 1: Shared Clock Scheduling Scheme

The scheme outlined above (and summarized in
Figure 2) ensures that tasks running on the master
and slave nodes are in sync. This arrangement
requires transparent communication of tick messages
from the master node and acknowledgement
messages from slaves in order to work. The algorithm
(implicitly) assumes that – under normal
circumstances – all messages transmitted by the

master will be received by all slaves and that all
messages sent by individual slaves will be received by
the master. If messages are lost then (in a basic wired
design) the network will simply “fail silently”. It is
clear that attempting to implement such an
algorithm in a wireless environment will immediately
present a number of challenges. These issues are
discussed in Section 2.

Figure 2: Shared Clock Scheduling Scheme block diagram

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1165

Issues with wireless implementation
Shared-clock scheduling scheme as described works
on the mutual transmission of tick messages from
the master node and in response acknowledgement
messages from the addressed slave nodes. Even
while working on a wired medium there is a
possibility that a particular slave node may not
receive a tick message in turn this will cause an
imbalance of scheduler tick calculations between the
master and that slave node. On the other hand
when the master does not receive an
acknowledgement message from that particular slave
the master will try to either switch to a backup slave,
enter a safe state or shutdown the entire network.
Non reception of acknowledgment message can be a
cause of slave node failure after last
acknowledgement was sent by that particular slave.
The master node in this case will notice the
missing/failed slave after some time known as failure
detection time [6]. Now this kind of situation
hampers the normal working of such scheme. For
the working of such scheduling scheme it is
immensely important that the
transmission/reception of messages is error free and
ideally instantaneous without any delay. Before
implementing on a wireless platform in its original
form it must be kept in perspective that wireless
media is prone to adverse external factors. These
external factors will seriously impinge on the
performance of the system. We review such factors
in this section.

Electromagnetic Interference (EMI)
Wireless communication systems experience today
unprecedented growth. The number of systems
increases almost exponentially. In view of very
limited spectrum available and large concentration of
system over limited space (for example, in dense
urban or indoor environments), the potential for
mutual interference is tremendous [7]. The EMI
effect is the major cause of disruption in wireless
data transfer between multiple nodes in a distributed
system. EMI or RFI may be broadly categorized into
two types; narrowband and broadband. Narrowband
interference usually arises from intentional
transmissions such as radio and TV stations, pager
transmitters, cell phones, etc. Broadband
interference usually comes from incidental radio

frequency emitters. These include electric power
transmission lines, electric motors, thermostats, bug
zappers, etc. Anywhere electrical power is being
turned off and on rapidly is a potential source.
Included in this category are computers and other
digital equipment as well as televisions. The rich
harmonic content of these devices means that they
can interfere over a very broad spectrum. The
coupling arrangement of interference to a wireless
system can be shown with three different
components.
 Source of Interference
(Electrical and Electronic devices / other
transmitters and radiating systems) The source may
be something more exotic such as a lightning strike,
electrostatic discharge (ESD)
 Coupling path
(Air for wireless communication)
 Receptor/Sink
(The communication channel itself plus all the
receivers)
In another way we can regard noise as unwanted
(and usually uncontrollable) electrical signals
interfering with the desired signal. Unwanted signals
arise from a variety of sources, both natural and
artificial. Artificial sources include noise from
automobile ignition circuits, commutator sparking in
electric motors, 60-cycle hum, and signals from other
communication systems. Numerous artificial sources
result from harmonics of the natural frequency. For
example, spark plugs firing in car engines have a
frequency on the order of thousands of rpm;
consequently, although the fundamental frequency is
less than 1 kHz, the energy emitted by this excitation
is so strong that high-order harmonics can cause
significant interference in radio systems. Natural
sources of noise include circuit noise, atmospheric
disturbances and extraterrestrial radiation [8]. The
above-mentioned phenomena can introduce certain
impairments which can cause the data transmitted
wirelessly to be either corrupted or lost. Regardless
of the source, interference prevention is and has
been of a key importance in wireless systems. In the
case of wireless implementation of TTC-SCSS,
interference avoidance will have a prime importance.
Because if the data sent from the master node
towards the slave nodes is changed or lost due to the
effect of discrete or continuous EMI, then it is going

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1166

to be difficult to operate the system in a proper way.
If the designed system is prone to continuous
residual EMI then it is going to be very difficult to
maintain the integrity of the system throughout.
Measures have to be taken in this regard to either
reduce the effects of interference in the vicinity of
the system or changes had to be done to the system
structure to make it less responsive or ignore the
sources of interference.

