
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com |Muhammad Azam et al 2025 | Page 996

A COMPREHENSIVE REVIEW OF SOFTWARE DEVELOPMENT
METHODOLOGIES: MODELS, MINDSET, AND MISUNDERSTANDINGS

1Muhammad Zeeshan Haider Ali, 2Abdulrehman Arif, 3Syed Zohair Quain Haider,
4*Muhammad Azam, 5Mubasher H Malik, 6Ammad Hussain

123456Department of Computer Science, University of Southern Punjab Multan

1ali.zeeshan04@gmail.com2Khanabdulrehman026@gmail.com3zohairhaider67@gmail.com
4muhammadazam.lashari@gmail.com 5mubasher@usp.edu.pk 6ammadhussain709@gmail.com

DOI: https://doi.org/10.5281/zenodo.16414601

Abstract
Software development has evolved from highly structured models to more
flexible, adaptive methodologies. This paper reviews key software
development techniques, including traditional models like the Waterfall
approach, as well as modern frameworks such as Agile, DevOps, and AI-
assisted methodologies. A comprehensive analysis of over 50 peer-reviewed
articles is conducted, encompassing both historical and contemporary
approaches to software development. The literature review is structured
chronologically to highlight the progression of Software Development
Methodologies (SDMs), enabling readers to track the evolution of these
techniques over time. A detailed comparison table is presented to assist in
understanding the advantages, limitations, and applications of each
methodology. The objective of this review is to guide researchers and
practitioners in selecting the most suitable SDM for dynamic, evolving
project requirements.

Keywords
Software Development
Methodologies (SDMs),
Agile and Traditional
Models, Hybrid Approaches,
DevOps and AI-driven
Methods, Methodological
Misconceptions

Article History
Received on 08 June 2025
Accepted on 29 June 2025
Published on 24 July 2025

Copyright @Author
Corresponding Author: *
Muhammad Azam

INTRODUCTION
Software engineering is a thoughtful practice
of designing, developing, and maintaining the
software systems that leads towards efficient,
scalable, and reliable solutions. It developed as
a reaction to increase diligence of software
projects proposed in late 20th century, where
ad hoc programming was insufficient in size of
the system (J. Dick, et.al 2017). The discipline

involves computing, management and
engineering ideas so as to focus on resolvable
obstacles in cost overruns, delays and quality
concerns. Software engineering refers to a
process that involves a variety of treatments
such as requirement analysis, design, coding,
testing, and maintenance processes all of
which are aided in provision of working

mailto:ali.zeeshan04@gmail.com
mailto:Khanabdulrehman026@gmail.com
mailto:zohairhaider67@gmail.com
mailto:muhammadazam.lashari@gmail.com
mailto:mubasher@usp.edu.pk
mailto:ammadhussain709@gmail.com
https://doi.org/10.5281/zenodo.16414601
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 997

software in stipulated restrictions. These
processes are guided in part by methodologies
that present structured processes to deal with
complexity and how to ensure conformance
with goals of a project (R. Anwar et.al 2023).
Methodologies have since changed with time
and depending on the preferences of users,
organizational requirements and technological
development. The evolution has led to the
generation of a continuum of models, such as
rigid, plan-based methodologies such as
Waterfall and flexible, iterative processes, like
Agile and DevOps (P. Talele et.al 2023).
Different approaches have different mindsets,
which leads to the way a team works, priorities
and the basis of measuring success.
Nevertheless, they continue to be
misconstrued to some extent, e.g., Agile is
believed to be another thing, or Waterfall is
called foolproof, and that ultimately was
misapplied. This paper introduces the
spectrum of software methodologies, their
history, advantages or disadvantages, and
successes at the condition that they are
concerned with software project management
(SPM). Looking at their history and
contribution, we will demystify how they are
supposed to be used and their myths so as to
have a concise insight into the methodological
practices of software engineering (B. Jawale
et.al 2015).
The methods used to build software in
software engineering have transformed a lot
with time. An organized engineering discipline
in the past has now become more flexible,
collaborative and sometimes quite
unpredictable. The number and range of
software development methodologies (SDMs)
have increased greatly, starting from Waterfall
in the 1970s, through Agile in the early 2000s
and now with DevOps and AI-powered
development (F. A. Bukhsh et.al 2020). Every
leadership approach is built on a set of beliefs
about people, teams, processes and results. For

some teams, clear documentation and
predictable workflow are the main concern; for
others, closely working with customers, fast-
paced changes and adjusting to new situations
matter more. Because organizations have
diverse viewpoints, there has been much
discussion in studies and from industry experts.
Actually, organizations sometimes find it hard
to decide on or carry out the appropriate
methodology, even when many models are
available. This leads to many people being
confused, clinging to strict views and making
frequent mistakes, for example, believing Agile
is only about buzzwords and DevOps centers
on using certain automation tools (R.Anwar et
al. 2023).
Most literature reviews center on comparing
various approaches or closely examining
families of methods (like Agile vs. traditional),
yet they frequently miss important aspects.
First, most ignore the changes in people’s
thinking and traditions that accompany every
new methodology, what call mindsets. Second,
not many of them examine the ongoing
misunderstandings, including believes Agile
always offers quicker work or that DevOps
maters just for larger organizations. Many
times, reviews fail to include advances like AI
playing a role in programming, ongoing
experiments or the mix of formality with agility
in project delivery (S. Robertson et.al 2012).
This paper tries to address those problems.
This article, named "The Software
Methodology Spectrum: A Review of Models,
Mindsets and Misconceptions," looks at more
than 60 important and informative papers
from the past two decades. A specific metadata
structure is used to study these sources by
grouping them by the methods employed,
main study theme, the way they were evaluated
and what their key findings were. Different
SDMs are compared by their themes and over
time to reveal their differences, how they have
changed and what advantages and drawbacks

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 998

they introduce (Talele, P., & Phalnikar, R. et al
2023).
Importance of Software Project Management
(SPM)
Software Project Management (SPM) is what
has been in place to make software developing
successful because it helps to make the projects
to meet their objectives within the constraints
both in time, budget and quality (A. Aurum
et.al 2005). SPM pertains to the scheduling,
regulating as well as managing of resources,
activities and teams to provide software that
meets the demands of the stakeholders.
Effective SPM reduces risks, like scope creep or
lack of sufficient resources by having well
defined goals, schedules and communication
channels. It unites the technical efforts to
business goals, making developers, testers, and
other stakeholders work together (M. S. Jahan
et.al 2019). Ineffective SPM, on the other
hand, results in failures in the projects--
witnessed by the fact that more than 50
percent of software projects are overtime or off
schedule according to the research made. The
significance of SPM is that this will be in a
position to maintain a balance between
competing pressures: producing functional
software, cost and schedule management. It
demands risk assessment, resource allocation,
and conflict resolution abilities, frequently
with such tools as Gantt charts or project
management programs (M. Fowler et.al 2001).
The SPM is also flexible to accommodate
methodologies to projects, (either rigid such as
Waterfall and elastic such as Agile). Myths
about the SPM, including the assumption that
it is a synonym of bureaucracy, can negate its
usefulness, but it is essential to deal with
complexity. As an example, large projects such
as an enterprise system require strong SPM to
harness heterogeneous teams; whereas a small

project would require light SPM in order to be
more agile. The software system is becoming
increasingly complex and large and SPM is
proving ever more crucial to achieving quality,
traceability, and stakeholder satisfaction, hence
the importance of SPM in contemporary
software engineering (J. Miler et.al 2020).
Focuses mainly on the following main ideas.
50+ papers addressing SDM are arranged in a
Meta table, giving you the key takeaways from
each.

● The literature review is set up around the main
methodology types, including traditional, agile,
hybrid, DevOps and AI-based.

● Reviewing common mistakes that allow SDMs
to fall short in their roles.

● Explaining how the attitude developers have
toward problems, not just the ways they
develop, plays a big role in their success.

● What should be the next steps for research,
practice and the improvement of methods?
By looking at software development
methodologies as overlapping, this paper aims
to show that various models can be changed or
merged to meet growing requirements in teams,
technology and stakeholders.Charting the
range of Software Development Methodologies
Software development methodologies are more
about the way in this research see work, teams,
technology and changes and not just a list of
frameworks. This part of the discussion looks
at the main types of SDMs, starting with
engineering backgrounds up to their current
adaptable, AI-driven models. There are six
different segments in the review, each section
covering a specific area of methodology
families. In every section, describe the
development, main principles, pros, cons and
major observations from research studies
(Talele, P., & Phalnikar, R. et al 2023).

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 999

Table: Evolution of Software Methodologies
Period Methodology Key Features Strengths Weaknesses Effectiveness
1950s-
1960s

Ad Hoc and
Code-and-Fix

Informal, no
structured
processes, code
written and fixed
as errors appear.

Easy to start,
low overhead,
suitable for
small projects.

No
documentation,
no traceability,
high error rates
in large projects.

Works for
small-scale
projects but
not complex
systems.

1970 Waterfall
Model

Sequential
phases:
requirements,
design,
implementation,
testing, and
maintenance.

Predictable,
well-
documented,
manageable.

Inflexible to
changes, late
testing can be
costly.

Ideal for fixed
requirements
but ineffective
in dynamic
environments.

1980s Spiral Model Iterative, with
risk assessment,
planning,
prototyping, and
evaluation in
each phase.

Adaptive, risk-
oriented,
allows
prototyping.

Resource-
intensive,
requires skilled
professionals.

Suitable for
high-risk, large
projects but
complex for
smaller ones.

1990s Rapid
Application
Development
(RAD)

Focused on fast
prototyping, user
feedback, and
quick delivery.

Fast delivery,
customer-
centric,
adaptable.

Low scalability,
requires skilled
developers and
active user
participation.

Effective for
small, dynamic
projects but
not suitable for
large systems.

2001 Agile
Manifesto

Emphasizes
collaboration,
flexibility, and
iterative delivery
(e.g., Scrum,
Kanban).

High
adaptability,
client-focused,
quick
response to
changes.

Requires
cultural
alignment, may
lack
documentation.

Effective for
dynamic
projects but
challenging for
environments
needing tight
governance.

2010s-
Present

DevOps Focus on
continuous
integration and
delivery through
collaboration
between
development and
operations.

Fast
deployment,
highly
collaborative,
scalable.

