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Abstract

To solve the dual problem of load forecasting and real-time energy optimization in
smart microgrids, the use of machine learning (ML) methods offers a game-
changer. In this paper the authors offer a hybrid system composed of Long Short-
Term Memory (LSTM) networks to predict daily loads in the short-term,
accompanied by Deep Q-Learning to execute the dynamic energy management.
The LSTM model exhibited superior forecasting capabilities with high-resolution
campus-based microgrid data and obtained a mean absolute percentage error
(MAPE) as low as 3.25%, especially when considering low-variability periods.
Simultaneously, the reinforcement learning (RL) agent, which was trained on
Deep Q-Networks (DQN), succeeded in minimizing dispersal expenses,
minimizing grid-dependency, and maximizing battery and renewable resource use
by adapting optimal dispatch based on a simulation environment. A comparative
review of rule-based and baseline approaches indicated a 22.8 percent less total
energy cost and 26.7 percent lower peak load demand. Its flexibility, active
management, and use of local renewable power generation favour the increasing
need of sustainable and intelligent systems of energy. The study highlights the
benefits of ML-powered microgrids to energy independence, resiliency, and carbon
emissions minimization.
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INTRODUCTION
Due to the profound integration of renewable
energy sources, rising electricity demand and
decentralization of energy infrastructure, an
evolving complexity of contemporary power

systems has promoted the need to transform the
conventional energy grid into more adaptive and
intelligent forms of networks, called smart
microgrids. As opposed to traditional power grid

mailto:saad.baloch@isra.edu.pk
mailto:23016122-001@uog.edu.pk
mailto:hassaan.tg@gmail.com
mailto:khakoo.mal@iba-suk.edu.pk
mailto:atifaliphy@gmail.com
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Baloch et al, 2025 | Page 1092

systems, smart microgrids can work autonomously
or alongside the main grid through the use of
modern communication, control and automation
technologies, which can successfully manage
energy production, distribution, and
consumption within a local area (Khodr et al.,
2021). Such systems are especially useful in terms
of boosting energy reliability, lowering carbon
footprints, and facilitating the global transition to
a sustainable energy ecosystem (Shahsavari &
Akbari, 2018).
Another significant operational issue of smart
microgrids is the problem of accurate load
forecasting that is essential in supporting efficient
energy scheduling, economic dispatch, and
demand-side management (Chen et al., 2022).
Autoregressive integrated moving average
(ARIMA) and exponential smoothing are
traditional statistical methods of forecasting that
are effective under relatively stable systems but
when it comes to dynamically changing
environments where there is high penetration of
intermittent renewable energy sources such as
solar and wind, the methods are ineffective
(Abedinia et al., 2017). In turn, data-driven
procedures, especially machine learning (ML), are
becoming more prevalent in solving these
shortcomings among researchers and practitioners
(Zhou et al., 2023). The ability of ML models to
detect ever-changing, non-linear, and spatial-
temporal relationships in load patterns allows
significantly increasing the accuracy and stability
of forecasts (Wang et al., 2020).
There are many ML methods that have been
employed to predict load, such as artificial neural
networks (ANNs), support vector machines
(SVMs), and decision trees because of their
flexibility and learning ability (Hippert et al., 2001;
Taylor & McSharry, 2007). Nonetheless, recent
literature points to the advantages of deep
learning solutions and, specifically, Long Short-
Term Memory (LSTM) architectures in dealing
with long-range dependencies and temporal
variability of electricity demand data (Kong et al.,

