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 Abstract 

Safety-critical embedded systems should exhibit robustness and fault tolerance.  
Shared-clock (S-C) scheduling architectures have been developed to encapsulate the 
above qualities in resource-constrained distributed systems which employ a time-
triggered (TT) architecture.  Previous work in this area has targeted ‘wired’ 
communication mediums (e. g.  local connections based on CAN). In this paper 
we begin to consider whether S-C architecture can be adapted for use in wireless 
environments.  This work is at an early stage and the main aims of the paper are: 
(1) to explain the operation of wired S-C designs; (2) to summarize the problems 
which are faced when attempting to use a S-C algorithm in a wireless 
environment; (3) to present some initial suggestions for ways in which a S-C 
algorithm might be adapted for use in a wireless environment; (4) to describe the 
design of a testbed which will be used to support further research in this area.  
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INTRODUCTION 
Shared-clock scheduling schemes [1-3] have been 
developed to address three major problems faced 
during the development of multiprocessor 
distributed applications.   
Those three problems are as follows: 
1. Clock Synchronization among nodes in the 
system.  
2. Error-free data communication between nodes.  
3. Detection of errors on nodes in the network.  
Figure 1 shows a multiprocessor arrangement in 
which we can see one master node connected to N 
slave nodes through a certain arrangement either 
locally, through UART RS232/RS485 or through a 
CAN bus) [1]. In this arrangement the master node 
has an accurate clock which may (if required) take 
the form of a temperature compensated crystal 
oscillator (TCXO) or oven-controlled crystal 

oscillator (OCXO). The use of a TXCO or OCXO 
[4-5] is important in this case as we need a stable 
frequency to run the master node. A single timer is 
responsible for running the task scheduler on the 
master node. Apart from running its own scheduler 
the master node also generates “tick” messages. 
These tick messages are used to (i) drive the 
schedulers on the slave nodes, and (ii) transfer data 
to the slave nodes. The slave nodes in this 
arrangement have their own (low-cost) oscillators, 
and their own schedulers: however, schedulers on 
the slave are only updated when a tick message is 
received. The tick messages include a slave ID: only 
the slave with this ID will send back an 
acknowledgement message to the master. Using 
unique slave IDs ensures that although all the slaves 
share a common communication channel only one 
slave will send an acknowledge message.  
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Figure 1: Shared Clock Scheduling Scheme 

 
The scheme outlined above (and summarized in 
Figure 2) ensures that tasks running on the master 
and slave nodes are in sync.  This arrangement 
requires transparent communication of tick messages 
from the master node and acknowledgement 
messages from slaves in order to work. The algorithm 
(implicitly) assumes that – under normal 
circumstances – all messages transmitted by the 

master will be received by all slaves and that all 
messages sent by individual slaves will be received by 
the master. If messages are lost then (in a basic wired 
design) the network will simply “fail silently”.  It is 
clear that attempting to implement such an 
algorithm in a wireless environment will immediately 
present a number of challenges. These issues are 
discussed in Section 2.  

 
Figure 2: Shared Clock Scheduling Scheme block diagram 
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Issues with wireless implementation 
Shared-clock scheduling scheme as described works 
on the mutual transmission of tick messages from 
the master node and in response acknowledgement 
messages from the addressed slave nodes.  Even 
while working on a wired medium there is a 
possibility that a particular slave node may not 
receive a tick message in turn this will cause an 
imbalance of scheduler tick calculations between the 
master and that slave node.  On the other hand 
when the master does not receive an 
acknowledgement message from that particular slave 
the master will try to either switch to a backup slave, 
enter a safe state or shutdown the entire network.  
Non reception of acknowledgment message can be a 
cause of slave node failure after last 
acknowledgement was sent by that particular slave.  
The master node in this case will notice the 
missing/failed slave after some time known as failure 
detection time [6].  Now this kind of situation 
hampers the normal working of such scheme.  For 
the working of such scheduling scheme it is 
immensely important that the 
transmission/reception of messages is error free and 
ideally instantaneous without any delay.  Before 
implementing on a wireless platform in its original 
form it must be kept in perspective that wireless 
media is prone to adverse external factors.  These 
external factors will seriously impinge on the 
performance of the system.  We review such factors 
in this section.  
 