Complicated
setup, resistance
from traditional
organizations.

Dominates
high-velocity,
cloud-driven
environments
but faces
challenges with
legacy systems.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1000

Figure 1 ESM

Discussion
The evolution of software development
methodologies reflects the increasing
complexity of software systems and the need
for more adaptive, efficient processes. Initially,
in the 1950s and 1960s, software development
was informal, relying on Ad Hoc and Code-
and-Fix approaches that worked for small,
straightforward projects but were prone to
high error rates and inefficiencies in large
systems. The Waterfall Model, introduced in
1970, formalized development into sequential
phases and became popular for projects with
fixed requirements, such as government
systems. However, its rigidity and delayed
testing made it unsuitable for dynamic
environments where requirements changed
frequently. This limitation led to the
development of the Spiral Model in the 1980s,
which incorporated risk assessment and
iterative development, making it well-suited for
high-risk projects but resource-intensive and
complex for smaller ones.
In the 1990s, Rapid Application Development
(RAD) emerged, prioritizing speed and user

feedback, making it ideal for smaller, more
dynamic projects. However, RAD’s reliance on
skilled developers and user participation made
it less scalable for larger projects. The Agile
Manifesto of 2001 revolutionized software
development by promoting flexibility,
collaboration, and iterative delivery. Agile
methodologies, such as Scrum and Kanban,
thrived in dynamic, client-focused
environments, though they faced challenges in
organizations that required strict governance
and predictability. Finally, the rise of DevOps
in the 2010s marked a shift towards
continuous integration and collaboration
between development and operations teams,
enabling rapid deployment and scalability in
cloud-driven environments. However, DevOps
also faced resistance from traditional
organizations and was less effective in dealing
with legacy systems.
Overall, these methodologies illustrate the
shift from rigid, structured processes (like
Waterfall) to more flexible, collaborative
approaches (like Agile and DevOps) as the

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1001

software development industry adapts to the
demands of speed, change, and continuous
delivery. Each methodology is suited to
different project environments, and
understanding their strengths and weaknesses
helps in selecting the appropriate approach for
a given project.
Literature Review:
In the previous discussion, the revolution of
software methods, its qualities and
shortcomings and the decisive importance of
Software Project Management (SPM) in
meeting project limitations and
misconceptions as illustrated in the text
presented was dwelled upon. The text proceeds
beyond discussing this by examining the
methodology of more than 50 papers,
comparing such approaches as Waterfall,
Spiral, RAD, Agile, and DevOps, and pointing
out their flexibility to technological and
cultural changes. It elaborates the significance
of SPM in synchronization of resources and
objectives and busts the myths like Agile is not
disciplined. This ordered meta-analysis justifies
the circumstantiality of method-choice.
(J. Dick et. al 2017) This publication by
Jackson and others focuses on studying
Requirements Engineering (RE) and its
approach to identifying, examining and
defining software requirements. The book
includes the main RE methods, tools and
practices, giving a clear method for handling
requirements. They stress that proper
communication between the stakeholders and
those building the software helps achieve what
users need. Main areas focus on getting
requirements, defining the project’s scope and
verifying through testing and reviews. The
book explores how Agile techniques differ
from structured approaches and analyzes their
advantages as well as the disadvantages.
(R.Anwar, M. B. Bashir et. al 2023) discuss
how Artificial Intelligence, including machine
learning and neural networks, can be used in

prioritizing software requirements. More than
40 studies were analyzed by the authors to
show how AI improves how prioritization is
done by decreasing errors and making
decisions more quickly. It is said that by using
AI, decision-makers can sort projects more
effectively; yet the data has to be reliable and
algorithms fine-tuned. Anyone wanting to
merge AI into software development can find
this study very helpful.
Talele, P., Phalnikar, R,.et al (2023). An
improved Adam method for automatically
prioritizing software requirements. The
authors introduce an enhanced Adam method
for software requirement prioritization,
showing its improvement over older methods
with up to a 15% increase in efficiency and
accuracy. This approach is beneficial for large
projects that focus on determining what to
prioritize first.
Jawale, B., Bhole, A. T,.et al (2015). Adaptive
Fuzzy Hierarchical Cumulative Voting
(AFHCV) for prioritizing software
requirements. This study presents the AFHCV
method, which uses a flexible voting process to
address uncertainty in stakeholder preferences,
leading to clearer decision-making. Real-world
testing indicates AFHCV outperforms
traditional techniques in prioritization
accuracy.
Bukhsh, F. A., Bukhsh, Z. A,.et al (2020).
Review of software requirement prioritization
approaches. This research reviews over 50
methods for prioritizing software requirements,
categorized into ranking, cost-benefit, and
mathematical modeling approaches. The
authors note the gaps in existing research and
suggest further studies to evaluate the real-
world application of these techniques.
Robertson, S,.et al (2012). Mastering
requirements in software development. This
book outlines methods for writing effective
software requirements from the start. The
authors provide tools, templates, and strategies

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1002

for involving stakeholders and overcoming
common challenges in requirements gathering,
helping software teams better meet user needs.
Jahan, M. S,.et al (2019). Combining
qualitative and quantitative methods for
software requirement prioritization. This paper
presents a model integrating both qualitative
and quantitative methods to prioritize software
requirements, considering cost, time, and key
stakeholders. A case study shows that the
approach reduces project delays by 25% and
increases stakeholder satisfaction by 15%.
Fowler, M,.et al (2001). The Agile Manifesto.
The authors present the Agile Manifesto,
emphasizing the importance of customer
collaboration over contract negotiation and
adapting to change over following a fixed plan.
This philosophy has shaped iterative and
flexible approaches to software development,
enhancing team collaboration.
Miler, J,.et al (2020). Understanding the Agile
mindset. This paper explores the Agile mindset,
distinguishing it from specific Agile roles such
as Scrum Masters and Product Owners. The
authors argue that adopting the right mindset
is crucial for Agile success, as it helps teams
cope with change, improve continuously, and
achieve high performance.
Schwaber, K,.et al (2011). The Scrum Guide.
The Scrum Guide defines the roles, events,
and artifacts of the Scrum framework. It
emphasizes teamwork, Sprints (iterations), and
customer feedback, providing a structured
approach to Agile development that helps
teams produce high-quality software efficiently.
Beck, K,.et al (2012). Extreme Programming
Explained. Kent Beck outlines the key
principles of Extreme Programming (XP),
including continuous integration, test-driven
development, pair programming, and regular
small releases. These practices enable teams to
quickly adapt, improve code quality, and keep
stakeholders engaged, making the development
process more efficient.

Omar, M., Romli, R. B., & others. (n.d.).
Assessing Agile in software development. This
paper discusses important factors for assessing
Agile in software development, including
flexibility, team cooperation, and customer
engagement. While Agile approaches can lead
to about 25% more effort, challenges like
limited experience and difficulty scaling Agile
in large firms remain. The authors emphasize
the need for both theoretical and practical
adoption of Agile for optimal results.
Ochodek, M., Kopczyńska, S,.et al (2018).
The value of Agile requirements engineering.
The authors examine how industry experts rate
the importance of Agile requirements
engineering. They find that good project
outcomes in Agile depend on clear records,
stakeholder cooperation, and frequent
progress checks. Communication and feedback
were highlighted as crucial for success in Agile
projects.
Curcio, K., Navarro,.et al (2018). The role of
requirements engineering in Agile software
development. This study reviews over 40
studies to identify trends in how Agile teams
handle requirements gathering and
prioritization. The authors highlight flexibility
and collaboration as key to Agile’s success, but
also note the challenges organizations face in
balancing defined rules with Agile's flexibility.
They call for further empirical studies in this
area.
Wnuk, K., Mudduluru, P,.et al (2019).
Value-based requirements engineering in Agile.
This paper focuses on value-based
requirements engineering in Agile
development, suggesting that prioritizing
requirements based on their business value
helps align the project with organizational
goals. The authors argue that this approach
can improve customer satisfaction by 15% and
enhance project efficiency, though further
research is needed.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1003

Racheva, Wieringa,.et al (2010). Prioritizing
requirements in Agile projects. This research
examines how Agile teams manage
requirement prioritization and finds that many
use a mix of techniques, such as MoSCoW
and AHP. However, the authors point out that
teams often struggle to align customer
demands with the final product, resulting in
discrepancies between expected and actual
outcomes.
Racheva, W., & Herrmann, S. (2010). Client-
based method for Agile requirements
prioritization. This paper introduces a method
for involving clients more in the planning
process of Agile projects, showing that this
increases client satisfaction by 20% and speeds
up project completion by 15%. The authors
emphasize the importance of client
involvement in approving changes, particularly
in projects with rapidly changing requirements.
Bakalova, Z., Wieringa, R,.et al (2011). Agile
requirements prioritization: Theory vs. practice.
This paper compares theoretical Agile
prioritization methods with their real-world
application. The authors highlight that teams
often adapt techniques like MoSCoW and
AHP to suit their specific needs, and note the
difficulties Agile teams face when prioritizing
tasks in dynamic projects.
Martakis, A., Daneva, M,.et al (2013).
Managing requirements dependencies in Agile
projects. The study focuses on the challenges
Agile teams face in managing requirements
dependencies. The authors find that such
dependencies hinder teams' ability to prioritize
effectively, with 50% of survey respondents
reporting that dependencies prevent them
from meeting deadlines. The paper suggests
improved systems for handling dependencies
could lead to better project outcomes.
Jarzębowicz, A., Sitko, N,.et al (2020). Agile
requirements prioritization: An industrial
survey. This paper explores how industrial
teams prioritize requirements using a hybrid of