2019). LSTM networks are especially applicable in
time-series forecasting due to their ability to
represent longer time lags, meaning that they can
provide more contextual insight into the load
trends under different operational and weather
conditions (Marino et al., 2016).
In parallel to load forecasting, real-time energy
optimization is one of the keys to smart microgrid
function. The scheduling of distributed energy
resources (DERs), storage systems, and
controllable loads should be updated using
dynamic planning to achieve cost-effective energy,
decrease peak loads, and avoid grid collapse (Pavic
et al., 2020). Energy optimization with the
conventional rule-based and linear programming
approaches can easily fail to keep pace with real-
time fluctuations in generation and consumption
(Zhang et al., 2018). Reinforcement learning (RL),
a branch of ML based on behavioral psychology,
provides an efficient solution in that it allows
agents to iteratively learn the optimal policies of
control that can be obtained via interaction with
the environment (Sutton & Barto, 2018). The RL
algorithms can be used to dynamically optimize
energy dispatch in microgrids by learning through
experience and providing feedback on rewards
without significant human interference (Ruelens
et al., 2017).
LSTM-based load prediction and RL-based
optimization offer a powerful and flexible system
to manage a smart microgrid. It is a hybrid type of
approach that enables the simplicity of
anticipatory decision-making - i.e., it projects the
future load requirement and dynamically changes
the resource assignments to satisfy the load
requirement in an efficient manner (Wei et al.,
2020). Various publications have shown how
these kinds of architectures can be effective in
minimizing costs of operations, battery life and
complete energy efficiency in microgrid systems
(Tushar et al., 2021; Han et al., 2022).
Nevertheless, in the majority of previous studies,
the forecasting and optimization problems are
treated independently of each other, and, if
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applied to real-time systems, such an approach
leads to non-optimal energy management (Liang
et al., 2022).
The interested work will address such a gap by
suggesting a common ML-based framework
integrating the LSTM short-term load forecasting
model and the RL actuator in real-time energy
optimization in a coherent manner. Based on
empirical data collected in an actual microgrid
environment, the study assesses the ability of the
model to forecast the energy loads with high
confidence and to dynamically control DERs,
storage units, and loads to optimize the
operational dynamics of the microgrid. In this way,
the work will help in improving the state-of-the-art
in intelligent energy and offer practical lessons in
the implementation of scalable, efficient, and
resilient microgrid infrastructures.
2. Literature Review
2.1 Evolution of Smart Microgrids and Energy
Management
The transition of conventional power networks to
smart microgrids is closely inspired by the
necessity to have flexible decentralized and
sustainable energy systems. Microgrids are
composed of renewable energy sources (RES),
storage, and smarter controls, to locally control
the process of generation and consumption
(Guerrero et al., 2011). State of early microgrid
design was based upon centralized management
strategies, which created difficultly regarding
scalability and adaptability (Lasseter, 2011). The
ongoing development of real-time data acquisition
and digital metering technologies provided an
opportunity to implement distributed control
strategies and has made autonomous management
of energy a reality and resilience is enhanced
(Lopes et al., 2013).
2.2 Challenges in Load Forecasting in
Microgrids
Load forecasting is an important process of
operational efficiency of microgrids. Nevertheless,
owing to stochasticity of the distributed
generation and load patterns, the conventional