Electromagnetic Interference (EMI)  
Wireless communication systems experience today 
unprecedented growth.  The number of systems 
increases almost exponentially.  In view of very 
limited spectrum available and large concentration of 
system over limited space (for example, in dense 
urban or indoor environments), the potential for 
mutual interference is tremendous [7]. The EMI 
effect is the major cause of disruption in wireless 
data transfer between multiple nodes in a distributed 
system.  EMI or RFI may be broadly categorized into 
two types; narrowband and broadband.  Narrowband 
interference usually arises from intentional 
transmissions such as radio and TV stations, pager 
transmitters, cell phones, etc.  Broadband 
interference usually comes from incidental radio 

frequency emitters.  These include electric power 
transmission lines, electric motors, thermostats, bug 
zappers, etc.  Anywhere electrical power is being 
turned off and on rapidly is a potential source.  
Included in this category are computers and other 
digital equipment as well as televisions.  The rich 
harmonic content of these devices means that they 
can interfere over a very broad spectrum.  The 
coupling arrangement of interference to a wireless 
system can be shown with three different 
components.   
 Source of Interference  
(Electrical and Electronic devices / other 
transmitters and radiating systems) The source may 
be something more exotic such as a lightning strike, 
electrostatic discharge (ESD) 
 Coupling path  
(Air for wireless communication) 
 Receptor/Sink  
(The communication channel itself plus all the 
receivers)  
In another way we can regard noise as unwanted 
(and usually uncontrollable) electrical signals 
interfering with the desired signal.  Unwanted signals 
arise from a variety of sources, both natural and 
artificial.  Artificial sources include noise from 
automobile ignition circuits, commutator sparking in 
electric motors, 60-cycle hum, and signals from other 
communication systems.  Numerous artificial sources 
result from harmonics of the natural frequency.  For 
example, spark plugs firing in car engines have a 
frequency on the order of thousands of rpm; 
consequently, although the fundamental frequency is 
less than 1 kHz, the energy emitted by this excitation 
is so strong that high-order harmonics can cause 
significant interference in radio systems.  Natural 
sources of noise include circuit noise, atmospheric 
disturbances and extraterrestrial radiation [8].  The 
above-mentioned phenomena can introduce certain 
impairments which can cause the data transmitted 
wirelessly to be either corrupted or lost.  Regardless 
of the source, interference prevention is and has 
been of a key importance in wireless systems.  In the 
case of wireless implementation of TTC-SCSS, 
interference avoidance will have a prime importance.  
Because if the data sent from the master node 
towards the slave nodes is changed or lost due to the 
effect of discrete or continuous EMI, then it is going 
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to be difficult to operate the system in a proper way.  
If the designed system is prone to continuous 
residual EMI then it is going to be very difficult to 
maintain the integrity of the system throughout.  
Measures have to be taken in this regard to either 
reduce the effects of interference in the vicinity of 
the system or changes had to be done to the system 
structure to make it less responsive or ignore the 
sources of interference.  
 
Propagation Delay 
To reduce the impact of propagation delay on system 
performance, it is usual to include a guard-time 
between time slots.  No signal is transmitted during 
this guard time, and as a result, much of the harmful 
effect of propagation delay is avoided [9].  In our case 
propagation delay is going to be the time taken by 
the tick message to travel from the master node and 
reach a slave node plus the time taken by the slave 
acknowledgment message to travel from that 
particular slave node and reach the master node 
considering the processing times of the message on 
both nodes as negligible.  Propagation delay can 
cause a problem when it is greater than the tick 
interval.  In a case like this the master node will not 
receive the acknowledge message and thus will 
hamper the scheduler operation.  It is a remote 
possibility that such a scenario will occur but 
immense care should be taken during the topology 
design of such system.  For that purpose the slave 
nodes should be kept in such an acceptable 
proximity in order to maintain delay free topology 
and keep the transmission and reception times well 
inbounds of the tick intervals.  
 
Multi-path Fading 
In wireless communications [10], the presence of 
reflectors in the environment surrounding a 
transmitter and receiver create multiple paths that a 
transmitted signal can traverse.  As a result, the 
receiver sees the superposition of multiple copies of 
the transmitted signal, each traversing a different 
path.  Each signal copy will experience differences in 
attenuation, delay and phase shift while traveling 
from the source to the receiver.  This can result in 
either constructive or destructive interference, 
amplifying or attenuating the signal power seen at 
the receiver.  Strong destructive interference is 

frequently referred to as a deep fade and may result 
in temporary failure of communication due to a 
severe drop in the channel signal-to-noise ratio.  A 
common example of multi-path fading is the 
experience of stopping at a traffic light and hearing 
an FM broadcast degenerate into static, while the 
signal is re-acquired if the vehicle moves only a 
fraction of a meter.  The loss of the broadcast is 
caused by the vehicle stopping at a point where the 
signal experienced severe destructive interference.  
Cellular phones can also exhibit similar momentary 
fades.  In implementing a shared clock scheme on 
wireless platform these factors should be kept in 
mind in order to prevent interferences bad for the 
system performance and keep the signal strength in 
operating range.  
 