Propagation Delay
To reduce the impact of propagation delay on system
performance, it is usual to include a guard-time
between time slots. No signal is transmitted during
this guard time, and as a result, much of the harmful
effect of propagation delay is avoided [9]. In our case
propagation delay is going to be the time taken by
the tick message to travel from the master node and
reach a slave node plus the time taken by the slave
acknowledgment message to travel from that
particular slave node and reach the master node
considering the processing times of the message on
both nodes as negligible. Propagation delay can
cause a problem when it is greater than the tick
interval. In a case like this the master node will not
receive the acknowledge message and thus will
hamper the scheduler operation. It is a remote
possibility that such a scenario will occur but
immense care should be taken during the topology
design of such system. For that purpose the slave
nodes should be kept in such an acceptable
proximity in order to maintain delay free topology
and keep the transmission and reception times well
inbounds of the tick intervals.

Multi-path Fading
In wireless communications [10], the presence of
reflectors in the environment surrounding a
transmitter and receiver create multiple paths that a
transmitted signal can traverse. As a result, the
receiver sees the superposition of multiple copies of
the transmitted signal, each traversing a different
path. Each signal copy will experience differences in
attenuation, delay and phase shift while traveling
from the source to the receiver. This can result in
either constructive or destructive interference,
amplifying or attenuating the signal power seen at
the receiver. Strong destructive interference is

frequently referred to as a deep fade and may result
in temporary failure of communication due to a
severe drop in the channel signal-to-noise ratio. A
common example of multi-path fading is the
experience of stopping at a traffic light and hearing
an FM broadcast degenerate into static, while the
signal is re-acquired if the vehicle moves only a
fraction of a meter. The loss of the broadcast is
caused by the vehicle stopping at a point where the
signal experienced severe destructive interference.
Cellular phones can also exhibit similar momentary
fades. In implementing a shared clock scheme on
wireless platform these factors should be kept in
mind in order to prevent interferences bad for the
system performance and keep the signal strength in
operating range.

Non-line-of-sight propagation
When only scattered waves arrive at the terminal, the
signal envelope shows fast fading represented by a
Rayleigh distribution against time. Such class of
propagation channels is called non-line-of-sight
(NLOS) [11]. Non-line-of-sight (NLOS) or near-line-
of-sight is a term used to describe radio transmission
across a path that is partially obstructed, usually by a
physical object in the Fresnel zone. Many types of
radio transmissions depend, to varying degrees, on
line of sight between the transmitter and receiver.
Obstacles that commonly cause NLOS conditions
include buildings, trees, hills, mountains, and, in
some cases, high voltage electric power lines. Some
of these obstructions reflect certain radio
frequencies, while some simply absorb or garble the
signals; but, in either case, they limit the use of many
types of radio transmissions, including most of those
used for Wi-Fi. The acronym NLOS has become
more popular in the context of wireless local area
networks (WLANs) such as WiFi and WiMax
because the capability of such links to provide a
reasonable level of NLOS coverage greatly improves
their marketability and versatility in the typical urban
environments in which they are most frequently
used. The influence of a visual obstruction on a
NLOS link may be anything from negligible to
complete suppression. An example might apply to a
LOS path between a television broadcast antenna
and a roof mounted receiving antenna. If a cloud
passed between the antennas the link could actually

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1167

become NLOS but the quality of the radio channel
could be virtually unaffected. If, instead, a large
building was constructed in the path making it
NLOS, the channel may be impossible to receive.
NLOS links may either be simplex (transmission is in
one direction only), duplex (transmission is in both
directions simultaneously) or half-duplex
(transmission is possible in both directions but not
simultaneously). Under normal conditions all radio
links including NLOS are reciprocal which means
that the effects of the propagation conditions on the
radio channel are identical whether it operates in
simplex, duplex or half-duplex [11].
If the above-mentioned adverse effects on the
wireless connectivity scheme are not taken into
account and we implement the shared-clock system
in its original form, the system performance will be
extremely poor. So it is of the utmost importance
that we first make the system able to deal with any
unintended development and then implement it on
a wireless platform. The following sections
specifically deal with such occurrences.