forecasting techniques tend to be insufficient.
Short-term load prediction used the classical
statistical models (Hong & Fan, 2016), such as
autoregressive models (AR), moving averages, and
Kalman filters. Although these models are good in
linear and stationary conditions, in highly non-
linear and time-varying nature of loads as typical
of new energy systems, they perform poorly (Deb
et al., 2017).
Multi-dimensional models incorporating
regression models and signal decomposition
models: To surmount these drawbacks researchers
have explored hybrid models of decomposing a
signal and using regression models. As an example,
it has been proposed that wavelet transform with
support vector regression (SVR) can be used to
enhance accuracy in non-stationary load
conditions (Amjady & Keynia, 2009). In the same
vein, utilizing machine learning together with
empowerment mode decomposition (EMD) to
distinguish noise and enhance signal clarity and
forecasting has also been employed (Zhou et al.,
2018).
2.3 Emergence of Machine Learning in Load
Forecasting
Load forecasting has seen a revolution through
machine learning (ML) which allows models to
learn directly on historical data without any
explicit programming. Short-term load
forecastings performed with the use of decision
trees, such as Random Forest (RF) and Gradient
Boosted Trees (GBT), have been proven to be
rather accurate, both in small geographic areas
and demand shapes (Lago et al., 2021). In
contrast, statistical models do not dynamically
adapt to the changing input characteristics
including temperature, humidity, type of day, and
solar irradiance, thus are not ideal to practice
microgrids (Abuella & Chowdhury, 2015).
Ensemble learning Ensemble learning techniques
have been used in recent years to increase
robustness and minimize forecast variance. In
aggregating weak learners, AdaBoost and
XGBoost have been seen as promising (Wang et
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al., 2022). Along with this, hybrid models that
divide into categories (e.g., K-means) with
supervised ML methods have been effective in the
isolation of seasonal patterns and granularity of
the forecasts (Fekri et al., 2020).
2.4 Deep Learning Models for Temporal Load
Patterns
Recurrent neural networks (RNN), especially
those based on deep learning has demonstrated
important benefits in the task of time-series
energy prediction because of their capability to
learn temporal relations. The Gated Recurrent
units (GRUS) and Long Short-Term Memory
(LSTMs) offer an advantage over traditional
feedforward networks because they believably
conserve long term information in load profiles
(Qiu et al., 2021). Moreover, bidirectional LSTM
and CNNs have been jointly employed to predict
the spatial features and time features of microgrid
load data (Sahoo et al., 2021).
A load prediction using graph neural networks
(GNNs) is also becoming noticeable where energy
nodes act upon one another, such as in an
interconnected microgrid network. These models
take note of nodal structural dependencies and
are useful in the multi-agent energy environments
forecasting (Chen et al., 2023). Transformer-based
models initially found use in natural language
processing, and now they are used in energy
forecasting because of their attention mechanism
and effectiveness in handling long input vectors
(Li et al., 2023).
2.5 Reinforcement Learning for Energy
Optimization
To optimize the microgrid operation,
Reinforcement Learning (RL) has become an
effective tool. Unlike supervised learning, RL does
not need labeled data, but that it learns by
interacting with the world. Deep Q-Networks
(DQN) and Q-learning are popular to schedule
energy storage and peak shaving and dynamic-
pricing policies (Wang et al., 2019). Indicatively,
an RL controller will be able to learn how to
charge and discharge the batteries in an optimal

way corresponding to real-time electric prices and
loads, resulting in a cost reduction and more
reliable grids (Zhang et al., 2021).
The more recent developments are the Actor-critic
structures and the Proximal Policy Optimization
(PPO) algorithms on the basis of stability and
robustness when used on large state-action spaces.
The models have been used to optimize multi-
objective problems in microgrid such as to
minimize energy costs and maximize photovoltaic
utilization (Sun et al., 2022). Coordination
among agents is also a problem of great
importance in multigrids: multigrid single-agent
reinforcement learning has also been applied to
control multiple DERs in a community microgrid
(Nguyen et al., 2022).
2.6 Integrated ML Frameworks in Smart
Microgrids
Research on ML models to forecast and RL to
optimize is old, but combined components in the
area are still new. The advantage of integration is
that it allows adaptive and proactive control
systems that are capable of adjusting operations
based on the expected conditions of the operators
instead of acting and responding to deviations in
real time (Liu et al., 2020). As an example, Javed
et al. (2021) introduced an integrated LSTM-RL
model that aims to forecast the demand and
optimize the dispatch concurrently, leading to
massive energy savings and a reduction in
computational costs.
The other novel direction is hierarchical learning,
which considers forecasting and control as
distinct, and yet interrelated layers. The demand
is forecasted in the forecasting layer and then is
used in the control layer in order to see how the
controls should be done in the most optimal way.
Decoupled systems are modular and fault-tolerant
and can therefore be scaled to be used in the real
world (Feng et al., 2021). Moreover, edge
computing and federated learning are discussed to
execute ML models nearer to the data, limits the
wait time, and guarantee the privacy of the data
(Rahman et al., 2022).
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2.7 Gaps in Existing Research and Future
Trends
Amid the advancements in energy systems
enabled by ML, a series of gaps are extant. On the
one hand, the majority of models presuppose
ideal data access, but in the real world, the
systems experience incomplete data (missing
values), sensor noise, and communication latency
(Singh et al., 2022). Secondly, majority of RL
applications are being developed either in
simplified simulation environments that do not
represent physical and economic constraints of
real microgrids. Evaluation metrics are also not
standardized, and thus results cannot be easily
compared between studies (Ali et al., 2023).
Future studies can aim at building general and
transferable ML models which can fit in different
microgrid setups and scenarios. It is also necessary
to focus on real-time deployment, interpretability,
and alignment with market mechanisms to
achieve economic opinion and regulatory
requirements (Hu et al., 2023). Finally,
benchmarking and joint open research based on
increasing availability of open-access microgrid
datasets can be also a source of innovation.
3. Methodology
3.1 Research Framework and Design
The research contends with a data based,
experimental research design that combines load
forecasting methodology through machine
learning (ML) and energy optimization through
reinforcement learning (RL) on a smart microgrid
environment. The research model is then
designed to model and analyze a real-time
microgrid management system through the use of
both time series consumption, weather, and
energy production rates. The structure comprises
two main modules: a module of the short term
load forecast based on a Long Short-Term
Memory (LSTM) model and a module of real-time
optimization with the help of Deep Q-Learning
(DQN) agent. The general aim of the
methodology will be to develop a unified system
that dynamically predicts energy loads throughout

