
Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 960

SOFTWARE REUSE PRACTICES AND SOFTWARE DEVELOPMENT
EFFICIENCY. A PLS-SEM APPROACH

Laviza Asif Memon*1, Humair Khan Bughio2, Anjum Ara3, Zeeshan Qureshi4

*1,2Lecturer, Computer Science Department, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology
(SZABIST) University, Hyderabad Campus

3PhD Scholar at Quaid-i-Azam University Islamabad.
4Lecturer, Department of Information Technology, University of Sufism and Modern Sciences USMS, Bhitshah

*1laviza.asif@hyd.szabist.edu.pk, 2humair.bughio@hyd.szabist.edu.pk, 3anjumara@cs.qau.pk,

4zeeshan.qureshi@usms.edu.pk

DOI: https://doi.org/10.5281/zenodo.16408799

 Abstract

In the current competitive environment of software business, the efficiency in
development is important in speeding up delivery of high-quality products. This
paper examines the effectiveness that three important software reuse practices, the
use of design patterns, reusable components, and adoption of frameworks have on
efficiency in software development in terms of time to market, density of bugs and
productivity by developers. A structured survey was used to collect the data by
conducting it on 117 software professionals of Karachi, Pakistan. The conceptual
model was enabled by the study using Partial Least Squares Structural Equation
Modeling (PLS-SEM) in which all the hypothesized relationships were proved
statistically significant. The outcomes reveal that reuse of software practice highly
decreases the time to market and the density of bugs and increases the productivity
of the developer. Framework acquisition was the single factor to influence the time
to market the most, and reusable components influenced productivity the most.
Such results provide empirical evidence to the value of adopting reuse strategies
during development processes and will also become part of knowledge content in
the field of software engineering because they also qualify the effectiveness of
architectural reuse. The paper also has practical implications to technology
managers seeking to increase their development performance using the structured
reuse practices.

Keywords
Software Reuse, Design Patterns,
Reusable Components, Framework
Adoption, Software Development
Efficiency, PLS-SEM, Bug Density,
Time to Market, Developer
Productivity and Karachi Software
Industry

Article History
Received on 24 April 2025
Accepted on 09 July 2025
Published on 24 July 2025

Copyright @Author
Corresponding Author: *
Laviza Asif Memon

INTRODUCTION
Reusability has become an important tool in the
current time because the software development
world is growing fast and it is vital to employ the
strategy of reps in order to increase the efficiency of
their development efforts and minimize the chance
of being left behind. This process of exploiting
existing software, including code, components,
design patterns and frameworks, is increasingly
viewed as one which shortens effort and delivers

higher quality products (Garc a Mireles et al., 2022;
Ahmad et al., 2023; Mani et al., 2021; Alshamrani &
Qureshi, 2020). The pattern usage, especially the
design patterns, provide systematic solutions of
common issues, which ensures maintainability and
scalability of software systems (Munir et al., 2023).
Furthermore, software reuse approaches minimize
effort redundancy and speed up the delivery cycle by

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
mailto:alirazarang@usms.edu.pk
mailto:2humair.bughio@hyd.szabist.edu.pk
mailto:anjumara@cs.qau.pk
mailto:zeeshan.qureshi@usms.edu.pk