Non-line-of-sight propagation 
When only scattered waves arrive at the terminal, the 
signal envelope shows fast fading represented by a 
Rayleigh distribution against time.  Such class of 
propagation channels is called non-line-of-sight 
(NLOS) [11].  Non-line-of-sight (NLOS) or near-line-
of-sight is a term used to describe radio transmission 
across a path that is partially obstructed, usually by a 
physical object in the Fresnel zone.  Many types of 
radio transmissions depend, to varying degrees, on 
line of sight between the transmitter and receiver.  
Obstacles that commonly cause NLOS conditions 
include buildings, trees, hills, mountains, and, in 
some cases, high voltage electric power lines.  Some 
of these obstructions reflect certain radio 
frequencies, while some simply absorb or garble the 
signals; but, in either case, they limit the use of many 
types of radio transmissions, including most of those 
used for Wi-Fi.  The acronym NLOS has become 
more popular in the context of wireless local area 
networks (WLANs) such as WiFi and WiMax 
because the capability of such links to provide a 
reasonable level of NLOS coverage greatly improves 
their marketability and versatility in the typical urban 
environments in which they are most frequently 
used.  The influence of a visual obstruction on a 
NLOS link may be anything from negligible to 
complete suppression.  An example might apply to a 
LOS path between a television broadcast antenna 
and a roof mounted receiving antenna.  If a cloud 
passed between the antennas the link could actually 
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become NLOS but the quality of the radio channel 
could be virtually unaffected.  If, instead, a large 
building was constructed in the path making it 
NLOS, the channel may be impossible to receive.  
NLOS links may either be simplex (transmission is in 
one direction only), duplex (transmission is in both 
directions simultaneously) or half-duplex 
(transmission is possible in both directions but not 
simultaneously).  Under normal conditions all radio 
links including NLOS are reciprocal which means 
that the effects of the propagation conditions on the 
radio channel are identical whether it operates in 
simplex, duplex or half-duplex [11].  
If the above-mentioned adverse effects on the 
wireless connectivity scheme are not taken into 
account and we implement the shared-clock system 
in its original form, the system performance will be 
extremely poor. So it is of the utmost importance 
that we first make the system able to deal with any 
unintended development and then implement it on 
a wireless platform.  The following sections 
specifically deal with such occurrences.  
 
Things that could go wrong 
Shared clock architecture in a wired environment 
relies on a periodic exchange of messages between a 
designated master node and its subservient slave 
nodes.  The reliability of the scheme depends upon 
the highest degree of communicational integrity.  On 
a wired medium the performance of the system is 
high but even still the periodicity of massage 
exchange can get compromised, making the system’s 
behavior erratic.  Now in order to implement the 
scheme wirelessly enhances the probability of 
communicational errors, as of now the 
communication channel is more exposed to certain 
impairments (Noise, EMI etc).  Here we list some of 
the most important things to take care of in order to 
keep the system’s integrity intact while the nodes 
communicate wirelessly.  
 
List of Factors: 
 Master node fails.  
 A single Slave node fails.  
 Multiple Slaves fail.  
 Slave node does not receive a tick message from 
Master node.  

 Master node does not receive an acknowledgment 
message from Slave node.  
 
Countering the above factors in a wireless 
environment will definitely increase the reliability 
and continuous performance of the system.  We will 
discuss some of the ways in which these factors can 
be dealt with one by one.  
 
Master Node fails 
If for any reason the master node in the network 
fails, for the sake of redundancy it is feasible to keep 
a backup master.  In the event of master node failure 
the backup master should take over, reset the 
network, establish communication with the slaves 
and start running its own and slave schedulers as 
before.  If we do not want to reset the entire network 
and do not want to lose time while doing that, 
another alternative that we can use is to run the 
network with two running master nodes with 
independent power supplies but same oscillator 
module.  In this case if one of the two fails the other 
keeps on running the system and there is going to be 
no need of resetting the system or re-establishment of 
communication with the slave nodes.  This will 
impinge on the power consumption of the system 
though but for a safety critical application it should 
be acceptable.   
 
A single Slave Node fails 
If for any reason a single slave node in the network 
fails, for the sake of redundancy it is feasible to keep 
a backup slave.  The backup slave should be switched 
ON which will keep on running the system.  
 
Multiple Slaves fail 
The procedure used for the failure of a single slave 
can be applied for a multiple slave failure or if not 
possible we may have to reconstitute the network 
and jump-start it again.  But it is highly unlikely that 
a situation will arise that multiple slaves will fail 
simultaneously and create such a chaotic scenario.  
 
