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 Abstract 

Sign language plays a crucial role in facilitating communication for individuals 
with speech or hearing impairments. However, traditional sign language 
interpretation relies on human translators, which can be costly and not always 
available. To address this challenge, this study proposes an AI-based sign language 
recognition system using the YOLOv11 model for real-time gesture detection. We 
trained YOLOv11 on a custom Pakistan Sign Language (PSL) dataset consisting 
of 13 gestures and a background class. Various preprocessing techniques, 
including data augmentation and normalization, were applied to enhance model 
performance. The model achieved 99.7% test accuracy, 98% F1-score, and 0.987 
mAP@50, demonstrating its effectiveness in real-time sign recognition. While 
minor misclassifications occurred in similar gestures, the overall results showed 
strong reliability. To showcase real-world usability, we developed a desktop-based 
application using Tkinter and OpenCV, allowing real-time recognition through a 
webcam. Future improvements will focus on expanding the dataset, optimizing 
model performance for mobile devices, and integrating speech synthesis to enhance 
accessibility. These findings highlight the potential of deep learning in bridging 
communication gaps for the hearing-impaired, paving the way for more inclusive 
assistive technologies. 
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INTRODUCTION
1.1 Background 
Sign language remains the primary medium of 
communication for millions of individuals with 
speech or hearing impairments, enabling them to 
express needs, emotions, and thoughts in daily life. 
However, a significant communication divide exists 
between the hearing-impaired community and the 
broader population due to the general lack of 
knowledge and proficiency in sign language among 
the latter (Islam et al., 2021). While human 
interpreters provide valuable services, they are 
limited in number, expensive, and not always 
accessible, prompting researchers to explore 

automated sign language recognition (SLR) systems 
to bridge this gap (Shin et al., 2020). 
Earlier systems relied heavily on handcrafted features 
such as hand orientation and finger positioning, yet 
these methods showed low resilience to 
environmental variations like lighting, occlusion, and 
background noise (Maung et al., 2022). The 
emergence of deep learning, particularly 
convolutional neural networks (CNNs), 
revolutionized gesture recognition by learning robust 
visual features directly from data without manual 
intervention (Chen et al., 2023). However, such 
models require extensive labeled datasets for high 
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performance, and the lack of balanced, localized 
datasets such as for Pakistan Sign Language (PSL) 
remains a major challenge (Rashid et al., 2022). 
This research proposes a real-time sign language 
recognition system using the YOLOv11 architecture, 
a cutting-edge object detection model known for its 
speed and precision (Tan et al., 2024). By utilizing 
enhanced feature extraction capabilities and real-time 
inference, YOLOv11 offers a promising solution for 
interpreting PSL gestures. Through integration with 
assistive technologies, the system aims to promote 
inclusion, accessibility, and empowerment for 
individuals with hearing impairments in educational, 
medical, and public domains. 
 
2. Literature Review 
This chapter contextualizes the evolution of sign 
language recognition, comparing traditional and 
modern deep learning approaches, and justifying the 
use of YOLOv11 for real-time PSL recognition. 
 
2.1 Sign Language Recognition History 
Sign language recognition has evolved from sensor-
based methods like Kadous (1996), who used 
PowerGloves for Australian Sign Language (Auslan), 
to vision-based approaches such as Starner and 
Pentland (1997) applying Hidden Markov Models. 
However, these early systems were constrained by 
computational power and environmental sensitivity. 
Al-Qurishi et al. (2024) provide a comprehensive 
overview of the transition to deep learning, 
emphasizing vision-based models' advantages and the 
field’s direction toward real-time, hardware-
independent systems. 
 
2.2 Traditional Machine Learning Approaches 
Before deep learning, handcrafted features like HOG 
and SIFT were used with classifiers like SVM and 
KNN (Ong & Ranganath, 2005; Keskin et al., 2011). 
These systems, though moderately accurate, lacked 
scalability and real-time robustness (Yu et al., 2021), 
making them unsuitable for practical deployment. 
 
2.3 Deep Learning Innovations 
The introduction of CNNs and hybrid models like 
CNN-LSTM improved classification accuracy, as seen 
in Koller et al. (2016) and Huang et al. (2018), but at 
the cost of real-time feasibility. More recent work, 

such as Rameshbhai Kothadiya (2024), recommends 
YOLOv11 for its real-time advantages and high 
detection performance. 
 