MoSCoW and AHP. The authors suggest that
this combination improves task selection
accuracy, leading to better customer
satisfaction and project success, while
emphasizing the need for flexibility in Agile
projects.
Berntsson Svensson, R., Torkar, R., & others.
(2024). Numerical analysis of software
requirements engineering priorities. This
article provides a numerical analysis of Agile
project prioritization criteria such as customer
value, feasibility, and risk. The authors find
that the MoSCoW method yields the best and
most consistent results, improving
prioritization success by 20%, though the
relevance of each criterion varies by project
type.
Borhan, N. H., & others. ,.et al (2019).
Review of Agile requirements prioritization
techniques. This study reviews 35 publications
on Agile prioritization techniques, focusing on
the effectiveness of MoSCoW and AHP. The
authors find that combining these methods
improves team performance by 22% and
enhances the likelihood of meeting project
goals. They recommend using a mixed
approach to facilitate decision-making and
improve results.
Govil, N,.et al (2021). AI-powered tools for
prioritizing Agile software requirements. This
paper examines how AI tools can improve the
accuracy of prioritizing software requirements,
showing a 30% improvement, especially in
large and complex projects. The authors
emphasize that AI can assist by analyzing
historical data and predicting the next steps.
However, they note that adapting AI to various
project needs is both demanding and requires
detailed adjustments.
Singh, U,.et al (2020). Review of requirement
prioritization tools in Agile development. The
authors review over 40 requirement
prioritization tools, including MoSCoW, AHP,
and voting techniques. They suggest that using

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1004

a hybrid approach can enhance the
prioritization process by 30%, combining the
strengths of multiple methods to provide
better practical solutions.
Somohano-Murrieta,.et al (2020).
Requirement prioritization in application
development. This paper reviews the trend of
using hybrid approaches in requirement
prioritization. The authors find that hybrid
education methods balance stakeholder needs
with project requirements, leading to better
decision-making. They encourage further
research into integrating machine learning
tools to improve prioritization accuracy.
Tufail, H,.et al (2019). Assessing requirement
prioritization methods in Agile. The study
examines five popular prioritization
approaches and finds that using MoSCoW and
AHP together improves ranking accuracy by
18%. The authors recommend combining
qualitative and quantitative methods to handle
prioritization challenges in Agile projects
effectively.
Borhan, N. H,.et al (2022). Experts’ views on
requirements prioritization challenges in Agile
projects. This paper discusses the challenges in
Agile prioritization and highlights that 70% of
experts prefer hybrid approaches. These
approaches deliver balanced results, improve
adaptability to changes, and enhance project
success by including stakeholders in decision-
making.
Saher,.et al (2018). Hybrid techniques for
Agile requirements prioritization. The paper
explores how hybrid methods, such as
combining MoSCoW and AHP, increase
prioritization efficiency by 30%. The authors
stress the importance of flexibility in Agile
projects, as they need to adapt to frequently
changing requirements.
Qaddoura, R,.et al (2017). Analyzing methods
for prioritizing user requirements in Agile
projects. This study analyzes 15 methods for
prioritizing requirements, including cost-

benefit analysis and voting. The authors find
that hybrid models increase stakeholder
agreement by 15%, improving decision-making
and project outcomes. They conclude that
hybrid approaches are often the most effective
for meeting project goals.
Lunarejo, M. I. L,.et al (2021). AI-based
approaches in software requirements
prioritization. This paper proposes using AI
technologies, like fuzzy logic and neural
networks, to enhance prioritization accuracy by
25%. The authors acknowledge the challenge
of accessing large, high-quality data sets for
model training but suggest that AI can
significantly improve prioritization in complex
projects.
Gupta, V,.et al (2014). Dynamic
reprioritization in Agile projects. This case
study examines how dynamic reprioritization
enhances adaptability in Agile teams,
improving flexibility by 60%. The authors
argue that this adaptability helps Agile teams
meet changing project needs and improve
overall project outcomes.
Marnada, P,.et al (2022). Managing scope and
change in Agile projects. This review paper
highlights the importance of effectively
managing scope changes to improve project
success by 25%. The authors recommend
clearer communication with stakeholders and
flexible planning to navigate scope changes in
fast-paced projects.
Rahim, M. S,.et al (2017). Rize: A framework
for Agile requirements prioritization. The Rize
framework, centered on customer benefits,
increases client satisfaction by 20% and
reduces project times by 15%. The approach is
particularly beneficial for teams focusing on
customer needs when prioritizing software
requirements.
Mishra, N., & others. (2016). Fuzzy logic for
software requirement prioritization. This paper
discusses how fuzzy logic can address the
uncertainty in software requirements

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1005

prioritization, improving decision accuracy by
15%. The authors demonstrate that fuzzy logic
is particularly useful in Agile projects, where
requirements are often unclear from the outset.
Chua, F.-F,.et al (2022). A semi-automated
method for ranking software requirements.
This paper presents a hybrid approach
combining manual and semi-automated
techniques, increasing prioritization efficiency
by 20%. The authors argue that this approach
minimizes human bias and speeds up decision-
making, particularly in large projects with
numerous requirements.
Hujainah, F,.et al (2021). SRPTackle: An
automated method for software requirement
prioritization. This study introduces
SRPTackle, an automated method that
improves prioritization scalability by 15%. The
approach uses both automation and human
control, making it effective for large-scale
projects with numerous requirements,
improving accuracy and speed.
Hujainah, F,.et al (2018). Estimating and
prioritizing stakeholders in software system
projects. This paper introduces StakeQP, a
method for incorporating stakeholder
preferences into the decision-making process.
The approach increases decision accuracy by
18%, ensuring that key stakeholder
expectations are met in large projects involving
multiple stakeholders.
Hujainah, F,.et al (2018). Systematic review of
stakeholder prioritization methods. The
authors review over 40 works on methods for
prioritizing stakeholders, noting the increasing
use of automated techniques. They argue that
adding stakeholder input improves
prioritization accuracy by 25% and that semi-
automated methods like StakeQP are
particularly useful in complex, large-scale
projects.
Babar, M. I,.et al (2015). PHandler: An expert
system for managing software requirement
prioritization. This paper introduces PHandler,

an expert system designed to prioritize software
requirements for large-scale projects. The
authors claim that PHandler improves data
handling by 30%, reduces decision-making
errors, and speeds up project completion by
efficiently managing large, complex projects
using AI-driven guidelines.
Borhan, N. H,.et al (2022). i-USPA:
Integrating user stories attributes for
prioritization in Agile-Scrum projects. The
authors introduce the i-USPA approach, which
integrates functional and non-functional
requirements in prioritization. This method
ensures better alignment with customer needs
and technical constraints, helping Agile teams
make flexible, informed prioritization
decisions.
Kitchenham, B,.et al (2007). Guidelines for
performing systematic literature reviews in
software engineering. This paper outlines a
structured approach to conducting systematic
literature reviews in software engineering,
emphasizing the importance of strong
guidelines to enhance rigor and repeatability.
The authors argue that using a set approach
can increase the reliability of findings by 35%.
Kitchenham, B,.et al (2009). Systematic
literature reviews in software engineering. This
paper reviews over 200 systematic literature
reviews, highlighting the importance of
multiple reviews to increase the reliability of
research outcomes. The authors recommend
using systematic review tools to ensure
comprehensive and accurate results, with the
process adding 25% more reliability.
Kitchenham, B,.et al (2004). The process of
conducting systematic reviews in software
engineering. This paper presents the process of
systematic reviews, emphasizing how well-
planned procedures ensure reliable findings.
The authors argue that using systematic
reviews can improve consistency in research by
40%, providing a dependable guide for
researchers in software engineering.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1006

Zhang, H., Babar, M. I., & others. (2011).
Finding relevant studies for systematic reviews
in software engineering. This paper discusses
methods for selecting relevant studies for
systematic reviews in software engineering. The
authors show that applying a relevance-based
approach increases the selection accuracy by
30%, ensuring that only significant studies are
included in reviews.
Webster, J,.et al (2002). Writing literature
reviews in information systems. This guide
offers a step-by-step approach for writing
literature reviews, improving structure by 20%.
The authors stress the importance of reviewing
past studies before starting new research and
suggest that literature reviews help identify
gaps in the field and suggest new research areas.
Koi-Akrofi, G. Y,.et al (2019). Agile IT project
management: Traits, advantages, and
challenges. The authors review over 50 studies
on Agile IT project management, finding that
Agile approaches improve team flexibility and
customer satisfaction by 20%. They discuss the
challenges large businesses face when adopting
Agile due to complex project requirements and
recommend appropriate tools and approaches
to overcome these barriers.
Kesser, R. S,.et al (2023). Challenges in
applying the MoSCoW method in ERP system
implementation. This study examines the
difficulties of applying the MoSCoW method
in ERP projects. The authors find that
tailoring MoSCoW to fit ERP complexities can
increase prioritization accuracy by 12%,
improving project alignment with company
goals.
AbdElazim, K., & others. (2020). Enhancing
requirement prioritization in Agile software
development. This paper introduces a
technique to improve requirement
prioritization in Agile development. The
authors demonstrate that their method
increases prioritization accuracy by 28%,

helping teams make better decisions and avoid
conflicts during the prioritization process.
Ahmad, K. S,.et al (2017). Fuzzy_MoSCoW:
Enhancing MoSCoW with fuzzy logic for Agile
requirements prioritization. The authors
present Fuzzy_MoSCoW, a method that
integrates fuzzy logic into MoSCoW to provide
more flexible and accurate prioritization. The
study shows an 18% improvement in
prioritization accuracy, especially in projects
with changing needs.
Khan, A. W,.et al (2021). AHP-based method
for ranking software reliability issues. This
paper introduces an Analytic Hierarchy
Process (AHP)-based framework for evaluating
reliability issues in software development. The
authors show that using this method improves
vendor evaluation accuracy by 20%, which is
crucial for managing vendor relationships in
global, distributed teams.
Abusaeed, A,.et al (2023). Fuzzy AHP for
prioritizing cost overhead aspects in Agile
software development. This paper proposes a
fuzzy AHP method to prioritize cost overheads
in Agile projects. The authors find that using
fuzzy AHP reduces cost overheads by 22%,
improving resource management and decision-
making accuracy in Agile projects.
Shameem, M., & others. (2018). AHP-based
prioritization in distributed Agile software
development. This paper examines the use of
AHP-based prioritization to improve team
collaboration in distributed Agile teams. The
authors report a 30% improvement in
teamwork, facilitating smoother
communication and more efficient decision-
making across time zones.
Rida, A.,.et al (2017). The effect of analytical
models on software requirements prioritization.
The study shows that using analytical
assessment models increases the accuracy of
prioritizing software requirements by 20%,
making decision-making more effective and

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1007

overcoming the limitations of subjective
prioritization methods.
Tufail, H,.et al (2023). Cumulative voting and
spanning tree for prioritizing functional
requirements. The authors suggest using
cumulative voting and spanning tree methods
for prioritizing functional requirements,
making decision-making faster and more
aligned with project objectives. These methods
are particularly useful when handling a large
number of functional requirements.
Maidin, M,.et al (2025). Sustainable software
development and security in Agile and Hybrid
Agile methodologies. This bibliometric study
examines trends in sustainable software
development, focusing on cybersecurity in
Agile and Hybrid Agile methods. The authors
find that while cybersecurity in Agile is
underexplored, hybrid approaches to security
and agility are evolving, and the study guides
future research in this area.
Alenezi, A., & ,.et al (2025). The role of AI in
software engineering: From planning to
maintenance. This paper explores how
artificial intelligence is transforming software
engineering, particularly in code generation,
error detection, and testing. The authors
discuss the productivity gains and improved
code quality resulting from AI integration,
while also addressing ethical concerns and the
potential loss of knowledge among workers.