Slave node does not receive a tick message from 
master node 
In our design we use two different interrupt service 
routines (ISRs) on the slave nodes.  One is triggered 
by the UART interrupt, which is always used in 
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normal operation.  The second ISR is triggered by 
the timer 2 overflow on the slave.  As long as the 
communication is fine and no tick messages are lost 
the slave is triggered by the UART interrupts 
through the tick messages sent by the master node 
and which in turn updates the slave schedulers for 
task performance.  The timer 2 triggered ISR 
remains dormant at this time.  The timer 2 on the 
slave node is setup (stopped and loaded with 
appropriate value for overflow) at the start inside the 
UART interrupted ISR and before leaving the 
UART interrupted ISR the timer is started.  So if the 
slave does not get triggered by the arrival of a tick 
message through the UART, the previous tick would 
have started the timer on the slave and will 
automatically update the slave scheduler as both ISRs 
use the same scheduler update function.  If after a 
lost tick another tick arrives this will make the 
UART triggered ISR to again stop the timer, load it 
again with the appropriate value, update the 
scheduler and before leaving the ISR will start the 
timer in case another tick goes missing.  If a 
succession of tick messages get lost and are not 
received by the slave, the timer 2 ISR will take over 
and automatically update the slave scheduler until 
the communication is restored or until the master 
resets the network.  
 
Master node does not receive an ack-message from a 
slave node 
If the master node does not receive an 
acknowledgement from a slave it sends the next tick 
message instead of showing a network error.  If the 
problem with the reception is brief and it goes away 
the master node keeps on working as normal and 
shows no error.  But if the problem persists for more 
than 100 ticks or any specified number of ticks and 
no acknowledgement message returns back then the 
master node shows network error and takes 
appropriate action.  

In the next section we give the schematic of the 
testbed that is used for simulating a S-C wireless 
environment.  This testbed is designed as such that 
all the slave nodes have individual CAN connections 
with the master node, so it is very easy to inject 
controlled periodic faults into each CAN cable.   
 
Schematics of wireless testbed 
As first steps we have tested the software guidelines 
given in this paper for the wireless implementation 
of shared-clock scheme on RS-232 and RS-485 
protocol based wired networks, these guidelines are 
applicable to any communication protocol used for 
shared-clock architecture.  As we know an RS-232 
protocol supports serial communication between 
only two nodes having single UARTS (one master 
and one slave).  Communication between one master 
and several slaves can be achieved using RS-232 
protocol, but for that we should either use 
microcontrollers with multiple UARTS or use 
external UARTS with single UART controllers.   
The same case is with RS-485 protocol, this protocol 
supports a multi-drop system means more than 2 
nodes (one master/several slaves) individually having 
one UART each.  But the UART based RS-232 and 
RS-485 protocols didn’t gave us a feeling of a wired 
type wireless layout.  So we came up with the design 
schematic of a wired system testbed using shared-
clock architecture that feels more like a wireless 
implementation schematic will behave and look.  
The system consists of 5 nodes (1 master node and 4 
slave nodes.  CAN protocol [12] is used for 
communication between the master and slave nodes.  
The topology of the network is kept as Star as shown 
in Figure 3.  Even though the system is still wired, in 
this star topology the master node behaves exactly 
like a wireless transceiver beacon that transmits or 
broadcasts tick-messages intended for a particular 
slave or intended for all slaves.  This beacon also 
receives acknowledgment messages from the slaves 
through their transmissions.  
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Figure 3: Testbed schematic in star topology connected via CAN 

 
The master node used here is a Philips LPC-2294 
microcontroller [13] on an Olimex LPC-E2294 rev. B 
development board [14].  The LPC-2294 has a 
support for 4 CAN interfaces on the board.  This 
means that the master node can communicate with 4 
different slaves simultaneously and does not need 
any external peripherals for adding more interfaces 
as such in the case of testbeds discussed earlier.  This 
approach reduces the code size and ultimately 
reduces CPU power consumption which is vital for 
such resource constrained environments.  4 slaves 
are connected to the master node through 4 CAN 
interfaces.  The slaves are Philips LPC-2129’s 
microcontrollers [13] on Olimex LPC-P212X-B 
development boards [14], each of whom can support 
2 CAN interfaces (we use only one of them).  The 
idea here is to simulate the scenarios that emanate in 
a wireless environment using a wired setup and then 
apply the developed guidelines completely on a 
wireless platform.   
In this paper the ideas and software guidelines we 
tested are given in various listings as a part of the 
ongoing research.  The software guidelines adopted 
for wireless transition listed in this paper are for the 
RS-485 protocol-based system that we tested and are 
given in this paper for one reason only, to make the 
reader easily understand what we are trying to 
achieve.  In Section 5 we will elaborate on tackling 
potential message losses in the system in either 
direction and provide evasive software strategies to 
avoid system failure.  
 