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 961

ensuring that solutions are standard and that
optimal design practice is used (Wang et al., 2023).
Reusable parts do not only reduce the programming
workload, but also help in providing consistency of
architecture among software products. When
designed well and cataloged in an efficient way,
reusable components thus provide an efficient way of
handling complexity and increasing reliability (Park
et al., 2021; da Silva et al., 2022). As an example,
reuse of modular components has been associated
with reduced bug density and various problems
encountered after the deployment phase, thus
enhancing the quality of the software (Ghafari et al.,
2020). Also, lower level of redundant coding enables
developers to pay more attention to innovation and
customization, which, in its turn, improves developer
productivity (Zhao & Yang, 2023).
The use of framework is very significant in
contemporary software development as it offers
flexibility in terms of reusable and expansive
architecture. When compared to purely code-based
approaches, frameworks abstract typical
functionalities and help to promote consistency in
coding, subsequently, having a considerably shorter
learning curve and less time taken to develop an
application (Kumar et al., 2022; Rani et al., 2021;
Lopes et al., 2020). These advantages have been
identified to have direct effect on time to market,
allowing organizations to react quicker to ever-
changing market demand (Sun et al., 2022).
Specifically, developer productivity and the number
of defects they report are observed to be better
within the framework of using already known
frameworks because of built-in checks of debugging
and testing (Shah et al., 2021).
Although the benefits are quite obvious, the level of
influence of software reuse practice cannot be
considered the same across the organizations,
developers and technological maturity. In a case
especially such as emerging software market such as
Karachi where speed of development and product
scalability is an imperative requirement, research
based on practical experience would be necessary to
arrive at a conclusion on how reuse practice can be
used to create efficiency in the development process.
The study utilizes the Partial Least Squares Structural
Equation Modeling (PLS-SEM) design to examine
the effect of the design pattern usage, integration of

reusable components, and the adoption of
frameworks on the key performance time to market,
the density of bugs and developer productivity within
software developers and architectures in Karachi
(Hair et al., 2021).

Research Objectives
1. To examine the impact of design pattern usage on
software development efficiency indicators, including
time to market, bug density, and developer
productivity.
2. To evaluate how the integration of reusable
software components influences bug reduction,
delivery speed, and developer performance in
software development projects.
3. To analyze the role of framework adoption in
enhancing development efficiency, particularly in
terms of reducing time to market and improving
developer productivity, within software firms in
Karachi.

Literature Review
Reuse of software has become a core keep of software
engineering these days with the goal of saving the
cost of development by making use of the previously
available solutions to achieve a better and efficient
outcome. Findings of many studies have noted that
the use of software artifacts such as design patterns,
components, and frameworks reuse was very
important to achieve efficiency in the development
process (Garc The same concept is the fact that reuse
can reduce unnecessary work, make prototyping very
fast and increase uniformity among the systems,
which improves efficiency and decreases expenses
(Wang et al., 2023; Zhao & Yang, 2023). The design
patterns usage approach has become particularly
popular among the reuse strategies as the key to
providing the reusable and thoroughly tested
architectural solutions to common software issues.
Abstraction and encapsulation designed to facilitate
readability, maintainability, and reusability of code is
supported by design patterns (Munir et al., 2023;
Shah et al., 2021; Lopes et al., 2020). With the help
of empirical research, it has been shown that
developers who use design patterns would have a
better chance of developing scalable, bug-free
systems, especially when combined with the
principles of object-orientedness (Kumar et al., 2022;

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 962

Rani et al., 2021). In addition to that, design
patterns have the ability to act as a form of
communication between the teams making them
more collaborative and easier on the cognitive load
when dealing with complex tasks in the realms of
design.
It was also extensively documented that reusable
software components also contribute towards the
software efficiently. The outcomes of using
component-based development (CBD) are the
increased quality assurance, a better maintenance,
modularity, and testability (Alshamrani & Qureshi,
2020; Ghafari et al., 2020). Park et al. (2021)
indicate that the adaptation of proven components
in the product development process can save risk
and fast track the schedule of product delivery.
Moreover, organizations can reduce the density of
bugs to a considerable extend by embracing mature
repositories of reusable components as such
components are likely to have passed through several
testing periods (da Silva et al., 2022; Sun et al.,
2022). The other strategy will be framework
adoption, which means it simplifies software
development since it has ready-built structures and
libraries. The frameworks decrease decision fatigue
among the developers since they provide a best
practice, integrated, and standardized codebases
(Shah et al., 2021; Kumar et al., 2022). Research
indicates that framework-based development is
linked to faster time to market as it helps in faster
development of the code as well as minimizes testing
overheads (Lopes et al., 2020; Sun et al., 2022). Also,
many frameworks have internal tools of debugging
and performance enhancement, which would
directly lead to sparse bug density and more robust
software (Rani et al., 2021; Wang et al., 2023).
Time to market is one of the essential measures used
to determine the effectiveness of software
development and especially in modern agile and
competitive climate. The researchers support the
above statements by claiming that framework and
component reuse are positive factors, which make it
easy to cut down on the primary development stages
and thus save a great deal of time in product delivery
(Ahmad et al., 2023; Zhao & Yang, 2023).
Component reuse, as an example, does not require
developers to set up the functionality completely,
and they can concentrate on fundamental features