The study advocates for AI’s comprehensive
use throughout the software development
lifecycle, including planning, development,
testing, and maintenance, and proposes a
system that integrates AI applications while
upholding ethical standards and human values.
The authors also emphasize the importance of
AI literacy in engineering education to
maximize AI's benefits while minimizing
associated challenges.
Jacquet, Le Duigoun ,.et al(2025) introduce a
way to create environmental analysis tools by
collaborating with others using Life Cycle
Assessment (LCA). It uses the 12-step generic
approach from the ILCD and software
engineering together with the 3-step co-
creation model recommended by Durugbo and
Pawar. Its usefulness is tested by implementing
it during the example of the competitive
sailing sector in Brittany, focusing on SMEs
who do not have much knowledge about LCA.
The process helps the tools become easier to
use, more welcomed and more effective by
getting stakeholders to take part in planning
their functions, boundaries and requirements.
It helps businesses become ready for stricter
environmental guidelines. It introduces a new
way to develop LCA tools that focuses on
involving stakeholders for each sector.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1008

Timeline Table for Software Methodology Evolution

Period Methodology Description Strengths Weaknesses Effectiveness Reference
1950s-
1960s

Ad Hoc &
Code-and-Fix

Unstructured
coding with
iterative fixes,
no formal
planning.

Flexible,
quick start,
low
overhead.

Unscalable,
error-prone,
no
traceability.

Suited small,
simple
projects; failed
for complex
systems.

(Aurum &
Wohlin,
2005)

1970 Waterfall
Model

Sequential
phases:
requirements,
design,
implementatio
n, testing,
maintenance.

Clear
milestones
,
document
ed,
predictable
.

Inflexible,
late testing,
costly fixes.

Effective for
stable
requirements;
weak for
dynamic
projects.

(Dick et al.,
2017)

1980s Spiral Model Iterative, risk-
driven with
prototyping
and
evaluation
cycles.

Risk-
focused,
adaptable,
supports
prototypin
g.

Complex,
resource-
heavy, needs
expertise.

Strong for
high-risk, large
projects; costly
for small ones.

(Aurum &
Wohlin,
2005)

1990s Rapid
Application
Development
(RAD)

Fast
prototyping
with user
feedback,
minimal
planning.

Rapid
delivery,
user-
centric,
adaptable.

Limited
scalability,
needs skilled
teams.

Ideal for
small,
dynamic
projects; less
for large
systems.

(Aurum &
Wohlin,
2005)

2001 Agile
Manifesto

Iterative,
collaborative,
customer-
focused with
models like
Scrum,
Kanban.

Flexible,
rapid,
team-
empowere
d.

Needs
cultural shift,
may lack
documentatio
n.

High for
dynamic
environments;
hard for rigid
organizations.

(Fowler &
Highsmith,
2001)

2010s-
Present

DevOps Integrates
development
and
operations for
continuous
delivery,
automation.

Fast,
collaborati
ve,
scalable.

Complex
setup,
cultural
resistance.

Excels in
cloud-based,
fast-paced
settings; less
for legacy
systems.

(Maidin et
al., 2025)

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1009

Table 1: Comparative Analysis

SR
No.

Title Authors Year Methodology
Type

Results / Metrics

1 Requirements
Engineering

J. Dick, E.
Hull, K.
Jackson

2017 Theoretical Provides a
comprehensive
framework for
requirements
engineering. Outlines
methods and tools for
eliciting, analyzing,
specifying, and
validating
requirements.

2 A systematic literature
review of AI-based
software requirements
prioritization
techniques

R. Anwar, M.
B. Bashir

2023 Systematic
Literature
Review

Analyzes 45+ studies,
identifying AI-based
techniques like
machine learning and
neural networks for
requirement
prioritization.
Concludes that AI
improves
prioritization
efficiency by 20–30%.

3 Automated
requirement
prioritisation
technique using an
updated Adam
optimisation
algorithm

P. Talele, R.
Phalnikar

2023 Algorithm Results indicate a
significant
performance
improvement, with
the updated Adam
algorithm
outperforming
traditional methods
in terms of both
speed and accuracy,
achieving up to 15%
better prioritization
accuracy.

4 Adaptive fuzzy
hierarchical
cumulative voting: A
novel approach
toward requirement
prioritization

B. Jawale, A.
T. Bhole

2015 Fuzzy Logic The fuzzy hierarchical
voting mechanism
improved
prioritization accuracy
by 18% in case
studies, reducing

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1010

ambiguity in
requirements
decision-making.

5 A systematic literature
review on requirement
prioritization
techniques and their
empirical evaluation

F. A. Bukhsh,
Z. A. Bukhsh,
M. Daneva

2020 Systematic
Literature
Review

Reviewed 56
prioritization
techniques. Findings
indicate that
techniques like AHP
and Analytic
Hierarchy Process are
the most frequently
used, but many
techniques lack
empirical validation.

6 Mastering the
Requirements Process:
Getting Requirements
Right

S. Robertson,
J. Robertson

2012 Practical Guide Not applicable
(provides guidelines
for best practices but
no direct empirical
results or metrics)

7 Engineering and
Managing Software
Requirements

A. Aurum, C.
Wohlin

2005 Theoretical Discusses the key
processes involved in
managing software
requirements,
focusing on practical
application but
without empirical
results.

8 A novel approach for
software requirement
prioritization

M. S. Jahan,
F. Azam, M.
W. Anwar, A.
Amjad, K.
Ayub

2019 Practical
Application

The case study
demonstrated a 25%
reduction in project
delays when using the
proposed
prioritization
approach, improving
stakeholder
satisfaction by 15%.

9 The Agile Manifesto M. Fowler, J.
Highsmith

2001 Foundational
Paper

N/A (The paper
outlines the
principles of Agile
methodologies but
does not provide
specific metrics or
results)

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1011

10 Identification of the
Agile mindset and its
comparison to the
competencies of
selected Agile roles

J. Miler, P.
Gaida

2020 Conceptual
Study

Identifies 8 key
competencies
necessary for Agile
roles. The results
suggest that Agile
competency
development can
increase team
performance by up to
30%.

11 The Scrum Guide:
The Definitive Guide
to Scrum - The Rules
of the Game

K. Schwaber,
J. Sutherland

2011 Guide N/A (This is a
guideline document
that outlines the
Scrum framework,
without providing
empirical results)

12 Praise for Extreme
Programming
Explained

K. Beck 2012 Book N/A (This book
discusses the
principles of Extreme
Programming,
focusing on practices
rather than specific
quantitative metrics)

13 The key factors of
evaluating Agile
approaches: A
systematic literature
review

M. Omar, R.
B. Romli

2019 Systematic
Literature
Review

Identifies 15 key
factors in evaluating
Agile practices,
including flexibility
and collaboration.
Concludes that Agile
practices improve
team productivity by
25%.

14 Perceived importance
of agile requirements
engineering practices—
A survey

M. Ochodek,
S.
Kopczyńska

2018 Survey Results show that
requirements
engineering practices
in Agile are crucial
for project success,
with stakeholders
rating clear
documentation and
collaboration as the
most important
practices (80% of

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1012

respondents).
15 Requirements

engineering: A
systematic mapping
study in agile software
development

K. Curcio, T.
Navarro, A.
Malucelli, S.
Reinehr

2018 Systematic
Mapping Study

Identified 43 key
articles on Agile
requirements
engineering,
concluding that
flexibility and
stakeholder
collaboration are
critical. No empirical
data provided but
trends in practices
were established.

16 Value-based
requirements
engineering:
Challenges and
opportunities

K. Wnuk, P.
Mudduluru

2019 Conceptual
Study

Concludes that value-
based requirements
engineering helps
prioritize user stories
and features based on
their business value.
Results suggest it can
lead to a 15%
increase in customer
satisfaction.

17 Do we know enough
about requirements
prioritization in Agile
projects: Insights from
a case study

Z. Racheva,
M. Daneva,
K. Sikkel, A.
Herrmann, R.
Wieringa

2010 Case Study A case study of 5
Agile projects,
indicating that
requirements
prioritization is often
subjective. Found
that 60% of Agile
teams use a mix of
techniques, but none
achieve full success in
prioritizing
requirements
effectively.

18 A conceptual model of
client-driven agile
requirements
prioritization: Results
of a case study

Z. Racheva,
M. Daneva,
A. Herrmann

2010 Case Study Found that clients’
expectations were
often misaligned with
Agile methods. By
introducing a client-
driven model, client
satisfaction improved

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1013

by 20% and project
timelines by 15%.

19 Agile requirements
prioritization: What
happens in practice
and what is described
in literature

Z. Bakalova,
M. Daneva,
A.
Herrmann, R.
Wieringa

2011 Case Study Shows that Agile
projects often struggle
to align theory and
practice in
requirements
prioritization. Only
40% of Agile teams
follow best practices
consistently, leading
to misalignment with
customer needs.

20 Handling
requirements
dependencies in agile
projects: A focus
group with agile
software development
practitioners

A. Martakis,
M. Daneva

2013 Focus Group
Study

Found that handling
dependencies
between requirements
was a significant
challenge in Agile
projects, affecting up
to 50% of projects in
the study.

21 Agile requirements
prioritization in
practice: Results of an
industrial survey

A.
Jarze bowicz,
N. Sitko

2020 Industrial
Survey

Results indicate that
over 65% of
industrial teams use
MoSCoW or AHP
methods for
prioritization, with
78% of practitioners
believing it enhances
customer satisfaction
and project
outcomes.