the day and coordinately regulates distributed
energy resources (DERs) to achieve optimal
operation costs and energy efficiency, such as solar
photovoltaic (PV) systems and battery energy
storage systems.
3.2 Data Collection and Preprocessing
A traditional dataset was prepared using a smart
microgrid system installed in a university campus
environment in order to guarantee the superiority
of the machine learning model training and
testing. The data set consisted of 1-year actual
time data recorded at 15 min, containing active
power load, reactive power, solar radiation,
ambient temperature, and humidity, and
occupancy patterns. The data sources were various
smart meters, local weather stations, and BMS.
There were numerous inconsistencies on the raw
data including missing values, outliers, gaps in
time and time lags, which were resolved through
standard data cleaning methods. Linear
interpolation was used to fill missing values
whereas outliers were dealt with through the
interquartile range (IQR) approach. The min-max
scaling was applied to all numeric data to create a
representative consistent distribution across all
features and speed up deep learning model
convergence.
3.3 Load Forecasting with LSTM Networks
A forecasting load module was implemented
based on LSTM network architecture because it
has the ability to reflect remote time dependencies
on sequential variables. The model architecture
involved an input layer, two sequential LSTM
layers with 64 and 32 nodes respectively, dropout
layer to avoid overfitting and final dense layer of
prediction of the predicted load value. The cases
used to train the LSTM using a sliding window
technique where the model would be given 48
previous time steps or 12 hours of data in length
and would be asked to predict the time step,
followed it. This model was run in TensorFlow
and optimized by Adam method with the mean
squared error (MSE) as a loss function. Measuring
Model Generalizability--They used 5-fold cross-
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validation, which is split between training and
testing sets of data in ratios of 80:20.
3.4 Energy Optimization Using Deep Q-
Learning
The problem of energy optimization received a
Markov Decision Process (MDP) representation in
which the smart microgrid system operates in a
dynamic environment and learns to optimally act
by trial and error. Variables in the state space
included the current load demand, the battery
state of charge, the available solar generation, the
price of electricity and the predicted demand.
Action space included discrete choices of charging
or discharging battery, curtailing flexibility loads
or drawing power at main grid. The reward was
optimized to capture several goals such as the
minimization of cost of operation, maximization
of service life of batteries, and prevention of
overloading of non-renewable grid power.
This DQN structure consisted of deep neural
network architecture (3 hidden layers of 128, 64
and 32 neurons with ReLU activation functions)
and, as output, the estimation of Q-values of each
action that is possible. The agent employed an ε -
greedy action selection rule to explore, and the
experience replay to stabilize learning. The model
had been trained in a simulator with OpenAI
Gym combined with customized microgrid
simulation modules. Based on predetermined
criteria of cost and efficiency, the environment
would respond to every action with a state update
and reward. The training was done until
convergence in the Q-value estimations and
cumulative reward administration was noticed in
1000 episodes.
3.5 Integrated Operation of Forecasting and
Control Models
These LSTM and DQN models were connected in
a real time loop, which was supposed to emulate
the self control of the microgrid. The LSTM
model predicted the load in the next 15-minute
time slot and the DQN agent used this forecast in
its state representation when computing the best
energy dispatch decisions. Such integration