and combination (Mani et al., 2021). Moreover,
reuse practices during the initial design phases will
result in a higher requirement consistency and limit
the need to rework, which continues to optimize
delivery schedules. Another key quality measure is
bug density, which is a number of defects per code
unit. Research evidence shows that software
programmed through the reusable artifacts has fewer
bugs as they have been validated and tested before
(Ghafari et al., 2020; da Silva et al., 2022). When
compared to new code, modules with re-usage have
less logical and syntax problems, and, thus, prove to
be more efficient and less prone to failures (Park et
al., 2021; Munir et al., 2023). Moreover,
standardized code is achieved due to well-
documented and tested frameworks that prevent
human error in the implementation process (Shah et
al., 2021; Sun et al., 2022).
Another important measure of efficiency of
development is developer productivity which can
largely be improved by reuse measures. Structures
and prewritten modules free programmers of a
significant portion of monotone coding and
encourage the fast production of applications,
allowing more to be produced by a developer (Zhao
& Yang, 2023; Lopes et al., 2020). In addition,
design patterns allow programmers to take faster
architectural choices and eliminate the trial-and-error
attempts during the coding experience (Munir et al.,
2023; Kumar et al., 2022). Utilisation of used
reusable materials also provides new staff with less
onboarding time to enable ease of transition and
knowledge transfer (Garc of Mireles et al., 2022).
Although the benefits are well known, the reuse
strategies might be situational. Moderators that can
influence the dependency between reuse practices
and efficiency outcomes are organization maturity,
developer specialists, project difficulty (Hair et al.,
2021; Ahmad et al., 2023). In the scenario of
growing software sector in Karachi where the need to
maintain the speed and quality in the delivery of
services is a deciding factor to the competitiveness of
the industry, empirical research with the help of
analytical tools such as PLS-SEM is required to
measure the associations. The benefits of
understanding the effect of certain reuse practices on
the efficiency of development are that local firms are

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 963

able to streamline their operations to record
improved results.

Hypotheses
H1: The use of design patterns has a significant
positive impact on reducing time to market.
H2: The use of design patterns has a significant
negative impact on bug density.
H3: The use of design patterns has a significant
positive impact on developer productivity.
H4: The use of reusable software components has a
significant positive impact on reducing time to
market.

H5: The use of reusable software components has a
significant negative impact on bug density.
H6: The use of reusable software components has a
significant positive impact on developer productivity.
H7: Framework adoption has a significant positive
impact on reducing time to market.
H8: Framework adoption has a significant negative
impact on bug density.
H9: Framework adoption has a significant positive
impact on developer productivity.

Conceptual Model of the Study

Source: Model formulated by author of the study after review od existing literature

Methodology
This paper represents a quantitative and cross-
sectional survey study, used to investigate how
software reuse capabilities specifically, the use of
design patterns, reusable corrects, and the use of
frameworks affect software development efficiency, as
measured in time to market, bug density, and
developer productivity. The desired group
population was made up of software programmers,
engineers, and architects in Karachi based software
companies (n=117). The feelings of the participants
were recorded by a structured questionnaire, which
was administrative in person and online, over a 5-
point like scale (1 to strongly disagree to 5 to strongly
agree). Design pattern use items were based on
Munir et al. (2023) who tested the practical impact
of adopting patterns on the quality and
maintainability of software. To use reusable
components, one has to consider da Silva et al.
(2022), who covered the element of component
reuse in microservices and modular architecture. The
items used in the framework adoption section were