Tackling Message Loss 
Master to Slave 
The description in sub section 3. 4 gives the remedy 
for tick messages lost when sent by the master node.  
The listed code sample (Listing 1) and block diagram 
(Figure 4) enhances the understanding further and 
shows how a slave node will cope with such a 
situation and automatically update its scheduler in 
the absence of tick messages.  
 
/*------------------------------------------------------------*- 
Main Slave ISR (triggered through UART interrupts) 
-*------------------------------------------------------------*/ 
void SCU_B_SLAVE_Update(void)  
interrupt INTERRUPT_UART_Rx_Tx 
{ 
tByte Index; 
 
if (RI == 1) // Must check the Receive Interrupt flag.  
{ 
// Timer 2 has'nt been started in the first place 
 
TR2 = 0;// Stop Timer 2 
ET2 = 0;// Timer 2 interrupt is disabled 
TH2 = 0xEC; // load timer 2 high byte 
TL2 = 0x78; // load timer 2 low byte 
 
// Default 
Network_error_pin = NO_NETWORK_ERROR; 
 
// Two-byte messages are sent (Ack) and received 
(Tick) 
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// it takes two scheduler ticks to process each 
message 
// Keep track of the current byte 
if (Message_byte_G == 0) 
 { 
 Message_byte_G = 1; 
 } 
else 
 { 
Message_byte_G = 0; 
 } 
// Check tick data - send ack if necessary 
// 'START' message will only be sent after a 'time 
out' 
 
if (SCU_B_SLAVE_Process_Tick_Message() == 
SLAVE_ID) 
 { 
SCU_B_SLAVE_Send_Ack_Message_To_Master(); 
 
// Feed the watchdog ONLY when a  
// *relevant* message is received 
// (noise on the bus, etc, will not stop the  
// watchdog. . . . . . . . ) 
// START messages will NOT refresh the slave 
// Must talk to every slave at regular intervals 
SCU_B_SLAVE_Watchdog_Refresh(); 
} 
// NOTE: calculations are in *TICKS* (not 
milliseconds) 
for (Index = 0; Index < SCH_MAX_TASKS; 
Index++) 
{ 
// Check if there is a task at this location 
if (SCH_tasks_G[Index]. pTask) 
 { 
 if (SCH_tasks_G[Index]. Delay == 0) 
{ 
// The task is due to run (Set the run flag) 
SCH_tasks_G[Index]. RunMe = 1;  
if (SCH_tasks_G[Index]. Period) 
 { 
 // Schedule periodic tasks to run again 
 SCH_tasks_G[Index]. Delay =  
 SCH_tasks_G[Index]. Period; 
 } 
} 
 else 

{ 
// Not yet ready to run  
 // just decrement the delay 
SCH_tasks_G[Index]. Delay -= 1; 
} 
 } 
} 
 RI = 0;// Reset the Receive Interrupt flag 
 } 
else 
 { 
 
// ISR call was triggered by Transmit Interrupt flag,  
// after last character was sent 
 
// RS485_Tx_Enable flag is reset here 
RS485_Tx_Enable = 0; 
 