Things that could go wrong
Shared clock architecture in a wired environment
relies on a periodic exchange of messages between a
designated master node and its subservient slave
nodes. The reliability of the scheme depends upon
the highest degree of communicational integrity. On
a wired medium the performance of the system is
high but even still the periodicity of massage
exchange can get compromised, making the system’s
behavior erratic. Now in order to implement the
scheme wirelessly enhances the probability of
communicational errors, as of now the
communication channel is more exposed to certain
impairments (Noise, EMI etc). Here we list some of
the most important things to take care of in order to
keep the system’s integrity intact while the nodes
communicate wirelessly.

List of Factors:
 Master node fails.
 A single Slave node fails.
 Multiple Slaves fail.
 Slave node does not receive a tick message from
Master node.

 Master node does not receive an acknowledgment
message from Slave node.

Countering the above factors in a wireless
environment will definitely increase the reliability
and continuous performance of the system. We will
discuss some of the ways in which these factors can
be dealt with one by one.

Master Node fails
If for any reason the master node in the network
fails, for the sake of redundancy it is feasible to keep
a backup master. In the event of master node failure
the backup master should take over, reset the
network, establish communication with the slaves
and start running its own and slave schedulers as
before. If we do not want to reset the entire network
and do not want to lose time while doing that,
another alternative that we can use is to run the
network with two running master nodes with
independent power supplies but same oscillator
module. In this case if one of the two fails the other
keeps on running the system and there is going to be
no need of resetting the system or re-establishment of
communication with the slave nodes. This will
impinge on the power consumption of the system
though but for a safety critical application it should
be acceptable.

A single Slave Node fails
If for any reason a single slave node in the network
fails, for the sake of redundancy it is feasible to keep
a backup slave. The backup slave should be switched
ON which will keep on running the system.

Multiple Slaves fail
The procedure used for the failure of a single slave
can be applied for a multiple slave failure or if not
possible we may have to reconstitute the network
and jump-start it again. But it is highly unlikely that
a situation will arise that multiple slaves will fail
simultaneously and create such a chaotic scenario.

Slave node does not receive a tick message from
master node
In our design we use two different interrupt service
routines (ISRs) on the slave nodes. One is triggered
by the UART interrupt, which is always used in

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1168

normal operation. The second ISR is triggered by
the timer 2 overflow on the slave. As long as the
communication is fine and no tick messages are lost
the slave is triggered by the UART interrupts
through the tick messages sent by the master node
and which in turn updates the slave schedulers for
task performance. The timer 2 triggered ISR
remains dormant at this time. The timer 2 on the
slave node is setup (stopped and loaded with
appropriate value for overflow) at the start inside the
UART interrupted ISR and before leaving the
UART interrupted ISR the timer is started. So if the
slave does not get triggered by the arrival of a tick
message through the UART, the previous tick would
have started the timer on the slave and will
automatically update the slave scheduler as both ISRs
use the same scheduler update function. If after a
lost tick another tick arrives this will make the
UART triggered ISR to again stop the timer, load it
again with the appropriate value, update the
scheduler and before leaving the ISR will start the
timer in case another tick goes missing. If a
succession of tick messages get lost and are not
received by the slave, the timer 2 ISR will take over
and automatically update the slave scheduler until
the communication is restored or until the master
resets the network.

Master node does not receive an ack-message from a
slave node
If the master node does not receive an
acknowledgement from a slave it sends the next tick
message instead of showing a network error. If the
problem with the reception is brief and it goes away
the master node keeps on working as normal and
shows no error. But if the problem persists for more
than 100 ticks or any specified number of ticks and
no acknowledgement message returns back then the
master node shows network error and takes
appropriate action.

In the next section we give the schematic of the
testbed that is used for simulating a S-C wireless
environment. This testbed is designed as such that
all the slave nodes have individual CAN connections
with the master node, so it is very easy to inject
controlled periodic faults into each CAN cable.