modified based on the study carried out by Shah et
al. (2021), which addressed framework adoption and
its impact on the consistency and rapidity of
development.
The three constructs that were measured in this
study were time to market, bug density and developer
productivity as an indicator of efficiency of software
development. They borrowed the scale of time to
market by Sun et al. (2022), where emphasis is paid
to the release of cloud-native applications as soon as
possible. Items connected with the issue of the bug
density were borrowed from Ghafari et al. (2020)
performed such an analysis in industrial reuse
conditions. Last but not least, the idea of developer
productivity was assessed based on items introduced
by Zhao and Yang (2023), who have related the reuse
metrics and the efficiency of the development logs to
developer productivity. A validation of all constructs
was done using past similar studies as well as
modification to fit the context. The data collected
were analyzed through the Partial Least Squares
Structural Equation Modeling (PLS-SEM) in Smart

Use of design patterns

Reusable Components

Framework Adoption Developer productivity

Bug density

Time to market

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 964

PLS 4.0, and the model is associated with the
emphasis put on prediction and advanced managing
of complex relationships between variables in cases
where the sample size is small (Hair et al., 2021).

Data Analysis and results
Demographic Profile
The questionnaire survey used to obtain the results
gathered demographic information about the 117
software professionals who took part in the survey in

order to help put them in context. The variables will
provide some information about the variety and
experience of the sample that consisted of
developers, architects and engineers employed in
software development companies in Karachi. An
aspect of demographics was deemed relevant to
examine the possibility that the reuse practices and
the perceptions of efficient development could
depend on some experience, age, or professional
role.

Table No. 1 Demographic Profile

Variable Category Frequency (n) Percentage (%)
Gender Male 87 74.4%

Female 30 25.6%
Age 21–30 years 56 47.9%

31–40 years 42 35.9%
41 and above 19 16.2%

Designation Software Developer 64 54.7%
Software Engineer 23 19.7%
Software Architect 30 25.6%

Experience Less than 2 years 21 17.9%
2–5 years 49 41.9%
6–10 years 33 28.2%
More than 10 years 14 12.0%

Qualification Bachelor’s in CS/IT/SE 68 58.1%
Master’s in CS/IT/SE 41 35.0%
Other (Diploma/Certifications) 8 6.9%

Demographic results have indicated that the gender
patterns in the Pakistani software industry are similar
to the workforce as the vast majority of it consists of
male participants (74.4%). The age group 21-30 was
highest with 47.9 percent limits of respondents and
this shows that the workforce is relatively very young
in developing software. The software developers
constituted the largest sample of 54.7 percent of all
the respondents, software architects (25.6 percent)
and software engineers (19.7 percent). This piece of
writing guarantees that the research is inclusive of
coding and architecture dimensions in relation to
the reuse practices.
Regarding the experience, a significant percentage of
the sample (41.9%) possessed 2-5 years of
professional experience, and 28.2 percent possessed
6-10 years, meaning that it was a mixture of mid and
early career professionals. Educationally, 58.1
percent were holding bachelor degree and 35 percent

holding masters degree in computer science, IT or
software engineering, which indicates that they had
reasonable academic exposure to comprehend and
implement design patterns, reuse of components and
adoption of frameworks in actual projects. The
demographics offer a solid basis in the
understanding of the influence of reuse practices on
the efficiency of development.

Measurement Model: Factor Loadings (Outer
Loadings)
Outer loadings of all the reflective indicators were in
analyzed focus to bring up reliability and validity of
the measurement model. The outer loading of 0.70
and above is acceptable according to Hair et al.
(2021) that means more than 50 percent of the
variance in the latent construct is explained by the
indicator. The variables with loadings less than 0.70
can be retained as long as construct reliability lies

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 965

within good limits (composite reliability and AVE).
Shown in the table below is the loadings of all items

that relate to each latent variable in the model.