22 Not all requirements
prioritization criteria
are equal at all times:
A quantitative analysis

R. Berntsson
Svensson, R.
Torkar

2024 Quantitative
Analysis

Identifies 9 key
prioritization criteria
and quantitatively
analyzes their
effectiveness,
concluding that the
MoSCoW method is
the most balanced
and effective in Agile
settings.

23 Requirements N. H. 2019 Systematic Analyzes 35 studies

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1014

prioritization
techniques focusing
on agile software
development: A
systematic literature
review

Borhan, H.
Zulzalil, S.
Hassan, N.
M. Ali

Literature
Review

on Agile
prioritization,
concluding that a
hybrid approach
combining multiple
prioritization
methods leads to a
22% increase in team
performance.

24 Information
extraction on
requirement
prioritization
approaches in agile
software development
processes

N. Govil, A.
Sharma

2021 Case
Study/Survey

Investigates the
integration of AI
tools in Agile
software
requirements
prioritization. Results
show a 30%
improvement in
prioritization accuracy
with AI assistance.

25 A review on
requirements
prioritization
techniques

U. Singh, N.
Upadhyay

2020 Literature
Review

Review of 40+
prioritization
techniques. Identifies
AHP, MoSCoW, and
voting as the most
commonly used in
Agile. Found
MoSCoW to improve
clarity in decision-
making by 25%.

26 Requirements
prioritization
techniques in the last
decade: A systematic
literature review

J. C. B.
Somohano-
Murrieta, J.
O. Ocharán-
Hernández,
A. J. Sánchez-
García, M. de
los Ángeles
Arenas-Valdés

2020 Systematic
Literature
Review

Analyzes 30+ studies
published in the last
decade. Identifies
trends in
requirements
prioritization
methods and the
move toward hybrid
approaches.

27 Towards the selection
of optimum
requirements
prioritization
technique: A

H. Tufail, I.
Qasim, M. F.
Masood, S.
Tanvir, W. H.
Butt

2019 Comparative
Analysis

Compares 5
requirements
prioritization
techniques. Findings
indicate that

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1015

comparative analysis combining MoSCoW
with AHP results in
18% better
prioritization
outcomes in Agile
projects.

28 Requirements
prioritization in agile
projects: From experts’
perspectives

N. Hazlini
Borhan, H.
Zulzalil, A.
Hassan, N.
Hayati, M.
Ali

2022 Expert
Opinion/Survey

Survey of Agile
experts shows that
70% of them prefer
hybrid prioritization
methods (e.g.,
MoSCoW + AHP).
The hybrid method
showed a 20%
improvement in
prioritization
accuracy.

29 A review of
requirement
prioritization
techniques in agile
software development

N. Saher, F.
Baharom, R.
Romli

2018 Literature
Review

Review of techniques
used in Agile for
prioritization.
Highlights that
hybrid techniques
increase efficiency by
30%.

30 Requirements
prioritization
techniques review and
analysis

R. Qaddoura,
A. Abu-
Srhan, M. H.
Qasem, A.
Hudaib

2017 Review and
Analysis

Reviews 15+
prioritization
techniques,
suggesting a hybrid
approach that
combines qualitative
and quantitative
methods. The hybrid
approach improved
stakeholder
agreement by 15%.

31 Requirements
prioritization based on
multiple criteria using
artificial intelligence
techniques

M. I. L.
Lunarejo

2021 AI Techniques Shows that AI-based
prioritization
improves decision
accuracy by 25%.
Specifically, fuzzy
logic and neural
networks were the
most effective in

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1016

predicting
requirement
importance.

32 Current prioritisation
and reprioritisation
practices: A case study
approach

V. Gupta, D.
S. Chauhan,
C. Gupta, K.
Dutta

2014 Case Study Case study analysis
reveals that Agile
teams often struggle
with reprioritizing
requirements. The
study finds that 60%
of teams using
dynamic
reprioritization
techniques reported
higher adaptability
and project success
rates.

33 Agile project
management challenge
in handling scope and
change: A systematic
literature review

P. Marnada,
T. Raharjo, B.
Hardian, A.
Prasetyo

2022 Systematic
Literature
Review

Reviews challenges of
managing scope
changes in Agile
projects, with
findings indicating
that handling scope
changes effectively
can improve project
success by 25%.

34 Rize: A proposed
requirements
prioritization
technique for agile
development

M. S. Rahim,
A. Z. M. E.
Chowdhury,
S. Das

2017 Proposed Model The Rize model
provides a clear
framework for
prioritizing
requirements based
on customer value. In
the case study, it
resulted in a 20%
increase in client
satisfaction and 15%
faster delivery times.

35 Approach to prioritize
the requirements
using fuzzy logic

N. Mishra,
M. A.
Khanum, K.
Agrawal

2016 Fuzzy Logic The fuzzy logic-based
approach improved
accuracy in
prioritization by 15%
compared to
traditional scoring
methods.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1017

36 Incorporating semi-
automated approach
for effective software
requirements
prioritization: A
framework design

F.-F. Chua,
T.-Y. Lim, B.
Tajuddin, A.
P.
Yanuarifiani

2022 Semi-
Automated
Framework

The framework
showed a 20%
improvement in
prioritization
efficiency by
integrating semi-
automated methods
into the process.

37 SRPTackle: A semi-
automated
requirements
prioritisation
technique for scalable
requirements of
software system
projects

F. Hujainah,
R. B. A.
Bakar, A. B.
Nasser, B. Al-
haimi, K. Z.
Zamli

2021 Semi-
Automated
Approach

SRPTackle shows a
15% improvement in
handling large-scale
requirements,
reducing complexity
and improving
prioritization
consistency.

38 StakeQP: A semi-
automated stakeholder
quantification and
prioritisation
technique for
requirement selection
in software system
projects

F. Hujainah,
R. B. A.
Bakar, M. A.
Abdulgabber

2019 Semi-
Automated
Approach

StakeQP improved
stakeholder decision-
making by 18% and
reduced time spent
on requirement
selection by 25%.

39 Stakeholder
quantification and
prioritisation research:
A systematic literature
review

F. Hujainah,
R. B. Abu
Bakar, B. Al-
haimi, M. A.
Abdulgabber

2018 Systematic
Literature
Review

Identifies 40+ papers
on stakeholder
quantification and
prioritization. It
concludes that
automated techniques
increase prioritization
efficiency by 25%.

40 PHandler: An expert
system for a scalable
software requirements
prioritization process

M. I. Babar,
M. Ghazali,
D. N. A.
Jawawi, S. M.
Shamsuddin,
N. Ibrahim

2015 Expert System PHandler improved
the scalability of
prioritization by 30%,
reducing errors in
decision-making and
enabling faster project
completion.

41 A hybrid prioritization
approach by
integrating non-
functional and

N. H.
Borhan, H.
Zulzalil, S.
Hassan, N.

2022 Hybrid
Approach

i-USPA increased
prioritization accuracy
by 22% and
improved team

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1018

functional user stories
in agile-scrum software
development (i-
USPA): A preliminary
study

M. Ali collaboration,
reducing the project
completion time by
15%.

42 Guidelines for
performing systematic
literature reviews in
software engineering

B.
Kitchenham,
S. M.
Charters

2007 Methodological
Guide

Provides guidelines
on conducting
systematic literature
reviews. The method
improves review
consistency and
reproducibility by
35%.

43 Systematic literature
reviews in software
engineering—A
systematic literature
review

B.
Kitchenham,
O. Pearl
Brereton, D.
Budgen, M.
Turner, J.
Bailey, S.
Linkman

2009 Systematic
Literature
Review

Reviews 200+
systematic literature
reviews. Concludes
that systematic
reviews improve the
reliability of findings
by 25%.

44 Procedures for
performing systematic
reviews

B.
Kitchenham

2004 Methodological
Guide

Introduces a set of
procedures for
performing systematic
reviews in software
engineering, which
increased consistency
by 40%.

45 Identifying relevant
studies in software
engineering

H. Zhang, M.
A. Babar, P.
Tell

2011 Systematic
Literature
Review

Identified 100+
studies for software
engineering research.
The method
enhanced the
relevance of the
selected papers by
30%.

46 Analyzing the past to
prepare for the future:
Writing a literature
review

J. Webster, R.
T. Watson

2002 Literature
Review
Methodology

Provides practical
advice on writing
literature reviews,
improving research
clarity and synthesis
by 20%.

47 Understanding the G. Y. Koi- 2019 Literature Reviews 50+ papers

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1019

characteristics,
benefits and
challenges of agile IT
project management:
A literature based
perspective

Akrofi, J. K.
Akrofi, H.
Akwetey
Matey

Review on Agile project
management. Found
that Agile increases
team flexibility and
customer satisfaction
by 20%.

48 Challenges and
problems of the
Moscow method
application in ERP
system
implementation

R. S. Kostev 2023 Case Study Case study analysis of
ERP systems shows
that the MoSCoW
method can lead to a
12% improvement in
requirements
prioritization when
adapted properly.

49 A framework for
requirements
prioritization process
in agile software
development

K.
AbdElazim,
R. Moawad,
E.
Elfakharany

2020 Framework
Design

The proposed
framework improved
requirement
prioritization accuracy
by 28%, with a
notable reduction in
conflicts during
requirement
selection.

50 Fuzzy_MoSCoW: A
fuzzy based Moscow
method for the
prioritization of
software requirements

K. S. Ahmad,
N. Ahmad,
H. Tahir, S.
Khan

2017 Fuzzy Logic-
based Approach

The Fuzzy_MoSCoW
method improved the
prioritization process
by 18%, making it
more adaptable to
fluctuating project
requirements.

51 Analytic hierarchy
process-based
prioritization
framework for
vendor’s reliability
challenges in global
software development

A. W. Khan,
I. Hussain,
M. Zamir

2021 AHP-based
Framework

The framework
increased vendor
reliability evaluation
accuracy by 20%,
improving decision-
making in vendor
selection.

52 A fuzzy AHP-based
approach for
prioritization of cost
overhead factors in
agile software
development

S. Abusaeed,
S. U. R.
Khan, A.
Mashkoor

2023 Fuzzy AHP
Approach

The fuzzy AHP
method showed a
22% improvement in
reducing cost
overheads while
prioritizing

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1020

requirements
effectively.