Schematics of wireless testbed
As first steps we have tested the software guidelines
given in this paper for the wireless implementation
of shared-clock scheme on RS-232 and RS-485
protocol based wired networks, these guidelines are
applicable to any communication protocol used for
shared-clock architecture. As we know an RS-232
protocol supports serial communication between
only two nodes having single UARTS (one master
and one slave). Communication between one master
and several slaves can be achieved using RS-232
protocol, but for that we should either use
microcontrollers with multiple UARTS or use
external UARTS with single UART controllers.
The same case is with RS-485 protocol, this protocol
supports a multi-drop system means more than 2
nodes (one master/several slaves) individually having
one UART each. But the UART based RS-232 and
RS-485 protocols didn’t gave us a feeling of a wired
type wireless layout. So we came up with the design
schematic of a wired system testbed using shared-
clock architecture that feels more like a wireless
implementation schematic will behave and look.
The system consists of 5 nodes (1 master node and 4
slave nodes. CAN protocol [12] is used for
communication between the master and slave nodes.
The topology of the network is kept as Star as shown
in Figure 3. Even though the system is still wired, in
this star topology the master node behaves exactly
like a wireless transceiver beacon that transmits or
broadcasts tick-messages intended for a particular
slave or intended for all slaves. This beacon also
receives acknowledgment messages from the slaves
through their transmissions.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1169

Figure 3: Testbed schematic in star topology connected via CAN

The master node used here is a Philips LPC-2294
microcontroller [13] on an Olimex LPC-E2294 rev. B
development board [14]. The LPC-2294 has a
support for 4 CAN interfaces on the board. This
means that the master node can communicate with 4
different slaves simultaneously and does not need
any external peripherals for adding more interfaces
as such in the case of testbeds discussed earlier. This
approach reduces the code size and ultimately
reduces CPU power consumption which is vital for
such resource constrained environments. 4 slaves
are connected to the master node through 4 CAN
interfaces. The slaves are Philips LPC-2129’s
microcontrollers [13] on Olimex LPC-P212X-B
development boards [14], each of whom can support
2 CAN interfaces (we use only one of them). The
idea here is to simulate the scenarios that emanate in
a wireless environment using a wired setup and then
apply the developed guidelines completely on a
wireless platform.
In this paper the ideas and software guidelines we
tested are given in various listings as a part of the
ongoing research. The software guidelines adopted
for wireless transition listed in this paper are for the
RS-485 protocol-based system that we tested and are
given in this paper for one reason only, to make the
reader easily understand what we are trying to
achieve. In Section 5 we will elaborate on tackling
potential message losses in the system in either
direction and provide evasive software strategies to
avoid system failure.

Tackling Message Loss
Master to Slave
The description in sub section 3. 4 gives the remedy
for tick messages lost when sent by the master node.
The listed code sample (Listing 1) and block diagram
(Figure 4) enhances the understanding further and
shows how a slave node will cope with such a
situation and automatically update its scheduler in
the absence of tick messages.

/*--*-
Main Slave ISR (triggered through UART interrupts)
-*--*/
void SCU_B_SLAVE_Update(void)
interrupt INTERRUPT_UART_Rx_Tx
{
tByte Index;

if (RI == 1) // Must check the Receive Interrupt flag.
{
// Timer 2 has'nt been started in the first place

TR2 = 0;// Stop Timer 2
ET2 = 0;// Timer 2 interrupt is disabled
TH2 = 0xEC; // load timer 2 high byte
TL2 = 0x78; // load timer 2 low byte

// Default
Network_error_pin = NO_NETWORK_ERROR;

// Two-byte messages are sent (Ack) and received
(Tick)

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1170

// it takes two scheduler ticks to process each
message
// Keep track of the current byte
if (Message_byte_G == 0)
 {
 Message_byte_G = 1;
 }
else
 {
Message_byte_G = 0;
 }
// Check tick data - send ack if necessary
// 'START' message will only be sent after a 'time
out'

if (SCU_B_SLAVE_Process_Tick_Message() ==
SLAVE_ID)
 {
SCU_B_SLAVE_Send_Ack_Message_To_Master();

// Feed the watchdog ONLY when a
// *relevant* message is received
// (noise on the bus, etc, will not stop the
// watchdog.)
// START messages will NOT refresh the slave
// Must talk to every slave at regular intervals
SCU_B_SLAVE_Watchdog_Refresh();
}
// NOTE: calculations are in *TICKS* (not
milliseconds)
for (Index = 0; Index < SCH_MAX_TASKS;
Index++)
{
// Check if there is a task at this location
if (SCH_tasks_G[Index]. pTask)
 {
 if (SCH_tasks_G[Index]. Delay == 0)
{
// The task is due to run (Set the run flag)
SCH_tasks_G[Index]. RunMe = 1;
if (SCH_tasks_G[Index]. Period)
 {
 // Schedule periodic tasks to run again
 SCH_tasks_G[Index]. Delay =
 SCH_tasks_G[Index]. Period;
 }
}
 else