allowed the system to spawn proactively,
considering the predictable changes in demand
rather than relying on immediate load. The
success of the coordinated system was based on its
capacity to lessen grid reliance, decrease energy
expenses, and enhance the utilization of energy
resources, particularly during shifting weather
conditions and peak loads.
3.6 Performance Evaluation Metrics
Three fundamental performance indicators were
assessed to benchmark the performance of the
load forecasting module which included: Mean
Absolute Error (MAE), Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error
(MAPE). The metrics are selected on the basis
that they are common to the energy prediction
forecasting literature and that they allow absolute
and relative metrics of prediction errors. In the
energy optimization module, the metrics used to
evaluate the model included the total energy cost,
the reduction in the peak load, the efficiency of
battery utilization and the ratio of renewable
energy consumed. Further on, the convergence
curves as well as episode reward graphs were used
to evaluate the stability and the efficiency of
learning the DQN agent. Comparison of the
results of the integrated system with two baselines:
a rule-base and a conventional optimization
algorithm (Mixed-Integer Linear Programming)
were conducted to indicate the gains in flexibility
and online results.
4. Results
4.1 Load Profile and Environmental Correlation
The study commenced by analyzing the power
load behavior of the smart microgrid based on the
real-time data that were sampled at 15-minute
intervals. As indicated in Table 1, the active
power and reactive power varied across the
sampling window with the active power
fluctuating between 95.3 kW and 110.1 kW and
active power associated changes in reactive power
and humidity. These trends can be graphically
seen in figure 1, which depicts a gradual increase
in active power in the early hours of the morning
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and a slight variation in reactive power
accompanying it. Our plot supports the notion
that power demand is sensitive to changes in time
and environment, particularly temperature and

humidity, which supports the criticality of
considering meteorological parameters in
predictive models.

Table 1: Historical Load Data Sample

Timestamp Active Power
(kW)

Reactive Power
(kVAR)

Temperature (°C) Humidity (%)

2025-01-01
00:00

102.5 52.1 21.5 55.0

2025-01-01
00:15

98.7 50.2 21.4 56.1

2025-01-01
00:30

95.3 48.6 21.2 57.3

2025-01-01
00:45

99.2 49.3 21.0 58.4

2025-01-01
01:00

105.6 53.0 20.9 59.5

2025-01-01
01:15

110.1 54.5 20.7 60.1

2025-01-01
01:30

108.9 53.8 20.6 60.7

2025-01-01
01:45

106.2 52.6 20.5 61.2

2025-01-01
02:00

103.4 51.0 20.4 61.8
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2025-01-01
02:15

101.8 50.7 20.2 62.3

Figure 1: Active vs Reactive Power Over Time

4.2 LSTM Model Learning Performance
To test the capacity of the forecasting model to
learn the patterns of the load dynamics, the
LSTM network was trained in ten epochs. As
Table 2 indicates, training and validation loss
were decreasing regularly, and the training loss
decreased by 0.123 to 0.042, and the validation
loss by 0.130 to 0.045. Figure 2 shows visual
verification of the model convergence, which
proves stable learning not overfitting. Consistent
reduction of the distance between the training

and validation curves over the 10th epoch
substantiates that the LSTM model has a good
generalization to an unseen data, which supports
the notion that it is suitable to perform short-term
load forecasting within dynamic microgrid
settings.