53 Prioritizing challenges
of agile process in
distributed software
development
environment using
analytic hierarchy
process

M. Shameem,
R. R. Kumar,
C. Kumar, B.
Chandra, A.
A. Khan

2018 AHP-based
Prioritization

AHP-based method
showed a 30%
improvement in
handling distributed
team challenges,
resulting in better
project coordination.

54 The impact of
analytical assessment
of requirements
prioritization models:
An empirical study

A. Rida, S.
Nazir, A.
Tabassum, S.
Asim

2017 Empirical Study The study showed
that analytical
assessment models
improve the
prioritization accuracy
by 20%. It also
highlighted that
adopting these
models led to faster
decision-making and
reduced conflicts in
prioritization.

55 The approach using
cumulative voting and
spanning tree
technique in
implementing
functional
requirement
prioritization: A case
study of student’s
financial system
development

H. Tufail, I.
Qasim, M. F.
Masood, S.
Tanvir, W. H.
Butt

2023 Case Study Case study
demonstrated a 25%
improvement in
prioritizing functional
requirements using
cumulative voting
and spanning tree
techniques, leading to
better alignment with
project goals.

56 Current and Future
Trends for Sustainable
Software Development

Maidin, S. S.,
Yahya, N.,
Fauzi, M. A.
F., Abu
Bakar, N. S.
A.

2025 Bibliometric
Analysis

1593 WOS articles
analyzed, 4 co-citation
and 3 co-word
clusters, roadmap for
hybrid agile security

57 AI-Driven Innovations
in Software
Engineering

Alenezi, M.,
& Akour, M.

2025 Systematic
Literature
Review + Case
Studies

Identified AI impact
across SDLC phases,
ethical gaps, and
educational priorities;

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1021

Since software development methodologies have evolved, many new strategies have emerged, each
with its own principles, suitable for certain conditions and with different weak points. Here, the
results from the reviewed studies are combined to comparison between traditional, agile, hybrid,
DevOps and AI-augmented methodologies.
Table 2: Dimensions
Dimension Traditional

(Waterfall, V-
Model)

Agile (Scrum,
XP)

Hybrid Models DevOps

Planning Extensive upfront Iterative,
lightweight

Balanced Minimal
upfront

Flexibility Low High Medium High

Feedback Loops Delayed (post-
deployment)

Continuous Periodic Real-time

Deployment
Frequency

Infrequent Frequent (per
sprint)

Varies Continuous

Documentation Heavy Minimal but
sufficient

Context-driven Automated

Risk
Management

Formal risk logs Adaptive risk
handling

Combined Embedded via
monitoring

Suitability High-assurance
domains

Startups,
volatile
markets

Regulated agile
environments

Cloud-native,
scalable teams

Emerging Trends and Future SDM Directions
Table 3: Emerging Trends and Future SDM Directions

Trend Description Expected Shift

AI-Augmented
Methodologies

AI assists in planning, coding,
testing, and design

Human-AI collaboration becomes
a formal part of the methodology

Ethics-Aware
Development

Integrated ethics checks, fairness
audits, and privacy-by-design
principles

Ethical risk treated like technical
risk, embedded into lifecycle

Sociotechnical Incorporates team dynamics, Focus shifts from code/process to

holistic AI framework
proposed

58 A Proposal for a
Methodology for the
Co-Creation of an
Environmental
Analysis Tool

Jacquet, L., Le
Duigou, A.,
& Kerbrat, O.

2025 Participatory
Design + LCA
Methodology

12-step methodology
+ 3-step cocreation
framework, validated
in sailing sector,
improved SME
engagement

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1022

Integration stakeholder roles, and organizational
behavior

ecosystem-wide design thinking

Meta-Methodology
Engineering

Teams design custom workflows
from modular practices

DIY SDMs replace rigid, one-size-
fits-all models

Continuous
Everything (Cx)

Extends CI/CD to include
monitoring, governance,
experimentation, and learning

Software becomes a continuous
value delivery stream

Decentralized
Methodologies

Designed for remote-first, async, and
open-source style collaboration

Hierarchical roles fade in favor of
contributor-based dynamics

Outcome-Oriented
Models

Metrics based on value delivery, user
impact, and business alignment

Agile maturity measured by
outcomes, not rituals

Chaos-Ready
Methodologies

Built for adaptation during crises
and uncertainty

Resilience, scenario planning, and
antifragility embedded in process
frameworks

Emerging Trends in Software Development Methodologies (SDMs)
1. Integration of AI in Software Development
AI is no longer just a tool for automation in
software development; it is becoming an
integral part of the development process. AI-
assisted tools like GitHub Copilot and
DeepCode are revolutionizing how developers
work by automating repetitive tasks, predicting
tests, identifying errors, and boosting
architectural performance. As AI continues to
evolve, it is expected that development teams
will work alongside AI tools, not just use them
as assistants. This evolution challenges
traditional roles within development teams, as
responsibilities and accountability might shift
with AI's growing involvement.
2. Ethical Considerations in Software
Development
As software development continues to
accelerate, ethical concerns regarding bias,
privacy, fairness, and inclusivity have gained
more attention. Traditional SDLC models
often focus primarily on speed, quality, and
customer satisfaction, neglecting the ethical
implications of their work. Researchers like
Mittelstadt et al. (2016) have pointed out the
absence of formal ethical guidelines within
most SDLC models. Future SDMs may include

elements like "ethics sprints," automated
fairness audits, and AI tools to identify ethical
issues during development.
3. Sociotechnical Integration
Software development is not only about the
tools, processes, and artifacts but also about
the social aspects—team interactions, roles, and
communication. Recent research emphasizes
the importance of sociotechnical integration,
advocating for a shift from purely technical
models to those that consider team dynamics,
organizational behavior, and stakeholder
collaboration. This approach involves
incorporating social theories like Actor-
Network Theory (ANT) and sociotechnical
congruence modeling into SDMs.
4. Metaeography and Tailored Methodologies
Instead of strictly adhering to predefined
methodologies like Scrum or Waterfall, there
is a growing trend towards metaeography—
creating customized workflows that suit
specific project needs. Large organizations,
particularly those that deal with both digital
and traditional models, are increasingly
adopting flexible and adaptable SDMs,

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1023

tailoring practices, tools, and metrics to meet
their unique goals.
5. Continuous Everything (Cx)
Building on the principles of Continuous
Integration/Continuous Deployment (CI/CD),
the concept of "Continuous Everything" (Cx)
extends this model to include continuous
testing, monitoring, learning, governance, and
experimentation. This approach allows teams
to deliver software faster and with fewer risks
by eliminating the gaps between development
and testing, while also integrating AI and
telemetry for real-time data analysis.
6. Decentralized, Asynchronous, and Open-
Source-Centric Approaches
The rise of remote work and open-source
collaboration has led to decentralized
approaches to software development. Practices
like "lazy consensus" and automatic code
reviews enable teams to collaborate
asynchronously, allowing contributors to add
value without needing to be online at the same
time. This approach is particularly suited for
globally distributed teams and open-source
projects.
7. Outcome-Oriented Models
Traditional SDMs focus heavily on following
prescribed processes, but there is a growing
emphasis on outcome-based models that
prioritize business value and customer
satisfaction. Instead of focusing solely on the
development process, SDMs now aim to
deliver measurable outcomes, such as user
satisfaction, market impact, and business
alignment, using metrics like Net Promoter
Score (NPS) or business OKRs (Objectives and
Key Results).
8. Adaptability to Uncertainty
The COVID-19 pandemic highlighted the
need for SDMs that can adapt to sudden
changes and uncertainty. Future SDMs must
be able to handle unexpected disruptions,
using techniques like chaos engineering,
adaptive governance, and scenario-based

planning to create systems that are resilient
and antifragile.
Discussion
The emerging trends in Software Development
Methodologies (SDMs) reflect the dynamic
and evolving nature of the technology and
business landscapes. The integration of AI is a
pivotal shift, moving beyond automation to
deeper involvement in development processes,
influencing both the structure of teams and
the responsibilities of developers. AI tools like
GitHub Copilot and DeepCode are helping
developers streamline their workflows, but as
AI takes on more roles, human developers will
need to adapt and rethink traditional practices
and workflows.
Ethical considerations are also becoming
crucial. While traditional SDLC models have
emphasized speed and efficiency, the growing
role of AI and the increased focus on data
privacy, fairness, and inclusivity require
methodologies that address these concerns. By
integrating ethics directly into SDMs,
developers can ensure that the software they
produce meets societal standards, protects
users, and aligns with growing legal and ethical
expectations.
Sociotechnical integration highlights that
successful software development is not just
about the technical process but also about the
people involved. Understanding team
dynamics, communication, and the broader
organizational context will play a larger role in
future methodologies. Teams will need to
adapt their workflows to account for both
technical and social factors that impact project
success.
Tailored SDMs, as opposed to rigidly following
models like Waterfall or Scrum, enable teams
to create workflows that are more adaptable
and better suited to their specific needs. The
move towards metaeography reflects the
increasing need for flexibility in software

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1024

development, especially in large organizations
with diverse project requirements.
Continuous Everything (Cx) represents a shift
towards more agile and integrated workflows,
where development, testing, and deployment
happen continuously. This approach reduces
the risks traditionally associated with software
development by ensuring that processes are
interconnected and feedback loops are
continuous.
Decentralized collaboration and asynchronous
communication are becoming increasingly
important, especially with the rise of remote
work. Open-source-centric approaches are also
gaining ground as global collaboration
becomes the norm, enabling teams to work
across time zones and still contribute
effectively.
Finally, outcome-oriented models are shifting
the focus from strictly following processes to
delivering value. Teams are increasingly
concerned with the business impact of their
work, and SDMs are evolving to focus on
metrics that reflect this shift, such as customer
satisfaction, user retention, and business goals.
Conclusion
The software development landscape is rapidly
evolving, with new trends and methodologies
emerging to address the increasing complexity
and demands of modern systems. AI
integration, ethical considerations,
sociotechnical integration, and the rise of
decentralized collaboration are just a few of the
significant shifts that are transforming the way
software is developed. Future SDMs will need
to prioritize adaptability, flexibility, and
continuous improvement while focusing on
delivering value and outcomes. By embracing
these emerging trends, organizations can create
more effective, resilient, and sustainable
software development practices.
Future Directions

1. Ethics in AI-Driven Development: Future
research should focus on the development of

comprehensive ethical frameworks for AI in
software development, integrating ethics into
every phase of the SDLC.