{
// Not yet ready to run
 // just decrement the delay
SCH_tasks_G[Index]. Delay -= 1;
}
 }
}
 RI = 0;// Reset the Receive Interrupt flag
 }
else
 {

// ISR call was triggered by Transmit Interrupt flag,
// after last character was sent

// RS485_Tx_Enable flag is reset here
RS485_Tx_Enable = 0;

TI = 0;// Must clear the Transmit Interrupt flag

}
TR2 = 1; // Start Timer 2
ET2 = 1; // Timer 2 interrupt is enabled
}

Listing 1: Code for main ISR assembly on any Slave
in the network
The code in listing 1 is a scheduler update function
which increments the tick count on the slave when a
tick message has been received through the UART.
In our design listing 1 is considered as the main ISR
on the slave node. The main ISR is repeatedly called
when the communication between master and slave
is fine and no tick messages are lost. The main ISR
embeds initialization controls of a second ISR that is
also used on the slave node in conjunction with the
main ISR. As clear from listing 1, when the main
ISR is triggered by a UART interrupt through the
arrival of a tick message, a timer (timer 2) on the
slave node is stopped (Which was not even started at
the power up time of the network) and loaded with
an appropriate value exactly equal to the tick interval
used in the system.
A tick interval is the time between two consecutive
tick messages sent by the master node. The main
ISR then goes forth and checks the contents of the
message, sends an acknowledgment message to the
master node, updates the slave scheduler by

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1171

incrementing the tick count on the slave (essential
for synchronized task performance) and at the end
starts the timer and enables its overflow interrupt.
Now as evident the timer 2 on the slave is being
initialized a step back from the main tick interval.
The arrival of the next tick interval will stop the
timer again and do all the process once more and
repeatedly as long as the communication between
the master and slave is fine and no tick message is
lost. The timer 2 overflow triggers an alternate ISR,
which we call here the dormant ISR, as it is always
dormant and not used when the communication is
fine. In an event when a tick message is lost, the
main ISR cannot get triggered through the UART.
In previous designs if an event like this happened, in
such a situation the slave node was not able to reply
with an acknowledgement message as it didn’t
received any tick message. So the master node after
not receiving a reply from the slave would reset the
system immediately.
This behavior is not acceptable if the system is
working in wireless environment, as we know the
probability of massage loss in wireless arena is much
higher, in such a situation the system will keep on
resetting all the time and prove catastrophically
impaired for the performance of a safety critical
application. The dormant ISR is used here in order
to make the operation smooth and flexible. So when
a tick message is lost the slave’s main ISR can’t get
triggered through UART. But timer 2 on the slave

was started through the last received tick message.
When timer 2 overflows it generates an interrupt
and triggers the dormant ISR. The dormant ISR is
used for the automatic update of the slave scheduler.
Listing 2 specifies the code for the dormant ISR. In
our present design the dormant ISR does not sends
an acknowledgment message as it does not know
about the contents of the tick message. If successive
tick messages are lost the slave scheduler gets
automatically updated through timer 2 overflow
interrupts. When communication gets better after
the loss of some successive or single tick messages,
the arrival of the next tick message will trigger the
main ISR on the slave through the UART, again
stopping the timer, taking the ISR it was using back
into dormant state, keep on updating the scheduler
and sending acknowledgment messages through the
main ISR as long as successive tick messages from the
master are received by the slave without loss. The
probability of task de-synchronization among the
master and slave(s) for a 1 to 100 tick messages lost is
near to zero. Figure 4 gives a block diagram
explanation of the procedure we discussed above.
For more than 100 tick messages lost and how the
master node should react if the slave is running on
automatic updates through the dormant ISR and do
not receive any acknowledgments, the system adapts
another mechanism that is explained in the next sub-
section.