2.4 YOLO-Based Systems 
Redmon et al. (2016) introduced YOLOv1, and 
subsequent versions like YOLOv4 and YOLOv5 
have been successfully applied to sign language 
detection (Adaloglou et al., 2021; Li et al., 2022). 
Dasgupta et al. (2025) and Alihassanml (2024) show 
that YOLOv11 achieves excellent mAP scores and is 
adaptable to datasets like PSL, justifying its use in 
this project. 
 
2.5 Research in Pakistan Sign Language (PSL) 
PSL remains underexplored. Zafar et al. (2010) used 
SVM on HOG features, while Khan et al. (2023) 
applied CNNs to 20 PSL signs. Despite some 
progress, real-time PSL detection remains a challenge 
due to limited datasets and cultural gesture 
variations. Anonymous studies (2021–2024) 
highlight progress in PSL data creation and the 
potential of YOLO-based solutions for real-world 
application. 
 
2.6 Research Gaps 
Current challenges include dataset scarcity, gesture 
similarity misclassification, and real-time deployment 
barriers. This study addresses these by curating a 
PSL-specific dataset, applying data augmentation, 
and integrating YOLOv11 into a GUI for real-time 
detection. 
 
3. Requirements 
In this chapter, the functional and non-functional 
requirements of the Sign Gesture Interpreter of 
people with speech disorders with the use of deep 
learning are outlined. These needs determine the 
behavior, performance, and limitations of the system 
that were planned as a basis of technical design, 
development, and analysis phases that have been 
outlined in the following chapters. The requirements 
are grouped as functional requirements that define 
the fundamental capabilities of the system and non-
functional requirements that include issues related to 
performance, usability, and other qualities. 
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3.1 Function Requirement 
The functional requirements state what the system 
should do with respect to the functionality required 
by the users of the system, irrespective of whether 
they are individuals with impaired speech or hearing 
ability, educators, health practitioners, and the 
ordinary users. 
 
3.1.1 Detection of Gesture 
• FR1.1: In real-time, the system will recognize 
and identify 13 Pakistan Sign Language (PSL) 
gestures (busy, female, hello, help, rest, wait, work, 
support, sorry, fine, male_word, practice) and a 
background class with the help of a webcam. 
• FR1.2: The system will attain the minimum 
test accuracy of 95 percent and a mean Average 
Precision (mAP@50) of at least 0.95 in terms of 
gesture detection. 
• FR1.3: the system should have the capability 
of recognizing close visual-based gesture 
differentiation (e.g. help / rest), with little error 
observation, recording it to be measured. 
 
3.1.2 Real time Processing 
• FR2.1: The system is required to have at 
least 20 frames per seconds (FPS) in video frame 
processing so as to achieve smooth real time gesture 
recognition. 
• FR2.2: The capable system will present or 
render the identified movement in a text format in 
less than one (1) second after identification on both 
web and desktop platforms. 
 
3.1.3 User interface 
• FR3.1: The system will have a graphical user 
interface (GUI) that runs on a desktop through the 
Tkinter and OpenCV to show webcam live footage 
and the perceived text indicating a gesture. 
• FR3.2: The system will be equipped with a 
web-based interface (Echo Lingo) to be used through 
modern browsers (e.g. Chrome, Firefox) to use 
gesture recognition without a software installation. 
• FR3.3: There will also be a setting within 
the system of a button named as Reset Detection in 
the two interfaces to erase the existing gesture and 
provide a new detection. 
• FR3.4: web interface When initializing the 
camera, the interface will show-loading overlay. And 

when the camera is on, there will be indicators e.g. 
marking camera active when green and inactive when 
red. 
 
3.1.4 Data Management 
• FR4.1: The system will have to include a 
custom-labeled PSL dataset of 13 gestures and a 
background class whose images will be annotated. 
• FR4.2: Data augmentation methods (e.g. 
rotation, horizontal flip, blur, auto-augment) will be 
used during training to make the system more 
robust. 
• FR4.3: The system will store images of 
patient datasets in consistent rgb format, which is 
resized to the same size of 512x512 pixels, and the 
pixel values will also be normalized with pixel value 
ranges of [0, 1]. 
 
3.1.5 Export alternatives 
• FR5.1: That desktop GUI should provide 
text to speech (TTS) output of recognized gestures 
which is executed by a TTS engine (e.g., pyttsx3) to 
pronounced recognized signs (e.g., hello). 
• FR5.2:The system will capture detection 
outcomes (in addition to timestamps and the 
confidence estimate) that allow the debugging of the 
system and investigation of its performance. 
 