2. Sociotechnical Integration: Further
exploration into the role of team dynamics,
communication, and collaboration in SDMs
will be essential to improve both software
quality and team efficiency.

3. Customization of SDMs: More studies should
be conducted on the impact of tailored SDMs,
especially in large organizations with diverse
project needs. Research should explore how
flexible methodologies can be adapted to fit
specific goals and constraints.

4. Continuous Everything (Cx): Research into
the practical implementation of Cx, including
the development of new tools for continuous
monitoring, testing, and learning, will be
crucial for organizations aiming to streamline
their development processes.

5. Decentralized Collaboration: As remote and
open-source work becomes more widespread,
research should investigate best practices for
decentralized and asynchronous collaboration
models in software development.
By focusing on these future directions, SDMs
will continue to evolve to meet the demands of
modern software projects, enhancing efficiency,
flexibility, and the ability to deliver high-
quality products in an ever-changing
environment.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1025

References:
[1] J. Dick, E. Hull, and K. Jackson,
Requirements Engineering, 4th ed., Cham,
Switzerland: Springer, 2017, doi: 10.1007/
978-3-319-61073-3.
[2] R. Anwar and M. B. Bashir, ‘‘A systematic
literature review of AI-based software
requirements prioritization techniques,’’ IEEE
Access, vol. 11, pp. 143815–143860, 2023, doi:
10.1109/ACCESS.2023. 3343252.
[3] P. Talele and R. Phalnikar, ‘‘Automated
requirement prioritisation technique using an
updated Adam optimisation algorithm,’’ Int. J.
Intell. Syst. Appl. Eng., vol. 11, no. 3, pp.
1211–1221, Jul. 2023.
[4] B. Jawale and A. T. Bhole, ‘‘Adaptive fuzzy
hierarchical cumulative voting: A novel
approach toward requirement prioritization,’’
Int. J. Res. Eng. Technol., vol. 4, no. 5, pp.
365–370, May 2015. [Online]. Available:
http://www.ijret.org
[5] F. A. Bukhsh, Z. A. Bukhsh, and M.
Daneva, ‘‘A systematic literature review on
requirement prioritization techniques and
their empirical evaluation,’’ Comput.
Standards Interfaces, vol. 69, Mar. 2020, Art.
no. 103389, doi: 10.1016/j.csi.2019.103389.
[6] S. Robertson and J. Robertson, Mastering
the Requirements Process: Getting
Requirements Right, 3rd ed., Reading, MA,
USA: Addison-Wesley, 2012.
[7] A. Aurum and C. Wohlin, Engineering and
Managing Software Requirements, 1st ed.,
Berlin, Germany: Springer, 2005, doi:
10.1007/3-540- 28244-0.
[8] M. S. Jahan, F. Azam, M. W. Anwar, A.
Amjad, and K. Ayub, ‘‘A novel approach for
software requirement prioritization,’’ in Proc.
7th Int. Conf. Softw. Eng. Res. Innov.
(CONISOFT), Oct. 2019, pp. 1–7, doi:
10.1109/CONISOFT.2019.00012.
[9] M. Fowler and J. Highsmith. (2001). The
Agile Manifesto. [Online]. Available:

www.Martinfowler.com/articles/newMethodol
ogy.html
[10] J. Miler and P. Gaida, ‘‘Identification of
the Agile mindset and its comparison to the
competencies of selected Agile roles,’’ in
Advances in Agile and User-Centred Software
Engineering (Lecture Notes in Bus.
Information Processing), vol. 376, A. Przybyłek
and M. E. M. Trujillo, Eds., Cham,
Switzerland: Springer, 2020, pp. 41–62, doi:
10.1007/978-3-030-37534- 8_3. [11] K.
Schwaber and J. Sutherland, The Scrum Guide
the Definitive Guide to Scrum The Rules of
the Game. USA: Scrum.org & Scrum Alliance,
Oct. 2011.
[12] K. Beck, Praise for Extreme Programming
Explained, 2nd ed., Reading, MA, USA:
Addison-Wesley, 2012.
[13] M. Omar and R. B. Romli, ‘‘The key
factors of evaluating Agile approaches: A
systematic literature review,’’ Int. J. Supply
Chain Manag., vol. 8, no. 2, pp. 1–11, 2019.
[Online]. Available:
https://www.researchgate.net/publication/332
493463
[14] M. Ochodek and S. Kopczyńska,
‘‘Perceived importance of agile requirements
engineering practices—A survey,’’ J. Syst. Softw.,
vol. 143, pp. 29–43, Sep. 2018, doi:
10.1016/j.jss.2018.05.012.
[15] K. Curcio, T. Navarro, A. Malucelli, and S.
Reinehr, ‘‘Requirements engineering: A
systematic mapping study in agile software
development,’’ J. Syst. Softw., vol. 139, pp. 32–
50, May 2018, doi: 10.1016/j.jss.2018.01.036.
[16] K. Wnuk and P. Mudduluru, ‘‘Value-
based requirements engineering: Challenges
and opportunities,’’ in Engineering Software
Systems: Research and Praxis (Advances in
Intelligent Systems and Computing), vol. 830.
Berlin, Germany: Springer, 2019, pp. 20–33,
doi: 10.1007/978- 3-319-99617-2_2.
[17] Z. Racheva, M. Daneva, K. Sikkel, A.
Herrmann, and R. Wieringa, ‘‘Do we know

http://www.ijret.org
http://www.martinfowler.com/articles/newMethodology.html
http://www.martinfowler.com/articles/newMethodology.html
https://www.researchgate.net/publication/332493463
https://www.researchgate.net/publication/332493463
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1026

enough about requirements prioritization in
Agile projects: Insights from a case study,’’ in
Proc. 18th IEEE Int. Requirements Eng. Conf.,
Sep. 2010, pp. 147–156, doi:
10.1109/RE.2010.27.
[18] Z. Racheva, M. Daneva, and A. Herrmann,
‘‘A conceptual model of clientdriven agile
requirements prioritization: Results of a case
study,’’ in Proc. ACM-IEEE Int. Symp.
Empirical Softw. Eng. Meas., Sep. 2010, pp. 1–
4, doi: 10.1145/1852786.1852837.
[19] Z. Bakalova, M. Daneva, A. Herrmann,
and R. Wieringa, ‘‘Agile requirements
prioritization: What happens in practice and
what is described in literature,’’ in Proc. 17th
Int. Working Conf. Requirements Eng.,
Found. Softw. Qual. (REFSQ). Essen,
Germany: Springer, 2011, pp. 181–195.
[20] A. Martakis and M. Daneva, ‘‘Handling
requirements dependencies in agile projects: A
focus group with agile software development
practitioners,’’ in Proc. IEEE 7th Int. Conf.
Res. Challenges Inf. Sci. (RCIS), Aug. 2013,
pp. 1–11. [Online]. Available:
www.scopus.com
[21] A. Jarze¸bowicz and N. Sitko, ‘‘Agile
requirements prioritization in practice: Results
of an industrial survey,’’ Proc. Comput. Sci.,
vol. 176, pp. 3446–3455, Jan. 2020, doi:
10.1016/j.procs.2020.09.052.
[22] R. Berntsson Svensson and R. Torkar,
‘‘Not all requirements prioritization criteria are
equal at all times: A quantitative analysis,’’ J.
Syst. Softw., vol. 209, Mar. 2024, Art. no.
111909, doi: 10.1016/j.jss.2023.111909.
[23] N. H. Borhan, H. Zulzalil, S. Hassan, and
N. M. Ali, ‘‘Requirements prioritization
techniques focusing on agile software
development: A systematic literature review,’’
Article Int. J. Sci. Technol. Res., vol. 8, no. 11,
pp. 2118–2125, Nov. 2019. [Online]. Available:
www.ijstr.org
[24] N. Govil and A. Sharma, ‘‘Information
extraction on requirement prioritization

approaches in agile software development
processes,’’ in Proc. 5th Int. Conf. Comput.
Methodologies Commun. (ICCMC), Apr.
2021, pp. 1097–1100, doi:
10.1109/ICCMC51019.2021.9418285.
[25] U. Singh and N. Upadhyay, ‘‘A review on
requirements prioritization techniques,’’ Int. J.
Creative Res. Thoughts, vol. 8, no. 12, pp. 1–7,
2020. [Online]. Available: www.ijcrt.org
[26] J. C. B. Somohano-Murrieta, J. O.
Ocharán-Hernández, A. J. Sánchez-García, and
M. de los Ángeles Arenas-Valdés,
‘‘Requirements prioritization techniques in the
last decade: A systematic literature review,’’ in
Proc. 8th Edition Int. Conf. Softw. Eng. Res.
Innov. (CONISOFT), Nov. 2020, pp. 11–20,
doi: 10.1109/CONISOFT50191.2020.00013.
[27] H. Tufail, I. Qasim, M. F. Masood, S.
Tanvir, and W. H. Butt, ‘‘Towards the
selection of optimum requirements
prioritization technique: A comparative
analysis,’’ in Proc. 5th Int. Conf. Inf. Manage.
(ICIM), Mar. 2019, pp. 227–231.
[28] N. Hazlini Borhan, H. Zulzalil, A. Hassan,
N. Hayati, and M. Ali, ‘‘Requirements
prioritization in agile projects: From experts’
perspectives,’’ J. Theor. Appl. Inf. Technol.,
vol. 15, p. 19, Oct. 2022. [Online]. Available:
https://docs.google.com/forms/d/e/1FAIpQ
LSeDT
[29] N. Saher, F. Baharom, and R. Romli, ‘‘A
review of requirement prioritization
techniques in agile software development,’’ in
Proc. Knowl. Manage. Int. Conf. (KMICe),
Miri Sarawak, Malaysia, Jul. 2018, pp. 25–27.
[Online]. Available:
http://www.kmice.cms.net.my/
[30] R. Qaddoura, A. Abu-Srhan, M. H.
Qasem, and A. Hudaib, ‘‘Requirements
prioritization techniques review and analysis,’’
in Proc. Int. Conf. New Trends Comput. Sci.
(ICTCS), Jul. 2017, pp. 258–263, doi:
10.1109/ICTCS.2017.55.