Figure 4: Active and Dormant ISR functionality

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1172

/*---*-
Dormant Slave ISR (triggered through timer 2
interrupts)
-*---*/
void SCU_B_SLAVE_Update_T2(void)
interrupt INTERRUPT_Timer_2_Overflow
 {
tByte Index;

if (RI == 0)// Must check the Receive Interrupt flag
 {

TF2 = 0;// Must manually clear timer 2 overflow
//interrupt flag
 // Default
Network_error_pin = NETWORK_ERROR;
SCU_B_SLAVE_Watchdog_Refresh(); //refresh the
watchdog

// NOTE: calculations are in *TICKS* (not
milliseconds)
for (Index = 0; Index < SCH_MAX_TASKS;
Index++)
{
// Check if there is a task at this location
if (SCH_tasks_G[Index]. pTask)
 {
 if (SCH_tasks_G[Index]. Delay == 0)
{
 // The task is due to run (Set the task run flag)
SCH_tasks_G[Index]. RunMe = 1;
if (SCH_tasks_G[Index]. Period)
 {
 // Schedule periodic tasks to run again
 SCH_tasks_G[Index]. Delay =
 SCH_tasks_G[Index]. Period;
 }
}
 else
{
// Not yet ready to run the task:
// just decrement the task delay
SCH_tasks_G[Index]. Delay -= 1;
}
}
}
}

}
Listing 2: Code for dormant ISR assembly on any
Slave in the network

Slave to Master
On a wireless platform there also arises a possibility
that some of the acknowledgment messages from the
slave(s) will not reach the master node and are going
to be lost. The reason for that can be a slave loss or
interference. If a slave is lost the master will try to
switch over to a backup slave, if a backup slave is not
available the master node will shut down the
network for maintenance. But if message loss is due
to interference or some other phenomena impinging
on the communication channel, in our design the
master node has a window of 100 tick elapses. What
this means is that when the master node sends a tick
message it waits for the acknowledgment to that
message from a particular slave. If the
acknowledgment message does not arrive, the master
node increments the tick elapse counter by 1 and
sends another tick message. If a slave node replies to
the second tick message the master node decrements
the tick elapse counter to zero. There are two
reasons why an acknowledgment message does not
arrive on the master node. First it is possible that a
slave node didn’t receive a particular tick message
from the master node. Secondly due to interference
it was lost inside the communication channel. The
tick elapse counter on the master node allows 100
transmissions of tick messages for 100 successive
lapses of acknowledgment messages. After the
overflow of the tick elapse counter the master node
takes evasive action by either switching to backup
slave or shutting down the system for maintenance.
If the topology of the system is kept symmetrical and
slaves are operational there is a high probability that
the communication is going to restore inside the
time taken by 100 tick elapses. Time calculation for
100 tick elapses can be done through a simple
equation given as follows,

T = ti x 100 (1)
Were
T = time taken by 100 tick elapses.
ti = tick interval.
So if tick interval is 1ms, 100 tick elapses will take 0.
1 seconds and if tick interval is kept at 5ms, 100 tick

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1173

elapses will take half a second (0. 5 seconds). Figure
4 here gives a block diagram explanation of the
preceding sub-sections and code listing 3 gives code
example for sub section 5. 2.

/*--*-
Main Master ISR (triggered by timer 2 overflows)
-*--*/
void SCU_B_MASTER_Update_T2(void)
interrupt INTERRUPT_Timer_2_Overflow
 {
tByte Task_index;
tByte Previous_slave_index;
static tByte tick_elapse = 0;

TF2 = 0; // Must manually clear timer 2 overflow
 //interrupt flag

// Refresh the watchdog
SCU_B_MASTER_Watchdog_Refresh();

// Default
// Network_error_pin = NO_NETWORK_ERROR;
(for our design)

// Keep track of the current slave
// FIRST VALUE IS 0
Previous_slave_index = Current_slave_index_G;

// Assume 2-byte messages sent and received
// it takes two ticks to deliver each message

if (Message_byte_G == 0)
 {
 Message_byte_G = 1;
 }
else
 {
 Message_byte_G = 0;

if (++Current_slave_index_G >=
NUMBER_OF_SLAVES)
 {
 Current_slave_index_G = 0;
 }
}

// Check that the appropriate slave responded to the

// previous message: if it did, store the data sent by
// this slave)
if
(SCU_B_MASTER_Process_Ack(Previous_slave_ind
ex) ==
 RETURN_ERROR)
 {
tick_elapse++;
Network_error_pin = NETWORK_ERROR;