TI = 0;// Must clear the Transmit Interrupt flag 
 
} 
TR2 = 1; // Start Timer 2 
ET2 = 1; // Timer 2 interrupt is enabled 
} 
 
Listing 1: Code for main ISR assembly on any Slave 
in the network 
The code in listing 1 is a scheduler update function 
which increments the tick count on the slave when a 
tick message has been received through the UART.  
In our design listing 1 is considered as the main ISR 
on the slave node.  The main ISR is repeatedly called 
when the communication between master and slave 
is fine and no tick messages are lost.  The main ISR 
embeds initialization controls of a second ISR that is 
also used on the slave node in conjunction with the 
main ISR.  As clear from listing 1, when the main 
ISR is triggered by a UART interrupt through the 
arrival of a tick message, a timer (timer 2) on the 
slave node is stopped (Which was not even started at 
the power up time of the network) and loaded with 
an appropriate value exactly equal to the tick interval 
used in the system.   
A tick interval is the time between two consecutive 
tick messages sent by the master node.  The main 
ISR then goes forth and checks the contents of the 
message, sends an acknowledgment message to the 
master node, updates the slave scheduler by 
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incrementing the tick count on the slave (essential 
for synchronized task performance) and at the end 
starts the timer and enables its overflow interrupt.  
Now as evident the timer 2 on the slave is being 
initialized a step back from the main tick interval.  
The arrival of the next tick interval will stop the 
timer again and do all the process once more and 
repeatedly as long as the communication between 
the master and slave is fine and no tick message is 
lost.  The timer 2 overflow triggers an alternate ISR, 
which we call here the dormant ISR, as it is always 
dormant and not used when the communication is 
fine.  In an event when a tick message is lost, the 
main ISR cannot get triggered through the UART.  
In previous designs if an event like this happened, in 
such a situation the slave node was not able to reply 
with an acknowledgement message as it didn’t 
received any tick message.  So the master node after 
not receiving a reply from the slave would reset the 
system immediately.   
This behavior is not acceptable if the system is 
working in wireless environment, as we know the 
probability of massage loss in wireless arena is much 
higher, in such a situation the system will keep on 
resetting all the time and prove catastrophically 
impaired for the performance of a safety critical 
application.  The dormant ISR is used here in order 
to make the operation smooth and flexible.  So when 
a tick message is lost the slave’s main ISR can’t get 
triggered through UART.  But timer 2 on the slave 

was started through the last received tick message.  
When timer 2 overflows it generates an interrupt 
and triggers the dormant ISR.  The dormant ISR is 
used for the automatic update of the slave scheduler.  
Listing 2 specifies the code for the dormant ISR.  In 
our present design the dormant ISR does not sends 
an acknowledgment message as it does not know 
about the contents of the tick message.  If successive 
tick messages are lost the slave scheduler gets 
automatically updated through timer 2 overflow 
interrupts.  When communication gets better after 
the loss of some successive or single tick messages, 
the arrival of the next tick message will trigger the 
main ISR on the slave through the UART, again 
stopping the timer, taking the ISR it was using back 
into dormant state, keep on updating the scheduler 
and sending acknowledgment messages through the 
main ISR as long as successive tick messages from the 
master are received by the slave without loss.  The 
probability of task de-synchronization among the 
master and slave(s) for a 1 to 100 tick messages lost is 
near to zero.  Figure 4 gives a block diagram 
explanation of the procedure we discussed above.  
For more than 100 tick messages lost and how the 
master node should react if the slave is running on 
automatic updates through the dormant ISR and do 
not receive any acknowledgments, the system adapts 
another mechanism that is explained in the next sub-
section.  

 
Figure 4: Active and Dormant ISR functionality 
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/*-----------------------------------------------------------------*- 
Dormant Slave ISR (triggered through timer 2 
interrupts) 
-*-----------------------------------------------------------------*/ 
void SCU_B_SLAVE_Update_T2(void)  
interrupt INTERRUPT_Timer_2_Overflow 
 { 
tByte Index; 
 
if (RI == 0)// Must check the Receive Interrupt flag 
 { 
 
TF2 = 0;// Must manually clear timer 2 overflow  
//interrupt flag 
 // Default 
Network_error_pin = NETWORK_ERROR; 
SCU_B_SLAVE_Watchdog_Refresh(); //refresh the 
watchdog 
 
// NOTE: calculations are in *TICKS* (not 
milliseconds) 
for (Index = 0; Index < SCH_MAX_TASKS; 
Index++) 
{ 
// Check if there is a task at this location 
if (SCH_tasks_G[Index]. pTask) 
 { 
 if (SCH_tasks_G[Index]. Delay == 0) 
{ 
 // The task is due to run (Set the task run flag) 
SCH_tasks_G[Index]. RunMe = 1;  
if (SCH_tasks_G[Index]. Period) 
 { 
 // Schedule periodic tasks to run again 
 SCH_tasks_G[Index]. Delay =  
 SCH_tasks_G[Index]. Period; 
 } 
} 
 else 
{ 
// Not yet ready to run the task:  
// just decrement the task delay 
SCH_tasks_G[Index]. Delay -= 1; 
} 
} 
} 
} 