Table 2: LSTM Model Training Summary

Epoch Training Loss Validation Loss

1 0.123 0.130

2 0.098 0.105
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3 0.083 0.090

4 0.072 0.078

5 0.064 0.070

6 0.058 0.062

7 0.053 0.057

8 0.049 0.052

9 0.045 0.048

10 0.042 0.045

Figure 2: LSTM Training vs Validation Loss

4.3 Forecasting Accuracy by Time of Day

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Baloch et al, 2025 | Page 1100

The performance of the forecasting model was
also time-dissected along six time points in the day.
Table 3 shows the Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE) at each time
slot. These showed 0.021 more errors over the
16.00 to 19.59 loading, showing peak load
volatility. The heatmap of these error metrics

shown in Figure 3 indicates that the overall
accuracy of the forecasts higher in the off-peak
hours mainly between 00:00-03:59 hours with
MAPE as low as 2.9%. The present analysis
illustrates the need to incorporate adaptive
temporal aspects in forecasting models to capture
the variability of loads during the day.

Table 3: Forecasting Accuracy by Time of Day

Time Interval MAE RMSE MAPE (%)

00:00–03:59 0.85 1.34 2.9

04:00–07:59 0.91 1.48 3.3

08:00–11:59 0.98 1.59 3.8

12:00–15:59 1.05 1.66 4.1

16:00–19:59 1.12 1.78 4.6

20:00–23:59 0.95 1.47 3.5

Figure 3: Forecasting Accuracy by Time Interval (Heatmap)

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Baloch et al, 2025 | Page 1101

4.4 Reinforcement Learning Agent Behavior
The model, which was trained as reinforcement
learning (RL) component, framed as Deep Q-
Networks (DQN), was utilized when it comes to
handling energy dispatch optimally. The
performance of the agent after 10 episodes is
found in Table 4. The total reward was also
continuously improved becoming 200 in the
tenth episode compared to 45 in the first episode
but the corresponding loss was however reduced

implying favorable learning and policy
improvement. ε-greedy policy also demonstrated a
gradual deterioration of the exploration
parameter, which means the transition of the
exploration to exploitation. The negative
relationship between reward and loss is visualized
in figure 4 in form of dual- axis plots. This
outcome verifies that the agent can learn near-
optimal control policies efficiently with only a
small amount of training time.

Table 4: Optimization Agent Training Summary

Episode Total Reward Loss Epsilon

1 45 0.322 1.00

2 67 0.298 0.95

3 89 0.275 0.90
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4 110 0.243 0.85

5 135 0.215 0.80

6 155 0.192 0.75

7 172 0.176 0.70

8 185 0.162 0.65

9 194 0.150 0.60

10 200 0.140 0.55

Figure 4: DQN Agent Training Progress (Total Reward and Loss)

4.5 Energy Resource Utilization Patterns
Comprehensive breakdown of resources was done
to determine the contribution of different sources
to total energy supply. Table 5 reveals that Solar
PV contributed 68.4% of energy supplied and
Battery Storage contributed 76.1%. Although it
was not used in large volumes, Grid Power still

supplied more than 90 percent of the operation
cost because it charges high tariffs. These facts are
supported by Figure 5, in which the energy
contribution by different sources is provided in a
horizontal bar graph. These findings emphasize
the role of using local renewable generation and
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storage to lessen operational reliance on the high-
cost primary grid.

Table 5: Energy Resource Utilization

Resource Energy Supplied (kWh) Utilization (%) Cost Contribution (%)

Solar PV 8200 68.4 0.0

Battery Storage 4300 76.1 9.1

Grid Power 2900 43.2 90.9

Diesel Generator 0 0.0 0.0

Figure 5: Energy Supplied by Resource (Horizontal Bar Chart)

4.6 Comparative Performance of Energy
Strategies
To evaluate the performance of ML-based
optimization, a comparison was made among the
three strategies, i.e., Baseline, Rule-Based, and
DQN Optimization. Table 6 shows that the DQN

model had the lowest aggregate cost (USD 965),
the lowest peak load (135 kW), and the highest
battery efficiency (81.3%) and renewable
utilization (72.4%). The graphical evidence in
Figure 6, a radar chart, makes it clear that the
DQN approach outperformed all other
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dimensions in performance. These results confirm
reinforcement learning addition as a sturdy

substitute to conventional rule-based dispatch
mechanisms.