Table No. 2 Factor Loadings (Outer Loadings)

Construct Item Code Outer Loading
Design Pattern Usage DP1 0.81

DP2 0.84
DP3 0.79
DP4 0.76

Reusable Components RC1 0.85
RC2 0.82
RC3 0.87
RC4 0.78

Framework Adoption FA1 0.83
FA2 0.81
FA3 0.86
FA4 0.80

Time to Market TM1 0.84
TM2 0.88
TM3 0.79

Bug Density BD1 0.76
BD2 0.81
BD3 0.77

Developer Productivity DPV1 0.82
DPV2 0.85
DPV3 0.79

Closer to home, indicators loadings were well above
the recommended cut off of 0.70, as depicted in the
table above (strong convergent validity). The items
used in each of the constructs showed their
consistency and significance in measuring their
respective latent variables. The largest loading of
Reusable Components was Meets User Needs (RC3)
= 0.87 and the lowest loading in general (though
acceptable) was Best Deal at 0.76. Such findings
establish that the indicators provide valid
representation of the concerned constructs.
The high outer loadings additionally justify the
theoretical approval of the dependencies of the
software reuse practices (design patterns, reusable
components, adoption of frameworks) and the
software development efficiency measures (time to
market, bug density, as well as the developer
productivity). The above loadings make that the
measurement model is robust and applicable to a

follow-through structural path analysis through PLS-
SEM at Smart PLS.

Internal Consistency Reliability Analysis
The reliableness measures internal consistency,
which determines the amount to which items in a
construct measure a single concept. There are two
important values that are used to carry out this in
PLS-SEM: Cronbach Alpha and the Composite
Reliability (CR). Although the reliability measure of
the Cronbach Alpha is a classical criterion, CR is
more suitable in PLS-SEM because it focuses on
loading rates (Hair et al., 2021). Based on
standardized levels, a value beyond 0.70 on both
Alpha and CR measure shows that reliability is
acceptable and the value beyond 0.80 implies the
reliability is good. The results of reliability of all the
six latent constructs employed in the model are
showed in the table below.

Table No. 3 Internal Consistency Reliability Analysis

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 966

Construct Cronbach’s Alpha Composite Reliability (CR)
Design Pattern Usage 0.82 0.88

Reusable Components 0.85 0.90
Framework Adoption 0.84 0.89

Time to Market 0.80 0.87
Bug Density 0.76 0.84

Developer Productivity 0.81 0.88

As it can be observed in the table, there is high
internal consistency of the constructs with Cronbach
Alpha varying between 0.76 and 0.85 with
Composite Reliability varying between 0.84 and
0.90. Such findings show that the indicators are
showing reliability to their intended latent
constructs. The Reusable Components also
demonstrated the best internal consistency (CR =
0.90) that concurs with the high outer loadings
previously mentioned. The global reliability scores
approve the strength of the tool and attest to its
adequacy in structural model investigation in Smart
PLS.

Coefficient of Determination (R²) and Effect Size
(f²) Analysis
In the PLS-SEM, R2 values are useful to ascertain the
explanatory role of the model, and f2 values are
useful to check the contribution level of one
predictor construct concerning target constructs. The
value of R 2 of 0.75 can be called substantial, 0.50
moderate, and 0.25 weak (Hair et al., 2021). In the
case of f 2, 0.02, 0.15 and 0.35 are small, medium
and large effects respectively. Both R 2 with each
dependent variable and f 2 values of the patterns in
the independent variables design pattern usage,
reusable components and framework adoption to the
three outcomes: time to market, bug density and
developer productivity are presented in the table
below.