// If we have lost contact with a slave, we attempt to
// switch to a backup device (if one is available) as we
reset
// the network. We do not do this every tick (or the
network will
// be constantly reset). Choose a value of
SLAVE_RESET_INTERVAL
// to say 5 seconds

if ((++Slave_reset_attempts_G[Previous_slave_index]
> = SLAVE_RESET_INTERVAL) && (tick_elapse
== 100))
{
tick_elapse = 0;
SCU_B_MASTER_Reset_the_Network();
}
}
else
 {
//Do nothing
}

// Send 'tick' message to all connected slaves
// (sends one data byte to the current slave)
SCU_B_MASTER_Send_Tick_Message(Current_sla
ve_index_G);

// NOTE: calculations are in *TICKS* (not
milliseconds)

for(Task_index=0;Task_index<SCH_MAX_TASKS;T
ask_index++)
{
// Check if there is a task at this location
if (SCH_tasks_G[Task_index]. pTask)
 {
 if (SCH_tasks_G[Task_index]. Delay == 0)
{

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1174

// The task is due to run, Increment the task run flag
SCH_tasks_G[Task_index]. RunMe += 1;
if (SCH_tasks_G[Task_index]. Period)
 {
 // Schedule periodic tasks to run again
 SCH_tasks_G[Task_index]. Delay=
 SCH_tasks_G[Task_index]. Period;
 }
}
 else
{
// Not yet ready to run: just decrement the task delay
SCH_tasks_G[Task_index]. Delay -= 1;
}
 }
}
 }

Listing 3: Code for Master node handling tick
elapses

After elaborating on the functionality of guidelines
we have used for making the operation of a shared-
clock scheduling scheme in wireless environment
more flexible, in the next section we will discuss the
simulation of fault-injection system for such a system
using shared-clock architecture while working in
wired environment. We will now discuss injection
of periodic faults using the communication lines of
the testbed considered in section 4 and also briefly
elaborate its necessity in our simulation of faults.

Fault injection
As the guidelines are tested on wired platforms such
as RS232/RS485 and CAN (Controller area
network), a fault injection system should be also one
that can inject faults like severing the network cables
for a specified amount of time or periodically open
and close all the communication lines of the network
by the use of a TTC interrupt scheduler. The system
we used for this purpose is shown in Figure 5. The
DG417 is a monolithic CMOS analogue switch
designed to provide high performance switching [15].

Figure 5: Fault injection in the Communication lines

The DG417 series is ideally suited for portable and
battery powered industrial and military applications
requiring high performance and efficient use of
board space. The role of the microcontroller unit in
this system is evident from Figure 5. We simulate
wireless environment through wired implementation
because of the complexity of injecting controlled

faults in wireless environment. The fault-injector is
an Olimex LPC-P212X-B development board [14]
running an interrupt scheduler. The external
interrupts are generated by the master node on a
GPIO port pin, which are used to interrupt the fault-
injector on a particular GPIO port pin. These
external interrupts are used to run the scheduler on

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1175

the fault-injector in synch with the master node’s
scheduler. The scheduler on the fault-injector then
generates hi/low voltages (0 t0 3. 28 volts) on a
particular GPIO port pin with a certain delay and
period. These alternating voltages are applied to the
CMOS analogue switches injected in each of the 4
CAN cables (CAN High and CAN Low) in order to
make them open and close according to the task
scheduled in the fault-injector scheduler. Results
from a 3-day run are presented in section 7 as
follows.

Results
Figure 6 below shows a timing sequence for fault
injection setup on the fault-injector microcontroller.

Here t0…. t1 (30 sec) shows the initial delay before
the first fault is injected, t1…. t2 (5 sec) shows fault
duration of first fault, t2…. t3 shows the time gap
between first and second fault. After that we kept
the same sequence as evident from Figure 6 for 3
consecutive days. By removing the initial delay and
first fault duration (t0…. t2) from the equation, it is
evident that one fault was injected in each set of 55
seconds (t2…. t4), (t4…. t6) …and so on for 3 days
(72 hours = 4320 minutes = 259200 seconds). The
number of faults injected and other specs are given
in table 1.