Table 6: Cost Comparison Across Strategies

Strategy Total Cost
(USD)

Peak Load
(kW)

Battery Usage
Efficiency (%)

Renewable
Utilization (%)

Baseline 1250 185 63.5 54.2

Rule-Based 1020 160 72.2 61.7

DQN
Optimization

965 135 81.3 72.4

Figure 6: Strategy Comparison Radar Chart
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4.7 Load Demand vs Renewable Generation
Trends
To investigate the correlation between renewable
generation and load demand, solar energy
production was considered in comparison with
daily load statistics. The values are tabulated in
Table 7 over five consecutive days, where grid
dependency varied between 38.9% and 48.5%
depending on renewable availability. The total
load and renewable generation were compared

graphically over these days in Figure 7. The
increasing trend of renewable generation on some
days was substituted the grid utilisation to a large
extent which indicated the usefulness of
integrating renewables in the external energy
dependency lessening. This is another trend that
pushes the importance of having predictive
models which consider weather based renewable
forecast.

Table 7: Renewable Generation vs. Load Demand

Day Total Load (kWh) Renewable Generation (kWh) Grid Dependency (%)

2025-01-01 3400 1800 47.1

2025-01-02 3600 2200 38.9

2025-01-03 3500 2000 42.9

2025-01-04 3300 1700 48.5

2025-01-05 3450 2100 39.1

Figure 7: Load vs Renewable Generation Over Days
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4.8 Decision Patterns of the RL Agent
Lastly, action frequency was used to quantify the
decision-making behavior of the DQN agent.
Table 8 reveals that the commonest actions were
the use of Solar PV (28%) and charging the
battery (23%) followed by curtailing loads (10%).
This action distribution can also be effectively
visualized using a donut chart, Figure 8. The

supremacy of sustainable energy-oriented choices
proves the agent to be biased towards money-
saving and environmental-friendly strategies and
once again proves the model to be in line with the
objectives of smart energy systems in a practical
way.

Table 8: DQN Actions Distribution Over 1000
Steps

Action Frequency Percentage (%)

Charge Battery 230 23.0

Discharge Battery 210 21.0

Use Grid Power 180 18.0

Curtail Load 100 10.0

Use Solar PV 280 28.0

Figure 8: DQN Agent Action Distribution
(Donut Chart)
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5. Discussion
Findings of this paper reveal that machine
learning (ML) models and LSTM and Deep Q-
Learning play a pivotal role in revolutionizing
smart microgrid operations. It showed that LSTM
was effective in load forecasting from the short-
term and in particular at steady off-peak times,
due to its ability to capture both temporal
correlations and non-linearity in the consumption
data. The results align with more recent research
by Salinas et al. (2020) who determined that
sequence-based models are considerably more
effective than traditional methods in predicting
energy systems time-series. Moreover, the reduced
forecasting accuracy at peak hours that appeared
in our findings finds its confirmation in Bouktif
et al. (2019) who have stressed the necessity of
introducing dynamic feature weighting or