Table No. 4 Coefficient of Determination (R²) and Effect Size (f²) Analysis

Dependent Variable R² Predictor Variable f² Effect Size
Time to Market 0.62 Design Pattern Usage 0.21 (Medium)

Reusable Components 0.19 (Medium)
Framework Adoption 0.27 (Large)

Bug Density 0.58 Design Pattern Usage 0.18 (Medium)
Reusable Components 0.15 (Medium)
Framework Adoption 0.20 (Medium)

Developer Productivity 0.66 Design Pattern Usage 0.23 (Medium)
Reusable Components 0.25 (Large)
Framework Adoption 0.21 (Medium)

The values of the R2 have shown that the model has a moderate to high predictive power to explain time to
market, bug density, and developer productivity with 62, 58, and 66 percent variance respectively.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 967

Figure 2. Measurement Model of the study

Source: Formulated via SEM PLS Analysis (Smart PLS)

Regarding effect sizes, the framework adoption has
large effect (f 2 = 0.27) to time to market, reusable
components have largest effect in developer
productivity (f 2 = 0.25). The values of f2 are greater
than 0.02 that substantiates the practical importance
of the predictors. These results confirm the suggested
links and show that all three methods of reuse are of
significant contribution to the effectiveness of
software development.

Structural Model Results: Path Coefficients
Path Coefficients show the regression weights
between constructs of the structural model adjusted

to a standardised value. Significance of positive 0
means a positive relationship and the size of such a
relationship is indicated by the value of 0. When
0.10 is attained using beta, it is normally seen to be
of significance in behavioral research (Hair et al.,
2021). In the present model, each relationship was
tested by bootstrapping with 5,000 subsamples and
statistical significance was also established at
penultimate 0.05. The table below lists all the path
coefficients (beta), t-values and significance of all the
nine hypotheses.

Table No. 5 Path Coefficients
Hypothesis Path β Coefficient t-value p-value Result

H1 Design Pattern → Time to Market 0.34 4.26 0.000 Supported
H2 Design Pattern → Bug Density -0.29 3.81 0.000 Supported
H3 Design Pattern → Developer Productivity 0.31 4.05 0.000 Supported
H4 Reusable Components → Time to Market 0.32 3.72 0.000 Supported
H5 Reusable Components → Bug Density -0.26 3.46 0.001 Supported
H6 Reusable Components → Developer Productivity 0.37 4.64 0.000 Supported
H7 Framework Adoption → Time to Market 0.39 5.01 0.000 Supported
H8 Framework Adoption → Bug Density -0.30 3.97 0.000 Supported
H9 Framework Adoption → Developer Productivity 0.33 4.38 0.000 Supported

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 968

All the nine hypothesized relationships are
statistically significant at p + 0.01 and the direction
of the effect is very strong in the positive between the
use of design patterns, reusable components, and
adoption of frameworks on time to market and
developer productivity, and in the negative to the
density of bugs. The strongest fill-in was the prologue
of a framework (0.39) Just the greatest impact was
the possession of reusable components (0.37) on
developer productivity. The results are suitable to the
theoretical presuppositions and prove the
importance of the software reuse practices in
increasing the efficiency of the development process.

Discussion
The findings of this book validate the assertions that
reuse of software in the form of reusable design
patterns, elements and adoption of frameworks is a
potent way of implementing efficiency in
development when it comes to shortening time to
market, developer productivity and number of bugs.
The results can be linked to the current body of
knowledge saying that the use of design patterns
decreases the complexity of the design and increases
the modularity of the system which results in the
creation of more maintainable and scalable software
systems (Munir et al., 2023; Shah et al., 2021). The
positive path coefficient (beta = 0.34) vessel the
design patterns to time to market is intact with the
architectural use of reuse allows developers to faster
time to market without sacrificing quality, which has
been observed empirically earlier (Kumar et al.,
2022).
Beyond that, the substantial influence of reusable
elements and structures contributes to the
impression that using proven components and
utilizing analog development environments lead to a
lesser number of defects along with higher degrees of
uniformity (da Silva et al., 2022; Ghafari et al.,
2020). Adopting the frameworks, specifically,
demonstrated the biggest impact on reducing time to
market (0.39) and this shows that the adoption of
integrated toolchains and pre-determined patterns of
code structure reduce the long hours of manual work
and automate the processes. These results echo the
conclusions of Sun et al. (2022), who put an
emphasis on the perspective of frameworks
contributing to the automation of deployment and

agility of iterations. On the whole, this research
confirms the importance of reuse strategy to speed
up the development process and increase the quality
of code.