} 
Listing 2: Code for dormant ISR assembly on any 
Slave in the network 
 
Slave to Master  
On a wireless platform there also arises a possibility 
that some of the acknowledgment messages from the 
slave(s) will not reach the master node and are going 
to be lost.  The reason for that can be a slave loss or 
interference.  If a slave is lost the master will try to 
switch over to a backup slave, if a backup slave is not 
available the master node will shut down the 
network for maintenance.  But if message loss is due 
to interference or some other phenomena impinging 
on the communication channel, in our design the 
master node has a window of 100 tick elapses.  What 
this means is that when the master node sends a tick 
message it waits for the acknowledgment to that 
message from a particular slave.  If the 
acknowledgment message does not arrive, the master 
node increments the tick elapse counter by 1 and 
sends another tick message.  If a slave node replies to 
the second tick message the master node decrements 
the tick elapse counter to zero.  There are two 
reasons why an acknowledgment message does not 
arrive on the master node.  First it is possible that a 
slave node didn’t receive a particular tick message 
from the master node.  Secondly due to interference 
it was lost inside the communication channel.  The 
tick elapse counter on the master node allows 100 
transmissions of tick messages for 100 successive 
lapses of acknowledgment messages.  After the 
overflow of the tick elapse counter the master node 
takes evasive action by either switching to backup 
slave or shutting down the system for maintenance.  
If the topology of the system is kept symmetrical and 
slaves are operational there is a high probability that 
the communication is going to restore inside the 
time taken by 100 tick elapses.  Time calculation for 
100 tick elapses can be done through a simple 
equation given as follows, 

T = ti x 100                         (1) 
Were 
T = time taken by 100 tick elapses.  
ti = tick interval.  
So if tick interval is 1ms, 100 tick elapses will take 0. 
1 seconds and if tick interval is kept at 5ms, 100 tick 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amir et al., 2025 | Page 1173 

elapses will take half a second (0. 5 seconds).  Figure 
4 here gives a block diagram explanation of the 
preceding sub-sections and code listing 3 gives code 
example for sub section 5. 2.   
 
/*--------------------------------------------------------*- 
Main Master ISR (triggered by timer 2 overflows) 
-*--------------------------------------------------------*/ 
void SCU_B_MASTER_Update_T2(void)  
interrupt INTERRUPT_Timer_2_Overflow 
 { 
tByte Task_index; 
tByte Previous_slave_index; 
static tByte tick_elapse = 0; 
 
TF2 = 0; // Must manually clear timer 2 overflow  
 //interrupt flag 
 
// Refresh the watchdog 
SCU_B_MASTER_Watchdog_Refresh(); 
 
// Default 
// Network_error_pin = NO_NETWORK_ERROR; 
(for our design) 
 
// Keep track of the current slave 
// FIRST VALUE IS 0 
Previous_slave_index = Current_slave_index_G; 
 
// Assume 2-byte messages sent and received 
// it takes two ticks to deliver each message 
 
if (Message_byte_G == 0) 
 { 
 Message_byte_G = 1; 
 } 
else 
 { 
 Message_byte_G = 0; 
 
if (++Current_slave_index_G >= 
NUMBER_OF_SLAVES) 
 { 
 Current_slave_index_G = 0; 
 } 
} 
 
// Check that the appropriate slave responded to the  

// previous message: if it did, store the data sent by  
// this slave) 
if 
(SCU_B_MASTER_Process_Ack(Previous_slave_ind
ex) ==  
 RETURN_ERROR) 
 { 
tick_elapse++; 
Network_error_pin = NETWORK_ERROR; 
 
// If we have lost contact with a slave, we attempt to 
// switch to a backup device (if one is available) as we 
reset 
// the network.  We do not do this every tick (or the 
network will  
// be constantly reset).  Choose a value of 
SLAVE_RESET_INTERVAL  
// to say 5 seconds 
 
if ((++Slave_reset_attempts_G[Previous_slave_index] 
> = SLAVE_RESET_INTERVAL) && (tick_elapse 
== 100)) 
{ 
tick_elapse = 0; 
SCU_B_MASTER_Reset_the_Network(); 
} 
} 
else 
 { 
//Do nothing 
} 
 
// Send 'tick' message to all connected slaves 
// (sends one data byte to the current slave) 
SCU_B_MASTER_Send_Tick_Message(Current_sla
ve_index_G); 
 
// NOTE: calculations are in *TICKS* (not 
milliseconds) 
 
for(Task_index=0;Task_index<SCH_MAX_TASKS;T
ask_index++) 
{ 
// Check if there is a task at this location 
if (SCH_tasks_G[Task_index]. pTask) 
 { 
 if (SCH_tasks_G[Task_index]. Delay == 0) 
{ 
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// The task is due to run, Increment the task run flag 
SCH_tasks_G[Task_index]. RunMe += 1; 
if (SCH_tasks_G[Task_index]. Period) 
 { 
 // Schedule periodic tasks to run again 
 SCH_tasks_G[Task_index]. Delay= 
 SCH_tasks_G[Task_index]. Period; 
 } 
} 
 else 
{ 
// Not yet ready to run: just decrement the task delay 
SCH_tasks_G[Task_index]. Delay -= 1; 
} 
 } 
} 
 } 
 
Listing 3: Code for Master node handling tick 
elapses  

After elaborating on the functionality of guidelines 
we have used for making the operation of a shared-
clock scheduling scheme in wireless environment 
more flexible, in the next section we will discuss the 
simulation of fault-injection system for such a system 
using shared-clock architecture while working in 
wired environment.  We will now discuss injection 
of periodic faults using the communication lines of 
the testbed considered in section 4 and also briefly 
elaborate its necessity in our simulation of faults.  
 