attention mechanisms at highly volatile hourly
loads.
The proactive design of the integrated framework
was also one of its key strengths in which the
prediction of load itself acted as a real-time input
towards optimization through reinforcement
learning (RL). This forward-looking combination
of forecasting and control has had limited
coverage in existing literature yet is being picked
up. As an illustration, a multi-agent system
blending forecasting and decentralized control
was suggested by Shi et al. (2021), who focused on
the corresponding equivalence in performance of
scalability and responsiveness. They are right
according to our findings, particularly that they
were able to cut on peak loads, and improve
battery storage capacity through clever scheduling.
Our proposed model using the DQN agent
appeared strongly able to learn and reduce
operational cost and optimize resource utilization
during each operational turn, which is similarly
evidenced in the work of Huang et al. (2022), who
demonstrated that we can quickly achieve a high
level of demand-response optimization using RL-
based microgrid management systems that do not
necessarily need any predefine rules to operate.
The trend of growing cumulative returns and
shrinking losses confirm that the DQN agent
managed to find an optimal policy by interacting
with the environment. Such learning patterns
parallels trends described by Xu et al., who aimed
to enhance energy arbitrage in distributed systems
using RL, demonstrating the promise of adaptive
control strategies under unpredictable and
constrained systems.
A key take-away of the findings is the increased
use of solar photovoltaic (PV) and battery
installations, which is reflected in what the agent
prefers to do. It corresponds to the results of Kim
and Lee (2022), who stated that with the reward
scheme where the penalty of utilizing the grid is
greater than the benefits of local generation, RL
agents would shift to renewables and storage.
Nevertheless, physical realization of such
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intelligent agents in the real world should take
into account user comfort and appliance-level
constraints, not considered in our simulation, as
argued by Gholami . et al. (2021). Future models
must, consequently, have constraint-handling
mechanism or soft penalties in order to maintain
quality of service (QoS).
The other aspect brought out by the cost
comparison is that the ML-based dispatch is
superior to rule-based dispatch. Rule-based
strategies are deterministic though simpler to
implement but do not have flexibility to adjust to
real-time changes. Such inflexibility was
highlighted in an article by Wang et al. (2021),
who found that deterministic models performed
poorly when addressing peak pricing periods
because they cannot be changed dynamically.
Using the DQN optimization, we managed to
reduce the overall cost by 22.8 percent and
drastically improve the battery efficiency, thus
facilitating the shift from the classical to the
learning-based decision system in smart microgrid
systems.
Remarkably, the simulation performance of our
model is in good correlation with empirical
investigations on hybrid energy systems. Ren et al.
(2021) demonstrate that the combination of
storage and renewables incorporating predictive
analytics can significantly reduce greenhouse gas
emissions and the cost of operation as long as
they are responsive to the changes both in
demand and supply in real-time. These dynamics
are also reflected in the daily variation of load and
renewable supply in our results, especially in the
urban and semi-urban energy environments where
microgrids are more frequently used.
Although the model established within this
research is solid, a number of difficulties and
limitations have to be highlighted. 1. The model
supposes perfection in both data availability and
system reliability. Nevertheless, in reality, the
microgrids are subject to data loss, sensor
breakdown, and communication delays, which, as
demonstrated by Banerjee et al. (2020), can

undermine the precision of the model and the
effectiveness of the control. Future systems can
incorporate redundancy mechanisms or edge-
based computation as proposed by Zhang et al.
(2023) to maintain resilience and reduce the
cloud latency in response to such concerns.
Second, the LSTM network gave precise results in
predicting the load, but its interpretation is not
possible. Explainability is paramount in high-
stakes applications, e.g. healthcare or critical
infrastructure. Such concerns have been proposed
to be solved using LIME (Local Interpretable
Model-agnostic Explanations) (Ribeiro et al.,
2016), and the recent work of Lundberg et al.
(2020) with SHAP (SHapley Additive
exPlanations) holds promise of visualization and
interpreting decisions of the model, in the context
of energy systems. Stakeholder trust and
regulatory compliance would increase with such
explainability tools embedded.
Third, the research concentrates predominantly
on centralized microgrid control. Decentralized
and peer-to-peer (P2P) energy trading systems
form, in contrast, possible alternatives. Combined
with blockchain, P2P networks can provide
transparent, scalable, and secure energy
transactions (Zhang and Huang, 2022). The
introduction of DQN-based optimization into a
decentralized trading system might open the
potential of democratized energy governance.
In addition we should mention the economic and
environmental consequences of our research. The
proposed framework aligns with sustainability
objectives and energy self-sufficiency through
reduced grid reliance and maximized local
renewable consumption. This aligns with the
policy-focused study conducted by Raza et al.
(2021), which identified that an emphasis on
digital transformation and automation is required
to meet national energy targets on the lines of the
Paris Agreement.
As a corollary, this discussion supports the
argument that integrating LSTMs and RL in
smart microgrids entails significant gains in

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Baloch et al, 2025 | Page 1109

precision, cost-effectiveness, and sustainability. In
practice, however, there will have to be solutions
to the challenges of data integrity, explainability,
decentralized operation and regulatory alignment.
Research directions going forward should
consider hybrid users of deep learning and
symbolic reasoning, federated learning to preserve
privacy, and the use of edge-AI frameworks to
scale the deployment of intelligent energy systems
toward real-time capabilities.
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