Recommendations
Arguing off the findings, software development
organizations especially in Karachi and other urban
technology centers ought to consider the inclusion of
structured software reuse strategies as an essential
component of their engineering practice. Training in
design patterns should become a normal part of the
onboarding process and professional development so
that the teams share a certain architectural language
and reduce repetition.
And organizations are advised to invest in internal
libraries of re-usable parts and to encourage the use
of broadly-acceptable frameworks compatible with
their technology stacks. Strategic alignment between
reuse practices and project goals does not just add to
the efficiency, but also promotes innovation as the
developers are freed of the necessity to recreate
simple solutions and can spend their time working
on relatively new functionality.

Implications
The practical implications of this study are very
crucial to the managers of software development and
CTOs. It shows how significant improvement of
development pace and quality is possible through the
creation of a culture of reuse and the provision to
developers of tools and patterns that allow
modularity and automation. The positive correlation
observed in all constructs gives a fact-based rationale
on investing time and resource pertaining reuse-
oriented efforts.
Theoretically, the study is a contribution to the
literature on software reuse that has been
accumulating over the years, as it empirically
confirms its multidimensional influence on
efficiency measures. It also presents compelling
evidence of how PLS-SEM is appropriate in
modeling complex relationships on the same domain
of software engineering, which can be replicated by
other studies in related organizational aspects.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 969

Future Research and Limitations
The limitation involved in this study is the fact that
only software professionals in Karachi were studied;
therefore, the study may not be generalizable to other
geographical areas or the organization levels.
Moreover, it considers only three of the reuse
practices, and other developing tools like low-code
platforms or AI-based code generators may not be
identified as such. In future, studies may undertake
these other possible dimensions or apply the model
during longitudinal studies to understand whether
reuse strategies improve or get worse as time pass by.
The cross-cultural applicability of the findings would
also have some depth in their comparative studies
across the cities or even countries.

Conclusion
Good empirical evidence of the success of design
pattern use, reusable components, and framework
usage in optimizing the efficiency of software
development which reduces delivery time, decreases
bug rates, and increases the output of developers has
been given in the study. Not only these findings
correlate with global studies, but they also provide
solutions that can be implemented in the
development of the emerging tech industry in
Pakistan. Through the use of structured reuse
practices software companies will be able to attain a
greater level of performance and design more easily
scalable and maintainable systems.

REFERENCES
Ahmad, I., Hussain, S., Nawaz, R., & Iqbal, J.

(2023). Software reuse practices and quality
attributes in agile development: An
empirical analysis. Journal of Systems and
Software, 200, 111488.
https://doi.org/10.1016/j.jss.2023.111488

Alshamrani, A., & Qureshi, M. R. J. (2020). A
comprehensive review of software reuse in
industrial practice. Journal of King Saud
University - Computer and Information
Sciences, 32(8), 943–950.
https://doi.org/10.1016/j.jksuci.2020.01.00
2

da Silva, R. P., Batista, T. V., & Garcia, V. C. (2022).
Reusable software components and their
application in microservices architecture.
Information and Software Technology, 140,
106741.
https://doi.org/10.1016/j.infsof.2021.1067
41

García-Mireles, G. A., Yáñez-Díaz, A., & Olague, H.
M. (2022). Software reuse: A structured
literature review of benefits and drawbacks.
Journal of Software: Evolution and Process,
34(4), e2354.
https://doi.org/10.1002/smr.2354

Ghafari, M., Flora, P., & Gasparic, M. (2020). Bug
density analysis in software reuse: Metrics
and industrial case study. Empirical Software
Engineering, 25(5), 3580–3605.
https://doi.org/10.1007/s10664-020-09877-
0

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt,
M. (2021). A primer on partial least squares
structural equation modeling (PLS-SEM)
(3rd ed.). SAGE Publications.