Fault injection 
As the guidelines are tested on wired platforms such 
as RS232/RS485 and CAN (Controller area 
network), a fault injection system should be also one 
that can inject faults like severing the network cables 
for a specified amount of time or periodically open 
and close all the communication lines of the network 
by the use of a TTC interrupt scheduler.  The system 
we used for this purpose is shown in Figure 5.  The 
DG417 is a monolithic CMOS analogue switch 
designed to provide high performance switching [15].   

 
Figure 5: Fault injection in the Communication lines 

 
The DG417 series is ideally suited for portable and 
battery powered industrial and military applications 
requiring high performance and efficient use of 
board space.  The role of the microcontroller unit in 
this system is evident from Figure 5.  We simulate 
wireless environment through wired implementation 
because of the complexity of injecting controlled 

faults in wireless environment.  The fault-injector is 
an Olimex LPC-P212X-B development board [14] 
running an interrupt scheduler.  The external 
interrupts are generated by the master node on a 
GPIO port pin, which are used to interrupt the fault-
injector on a particular GPIO port pin.  These 
external interrupts are used to run the scheduler on 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amir et al., 2025 | Page 1175 

the fault-injector in synch with the master node’s 
scheduler.  The scheduler on the fault-injector then 
generates hi/low voltages (0 t0 3. 28 volts) on a 
particular GPIO port pin with a certain delay and 
period.  These alternating voltages are applied to the 
CMOS analogue switches injected in each of the 4 
CAN cables (CAN High and CAN Low) in order to 
make them open and close according to the task 
scheduled in the fault-injector scheduler.  Results 
from a 3-day run are presented in section 7 as 
follows.  
 
Results 
Figure 6 below shows a timing sequence for fault 
injection setup on the fault-injector microcontroller.  

Here t0…. t1 (30 sec) shows the initial delay before 
the first fault is injected, t1…. t2 (5 sec) shows fault 
duration of first fault, t2…. t3 shows the time gap 
between first and second fault.  After that we kept 
the same sequence as evident from Figure 6 for 3 
consecutive days.  By removing the initial delay and 
first fault duration (t0…. t2) from the equation, it is 
evident that one fault was injected in each set of 55 
seconds (t2…. t4), (t4…. t6) …and so on for 3 days 
(72 hours = 4320 minutes = 259200 seconds).  The 
number of faults injected and other specs are given 
in table 1.  

 
Figure 6: Scheduler timing sequence for Fault Injection 

 
As we injected one fault inside each set of 55 
seconds, so the number of faults injected into the 
system during a 3-day run are calculated as follows, 
259200 – 35 = 259165 sec 
(259165 sec is the time of 3 days minus the initial 
delay + first fault duration) 
Number of faults without the first fault = 259165 / 
55 = 4712 faults 

So Total number of faults injected = 4712 + first 
fault = 4713 faults 
Even after injecting the above number of faults into 
each communication channel of the system at a time 
the system was able to recover instantly after 100 
msec (one tick interval) each time and kept the 
overall tasks running on the system in synch.  

Detail Amount 
Days 3 

Seconds 259200 
Tick-interval 100 msec (Overall testbed) 
Initial delay 30 sec 

Fault duration 5 sec 
Fault-sample 

time 
1 fault every 55 sec 

Total Faults 4713 
Table 1: Specifications of a 3-day experimental run 

 
8 Conclusions 
In this paper, we have given and discussed some 
major guidelines for using shared-clock scheduling 
schemes on wireless platforms.  We compared the 
original form implementation of the shared-clock 

scheme with the modified form and came to the 
conclusion that it is not feasible to implement the 
scheme using the original format.  We made the 
scheme flexible to cope with the unavoidable 
impingement of external factors which will produce 
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communicational impairments and degrade the 
performance of the system.  We have shown the 
behavior of the system to the introduction of faults.  
The guidelines are handled inside the software so it 
makes the scheme very cost effective to be 
implemented on wireless platforms.  Wireless 
technology is also cost effective as it removes all the 
cabling and cuts down maintenance costs for fixing 
and replacing aging cable networks.   
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