Figure 6: Scheduler timing sequence for Fault Injection

As we injected one fault inside each set of 55
seconds, so the number of faults injected into the
system during a 3-day run are calculated as follows,
259200 – 35 = 259165 sec
(259165 sec is the time of 3 days minus the initial
delay + first fault duration)
Number of faults without the first fault = 259165 /
55 = 4712 faults

So Total number of faults injected = 4712 + first
fault = 4713 faults
Even after injecting the above number of faults into
each communication channel of the system at a time
the system was able to recover instantly after 100
msec (one tick interval) each time and kept the
overall tasks running on the system in synch.

Detail Amount
Days 3

Seconds 259200
Tick-interval 100 msec (Overall testbed)
Initial delay 30 sec

Fault duration 5 sec
Fault-sample

time
1 fault every 55 sec

Total Faults 4713
Table 1: Specifications of a 3-day experimental run

8 Conclusions
In this paper, we have given and discussed some
major guidelines for using shared-clock scheduling
schemes on wireless platforms. We compared the
original form implementation of the shared-clock

scheme with the modified form and came to the
conclusion that it is not feasible to implement the
scheme using the original format. We made the
scheme flexible to cope with the unavoidable
impingement of external factors which will produce

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Amir et al., 2025 | Page 1176

communicational impairments and degrade the
performance of the system. We have shown the
behavior of the system to the introduction of faults.
The guidelines are handled inside the software so it
makes the scheme very cost effective to be
implemented on wireless platforms. Wireless
technology is also cost effective as it removes all the
cabling and cuts down maintenance costs for fixing
and replacing aging cable networks.

REFERENCES
M. J. Pont, Patterns for Time-triggered Embedded

Systems: Building Reliable Applications with
the 8051 Family of Microcontrollers, Addison
Wesley/ACM Press, Harlow, 2001.

M. J. Pont, Supporting the development of time-
triggered co-operatively scheduled (TTCS)
embedded software using design patterns,
Informatica 27 (1) (2003) 81–88.

M. J. Pont, M. P. Banner, designing embedded
systems using patterns: A case study, Journal
of Systems and Software 71 (3) (2004) 201–
213.

An Analysis of Frequency Stability for TCXO
Fujii, S.; Uchida, H. 29th Annual
Symposium on Frequency Control. 1975
Volume, Issue, 1975 Page(s): 294 - 299

The modern OCXO quartz oscillators requirements
and parameters, Weiss, K. ; Gniewinska, B. ;
Nafalski, L. Laser and Fiber-Optical
Networks Modeling, 2004. Proceedings of
LFNM 2004. 6th International Conference
on Laser and Fiber-Optical Networks
Modeling, 2004. Volume, Issue, 6-9 Sept.
2004 Page(s): 209 - 212

D. Ayavoo, M. J. Pont, M. J. Short, S. Parker, Two
novel shared-clock scheduling algorithms for
use with 'Controller Area Network' and
related protocols. Microprocessors &
Microsystems, Volume 31, Issue 5 (August
2007), Pages 326- 334, 2007.

EMC/EMI analysis in wireless communication
networks
Loyka, S. Electromagnetic Compatibility,
2001. EMC. 2001 IEEE International
Symposium on Volume 1, Issue, 2001
Page(s):100 - 105 vol. 1.

Simon Haykin and Michael Moher, Modern
Wireless Communications, Pearson Prentice
Hall, Pearson Education, Inc. Upper Saddle
River, NJ 07458, 2005.

T. S. Rappaport, Wireless Communications:
Principles and practice, Second Edition,
Prentice Hall.

Kapil Chawla, Xiaoxin Qiu. Quasi-Static Resource
Allocation with Interference Avoidance for
Fixed Wireless Systems. IEEE Journal on
selected areas in communications, vol 17, No.
3, March 1999.

Giuseppe Ferrara, Maurizio Migliaccio, Antonio
Sorrentino. Characterization of GSM Non-
Line-of-Sight Propagation Channels
Generated in a Reverberating Chamber by
Using Bit Error Rates. IEEE Transactions on
Electromagnetic Compatibility, Vol. 49, NO.
3, August 2007.

R. G. Bosch, CAN specification version 2. 0: Robert
Bosch GmbH, Postfach 50, D-7000 Stuttgart
1, Germany, 1991.

NXP semiconductors. http://www. nxp. com.
http://www. olimex. com/dev/index. html
http://www. vishay. com.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