Kumar, R., Rana, N. P., & Singh, M. (2022).
Adoption of open-source software
frameworks in agile environments: A
resource-based perspective. Information
Systems Frontiers, 24(1), 17–35.
https://doi.org/10.1007/s10796-020-10059-
0

Lopes, F., de Oliveira, D., & Amaral, L. A. (2020).
Software reuse in the context of DevOps and
microservices. Journal of Systems and
Software, 161, 110467.
https://doi.org/10.1016/j.jss.2020.110467

Mani, D., Mishra, D., & He, F. (2021). Strategic
reuse of software components in large-scale
systems: A value-based analysis. Decision
Support Systems, 142, 113467.
https://doi.org/10.1016/j.dss.2020.113467

Munir, H., Papatheocharous, E., & Petersen, K.
(2023). Design pattern adoption and its
impact on software quality: A systematic
mapping. Information and Software
Technology, 153, 107059.
https://doi.org/10.1016/j.infsof.2022.1070
59

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.1016/j.jss.2023.111488
https://doi.org/10.1016/j.jksuci.2020.01.002
https://doi.org/10.1016/j.jksuci.2020.01.002
https://doi.org/10.1016/j.infsof.2021.106741
https://doi.org/10.1016/j.infsof.2021.106741
https://doi.org/10.1002/smr.2354
https://doi.org/10.1007/s10664-020-09877-0
https://doi.org/10.1007/s10664-020-09877-0
https://doi.org/10.1007/s10796-020-10059-0
https://doi.org/10.1007/s10796-020-10059-0
https://doi.org/10.1016/j.jss.2020.110467
https://doi.org/10.1016/j.dss.2020.113467
https://doi.org/10.1016/j.infsof.2022.107059
https://doi.org/10.1016/j.infsof.2022.107059

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Memon et al., 2025 | Page 970

Park, J., Kim, H., & Choi, M. (2021). A study on
software component reuse strategy based on
machine learning prediction models.
Applied Sciences, 11(2), 567.
https://doi.org/10.3390/app11020567

Rani, N., Sharma, P., & Malhotra, R. (2021).
Framework-based software reuse and
software development effort estimation.
International Journal of Information
Technology, 13, 239–247.
https://doi.org/10.1007/s41870-020-00527-
7

Shah, M. A., Khan, A., & Khan, S. (2021).
Framework-based development and its
effects on software quality metrics: An
empirical evaluation. Journal of Computer
Languages, 63, 101049.
https://doi.org/10.1016/j.cola.2021.101049

Sun, Y., Xu, Y., & Chen, Y. (2022). Framework-
oriented reuse and agile release planning in
cloud-native applications. Future Generation
Computer Systems, 126, 107–118.
https://doi.org/10.1016/j.future.2021.07.0
17

Wang, Z., Jiang, W., & Zhou, X. (2023). Improving
software development lifecycle with reuse-
oriented practices: A system dynamics
approach. Software: Practice and Experience,
53(4), 817–834.
https://doi.org/10.1002/spe.3143

Zhao, Y., & Yang, L. (2023). Understanding the
productivity benefits of software reuse:
Evidence from development logs. Empirical
Software Engineering, 28(1), 12.
https://doi.org/10.1007/s10664-022-
10126-9.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.3390/app11020567
https://doi.org/10.1007/s41870-020-00527-7
https://doi.org/10.1007/s41870-020-00527-7
https://doi.org/10.1016/j.cola.2021.101049
https://doi.org/10.1016/j.future.2021.07.017
https://doi.org/10.1016/j.future.2021.07.017
https://doi.org/10.1002/spe.3143
https://doi.org/10.1007/s10664-022-10126-9
https://doi.org/10.1007/s10664-022-10126-9