3.1.6 Web based Authentication of user (Web) 
• FR6.1: The web application Echo Lingo 
shall enable its users to sign up and use log-in to avail 
notifications and other personalizing services (e.g., 
favorites, reviews). 
• FR6.2: The system will have features to 
administer the functions of the society on the 
records; approve reviews and pending review 
management. 
 
3.2 Non-Functional Requirements 
Non-functional requirements are those requirements 
that describe the quality of the system and 
constraints to make the system usable, performant 
and reliable. 
 
 3.2.1 Performance 
• NFR1.1: The system must have an F1 score 
of 0.95 or more on gesture recognition so that there 
is a balanced accuracy and recall. 
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• NFR1.2: The system will deal with the Class 
imbalance issue in the data to reduce 
misclassifications of the gesture with 
underrepresentation in the data (e.g., "hello," "wait"). 
• NFR1.3: The detection interface in the web 
application will take 3 seconds to be loaded when 
using a normal internet connection (10 Mbps). 
 
3.2.2 Usability 
• NFR2.1: The system interfaces (desktop and 
web) should be friendly to such extent that it does 
not require some technical skills to use it. 
• NFR2.2: The web-based interface will be 
responsive and will adjust to screen size (e.g. mobile, 
tablet or desktop) with comparable functionality. 
• NFR2.3: The system should give explicit 
guidelines on how to perform gestures and where to 
put the camera so as to help the first-time users. 
  
  3.2.3 Compatibility 
• NFR3.1: The minimum requirements of the 
desktop application are a processor of Intel Core i7, 
and 8 GB of RAM and shall be run on Windows 10 
system. 
• NFR3.2: Web application will support the 
modern browsers (e.g. Chrome, Firefox) in 
Windows, macOS, and mobile (Android, iOS) 
operating systems. 
• NFR3.3: The system will combine with the 
typical webcams that enable at least resolution of 640 
x 480 pixels. 
 
3.2.4 Reliability 
• NFR4.1: The system will not get crash under 
normal conditions after continuous use of at least 
1hour. 
• NFR4.2: The system must manage the 
unsuccessful initialization of webcam with attractive 
error messages. 
 
3.2.5 Scalability 
• NFR5.1: The system should allow future 
extension of PSL dataset to encompass other gestures 
without making major architecture adjustments. 
• NFR5.2: The web application will be able to 
support a maximum of 100, concurrent users at the 
same time without any services deteriorations. 

3.2.6 Security 
• NFR6.1: The web application must transmit 
user data (e.g. login credentials) as encrypted using 
HTTPS. 
• NFR6.2: Role-based access control is to be 
applied in the system to limit access to the admin 
functionalities to authorized representatives. 
 
3.3 Limitation of the System 
• SC1: Python, HTML, CSS, JavaScript, 
OpenCV, and YOLOv11 will be used to develop the 
system so that open-source tools could be used and 
the compatibility with the existing frameworks could 
be achieved. 
• SC2: All calculations of the YOLOv11 will 
be conducted on the hardware that has no less than 
8 GB RAM and an Intel Core i7 processor. 
• SC3: There is resource limitation on data 
collection and annotation thus carrying out the 
dataset shall be restricted to 13 PSL gestures with 
only a background class. 
 
3.4 Assumptions 
• A1: Access to a webcam at the minimum of 
640x480 pixels resolution and a steady internet 
connection to use the web application. 
• A2: PSL signals in the data set are actions 
that the signers carry out with similar finger 
positions and orientation. 
• A3: The system will mainly be used indoors 
with proper lighting to achieve proper determination 
of gestures. 
 
4. Methodology 
This section details the design and development 
process of the proposed real-time Pakistan Sign 
Language (PSL) detection system, leveraging 
YOLOv11 for accurate, fast, and robust gesture 
recognition. The methodology encompasses dataset 
preparation, model architecture, training setup, 
evaluation metrics, GUI deployment, and future 
scalability towards mobile applications. 
 
4.1 PSL Gesture Dataset Preparation 
A custom PSL dataset was created for the study, 
consisting of 13 distinct hand gestures and a 
background class. These gestures include commonly 
used terms such as busy, female, hello, help, rest, wait, 
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work, support, sorry, fine, male, practice, along with a 
non-gesture background category. The dataset 
construction approach was inspired by Anonymous 
(2021) and Khan et al. (2023), who emphasized the 
importance of localized, balanced datasets. 
The data was captured under semi-controlled 
environments using a webcam, and manually 
annotated with gesture labels and bounding boxes. 
Due to class imbalance, certain gestures (e.g., hello 
and wait) were underrepresented compared to others 

(e.g., practice and sorry), which presented classification 
challenges. To address this, a series of data 
augmentation techniques—such as horizontal 
flipping, rotation (±15°), blur (up to 10px), and auto-
augment—were employed. These helped diversify 
training samples and improve model generalization. 
All images were resized to 512×512 pixels, 
normalized in RGB format, and pixel values scaled 
between [0, 1] to meet YOLOv11’s input 
requirements. 