http://www.scopus.com
http://www.ijstr.org
http://www.ijcrt.org
https://docs.google.com/forms/d/e/1FAIpQLSeDT
https://docs.google.com/forms/d/e/1FAIpQLSeDT
http://www.kmice.cms.net.my/
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1027

[31] M. I. L. Lunarejo, ‘‘Requirements
prioritization based on multiple criteria using
artificial intelligence techniques,’’ in Proc.
IEEE Int. Conf. Requirements Eng., IEEE
Comput. Soc., Sep. 2021, pp. 480–485, doi:
10.1109/RE51729.2021.00072.
[32] V. Gupta, D. S. Chauhan, C. Gupta, and
K. Dutta, ‘‘Current prioritisation and
reprioritisation practices: A case study
approach,’’ Int. J. Comput. Aided Eng.
Technol., vol. 6, no. 2, pp. 159–170, 2014, doi:
10.1504/IJCAET.2014.060297.
[33] P. Marnada, T. Raharjo, B. Hardian, and
A. Prasetyo, ‘‘Agile project management
challenge in handling scope and change: A
systematic literature review,’’ Proc. Comput.
Sci., vol. 197, pp. 290–300, Jan. 2022, doi:
10.1016/j.procs.2021.12.143.
[34] M. S. Rahim, A. Z. M. E. Chowdhury, and
S. Das, ‘‘Rize: A proposed requirements
prioritization technique for agile
development,’’ in Proc. IEEE Region 10
Humanitarian Technol. Conf. (R10-HTC),
Dec. 2017, pp. 634–637, doi: 10.1109/R10-
HTC.2017.8289039. Accessed: Sep. 27, 2024.
[35] N. Mishra, M. A. Khanum, and K.
Agrawal, ‘‘Approach to prioritize the
requirements using fuzzy logic,’’ in Proc.
ACEIT Conf., 2016, pp. 1–6.
[36] F.-F. Chua, T.-Y. Lim, B. Tajuddin, and A.
P. Yanuarifiani, ‘‘Incorporating semi-
automated approach for effective software
requirements prioritization: A framework
design,’’ J. Informat. Web Eng., vol. 1, no. 1,
pp. 1–15, Mar. 2022, doi:
10.33093/JIWE.2022.1.1.1.
[37] F. Hujainah, R. B. A. Bakar, A. B. Nasser,
B. Al-haimi, and K. Z. Zamli, ‘‘SRPTackle: A
semi-automated requirements prioritisation
technique for scalable requirements of
software system projects,’’ Inf. Softw. Technol.,
vol. 131, Mar. 2021, Art. no. 106501, doi:
10.1016/j.infsof.2020. 106501.

[38] F. Hujainah, R. B. A. Bakar, and M. A.
Abdulgabber, ‘‘StakeQP: A semi-automated
stakeholder quantification and prioritisation
technique for requirement selection in
software system projects,’’ Decis. Support Syst.,
vol. 121, pp. 94–108, Jun. 2019, doi:
10.1016/j.dss.2019.04.009.
[39] F. Hujainah, R. B. Abu Bakar, B. Al-haimi,
and M. A. Abdulgabber, ‘‘Stakeholder
quantification and prioritisation research: A
systematic literature review,’’ Inf. Softw.
Technol., vol. 102, pp. 85–99, Oct. 2018, doi:
10.1016/j.infsof.2018.05.008.
[40] M. I. Babar, M. Ghazali, D. N. A. Jawawi,
S. M. Shamsuddin, and N. Ibrahim,
‘‘PHandler: An expert system for a scalable
software requirements prioritization process,’’
Knowl.-Based Syst., vol. 84, pp. 179–202, Aug.
2015, doi: 10.1016/j.knosys.2015.04.010.
[41] N. H. Borhan, H. Zulzalil, S. Hassan, and
N. M. Ali, ‘‘A hybrid prioritization approach
by integrating non-functional and functional
user stories in agile-scrum software
development (i-USPA): A preliminary study,’’
in Proc. IEEE Int. Conf. Comput. (ICOCO),
Nov. 2022, pp. 276–282, doi:
10.1109/ICOCO56118.2022.10031863.
[42] B. Kitchenham and S. M. Charters,
‘‘Guidelines for performing systematic
literature reviews in software engineering,’’
Softw. Eng. Group, Keele Univ., Keele, U.K.,
Tech. Rep. EBSE-2007-01, Jan. 2007. [Online].
Available:
https://www.researchgate.net/publication/302
924724
[43] B. Kitchenham, O. Pearl Brereton, D.
Budgen, M. Turner, J. Bailey, and S. Linkman,
‘‘Systematic literature reviews in software
engineering—A systematic literature review,’’
Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15,
Jan. 2009, doi: 10.1016/j.infsof.2008.09.009.
[44] B. Kitchenham, ‘‘Procedures for
performing systematic reviews,’’ Softw. Eng.
Group, Keele Univ., U.K., Aug. 2004.

https://www.researchgate.net/publication/302924724
https://www.researchgate.net/publication/302924724
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1028

[Online]. Available:
https://www.researchgate.net/publication/228
756057
[45] H. Zhang, M. A. Babar, and P. Tell,
‘‘Identifying relevant studies in software
engineering,’’ Inf. Softw. Technol., vol. 53, no.
6, pp. 625–637, Jun. 2011, doi:
10.1016/j.infsof.2010.12.010. [46] J. Webster
and R. T. Watson, ‘‘Analyzing the past to
prepare for the future: Writing a literature
review,’’ MIS Quart., vol. 26, no. 2, pp. 13–23,
Jun. 2002. [Online]. Available:
http://www.misq.org/misreview/announce.
html
[47] G. Y. Koi-Akrofi, J. K. Akrofi, and H.
Akwetey Matey, ‘‘Understanding the
characteristics, benefits and challenges of agile
it project management: A literature based
perspective,’’ Int. J. Softw. Eng. Appl., vol. 10,
no. 5, pp. 25–44, Sep. 2019, doi:
10.5121/ijsea.2019.10502.
[48] R. S. Kostev, ‘‘Challenges and problems of
the Moscow method application in ERP
system implementation,’’ in Proc.11th Int. Sci.
Conf. Comput. Sci. (COMSCI) Proc. Inst.
Elect. Electron. Eng., Jan. 2023, pp. 1–4, doi:
10.1109/COMSCI59259.2023.10315816.
[49] K. AbdElazim, R. Moawad, and E.
Elfakharany, ‘‘A framework for requirements
prioritization process in agile software
development,’’ J. Phys., Conf. Ser., vol. 1454,
no. 1, Feb. 2020, Art. no. 012001, doi:
10.1088/1742- 6596/1454/1/012001.
[50] K. S. Ahmad, N. Ahmad, H. Tahir, and S.
Khan, ‘‘Fuzzy_MoSCoW: A fuzzy based
Moscow method for the prioritization of
software requirements,’’ in Proc. Int. Conf.
Intell. Comput., Instrum. Control Technol.
(ICICICT), Jul. 2017, pp. 433–437.
[51] A. W. Khan, I. Hussain, and M. Zamir,
‘‘Analytic hierarchy processbased prioritization
framework for vendor’s reliability challenges in
global software development,’’ J. Softw., Evol.

Process, vol. 33, no. 3, Mar. 2021, Art. no.
e2310, doi: 10.1002/smr.2310.
[52] S. Abusaeed, S. U. R. Khan, and A.
Mashkoor, ‘‘A fuzzy AHP-based approach for
prioritization of cost overhead factors in agile
software development,’’ Appl. Soft Comput.,
vol. 133, Jan. 2023, Art. no. 109977, doi:
10.1016/j.asoc.2022.109977.
[53] M. Shameem, R. R. Kumar, C. Kumar, B.
Chandra, and A. A. Khan, ‘‘Prioritizing
challenges of agile process in distributed
software development environment using
analytic hierarchy process,’’ J. Softw., Evol.
Process, vol. 30, no. 11, Nov. 2018, Art. no.
e1979, doi: 10.1002/smr.1979.
[54] A. Rida, S. Nazir, A. Tabassum, and S.
Asim, ‘‘The impact of analytical assessment of
requirements prioritization models: An
empirical study,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 8, no. 2, pp. 1–11, 2017. [Online].
Available: www.ijacsa.thesai.org
[55] N. A. Teridi, Z. Adzhar, N. M. D. Rahim,
J. Kamis, T. Ridzuan, Z. Adnan, and M. F. A.
Rauf, ‘‘The approach using cumulative voting
and spanning tree technique in implementing
functional requirement prioritization: A case
study of student’s financial system
development,’’ Article J. Theor. Appl. Inf.
Technol., vol. 15, no. 3, pp. 1106–1117, 2023.
[Online]. Available:
https://www.researchgate.net/publication/373
772244
[56] Maidin, S. S., Yahya, N., Fauzi, M. A. F.,
& Abu Bakar, N. S. A. (2025). Current and
future trends for sustainable software
development: Software security in agile and
hybrid agile through bibliometric analysis.
Journal of Applied Data Sciences, 6(1), 311–324.
[57] Alenezi, M., & Akour, M. (2025). AI-
driven innovations in software engineering: A
review of current practices and future
directions. Applied Sciences, 15(1344), 1–26.
https://doi.org/10.3390/app15031344

https://www.researchgate.net/publication/228756057
https://www.researchgate.net/publication/228756057
http://www.ijacsa.thesai.org
https://www.researchgate.net/publication/373772244
https://www.researchgate.net/publication/373772244
https://doi.org/10.3390/app15031344
https://doi.org/10.3390/app15031344
https://doi.org/10.3390/app15031344
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

Crossponding Author: |Muhammad Azam et al 2025 | Page 1029

[58] Jacquet, L., Le Duigou, A., & Kerbrat, O.
(2025). A proposal for a methodology for the
co-creation of an environmental analysis tool:
Application to the competitive sailing sector in
Brittany. Discover Applied Sciences, 7, 420.
https://doi.org/10.1007/s42452-025-06805-9

https://doi.org/10.1007/s42452-025-06805-9
https://doi.org/10.1007/s42452-025-06805-9
https://doi.org/10.1007/s42452-025-06805-9
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

	Focuses mainly on the following main ideas.
	Emerging Trends and Future SDM Directions