 
Figure 1 below shows the dataset structure and sample gestures: 

 
4.2 YOLOv11 Model Architecture 
YOLOv11, an advanced object detection model, was 
chosen for its high speed and detection accuracy. It 
consists of three main components: 
• Backbone: CSPDarknet for feature 
extraction using Cross Stage Partial connections 
• Neck: FPN/PAN for multi-scale feature 
aggregation 

• Head: Outputs bounding box coordinates, 
objectness score, and class probabilities 
Unlike two-stage detectors (e.g., Faster R-CNN), 
YOLOv11 is a single-stage model that processes 
detection in a single pass, which makes it ideal for 
real-time applications (Dasgupta et al., 2025). 
 

Figure 2 illustrates the overall architecture: 

 
 
4.3 Training and Validation 
The model was trained on the custom PSL dataset 
for 50 epochs with a batch size of 32 and an input 
image size of 512×512 pixels. The training used pre-
trained weights (likely from the COCO dataset) to 
leverage transfer learning, optimized via AdamW or 
SGD optimizers with a learning rate scheduler. 

Training and validation loss curves showed steady 
convergence with no signs of overfitting. The 
training setup aligns with best practices in object 
detection, as discussed by Alihassanml (2024). 
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4.4 Performance Evaluation 
The trained model was evaluated using standard 
object detection metrics: 
• mAP@50: 0.987 
• mAP@[50:95]: 0.63 
• Precision: ~99% 
• Recall: ~97% 
• F1 Score: ~98% 

• Test Accuracy: 99.70% 
The confusion matrix indicated high accuracy across 
most classes, with minor misclassifications in visually 
similar gestures like help and rest. This aligns with 
observations from Rashid et al. (2022) on sign 
ambiguity in PSL. 
 

 
Figure 3 presents the confusion matrix visualizing performance: 

 
Performance comparison with alternative classifiers is summarized in Table 1: 
Model Accuracy Precision Recall F1 Score mAP@50 
YOLOv11 99.70% 99% 97% 98% 0.987 
CNN 93.20% 91% 92% 91.5% 0.78 
SVM 88.60% 89% 86% 87% 0.65 
KNN 85.40% 84% 86% 85% 0.59 
 
4.5 GUI-Based Real-Time Detection 
To demonstrate usability, a desktop application was 
developed using Tkinter for GUI and OpenCV for 
real-time video streaming. The webcam feeds were 
processed by the YOLOv11 model, with gesture 
recognition results rendered as text in under 1 
second, ensuring fluid interaction. 
The system was designed to be intuitive for non-
technical users, providing visual cues (e.g., detection 
indicators, reset buttons) and handling camera states 
effectively (Anonymous, 2024). 
 
4.6 Mobile Application Planning 
The mobile application version of the system is 
under development. The plan includes converting 
YOLOv11 to a lightweight format (e.g., TensorFlow 
Lite or ONNX) and using frameworks like Flutter or 
React Native for cross-platform support. 
Optimizations like quantization and pruning will 
ensure that the model runs efficiently on 
smartphones. The final application will work offline, 
supporting accessibility in real-world settings such as  
 

 
hospitals, schools, and public transport (Anonymous, 
2024). 
 
4.7 Overall System Workflow 
The development process followed a sequential and 
modular pipeline: 
1. Data collection and annotation of PSL 
gestures 
2. Preprocessing with augmentation and 
normalization 
3. Training YOLOv11 using transfer learning 
4. Performance validation using mAP, F1, 
accuracy metrics 
5. GUI development for desktop-based real-
time detection 
6. Planning mobile app deployment 
 
5. Experimentation Results 
This section elaborate on the performance of the 
YOLOv11 model on real-time sign language 
detection on Pakistan Sign Language (PSL) data. The 
findings are divided into various subsections to give a 
detailed analysis of the efficacy of the model, such as 
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configuration, performance indicators, class-wise 
output, insights on confusion matrix, loss curve, 
comparison to other classifier, real-time usage of the 
model and analysis of the results. 
 
5.1 Preprocessing Techniques Applied 
Techniques used in Preprocessing 
1. Image Resizing 
• All images of gestures were scaled into a size 
of 512x512 pixels. 
• Makes the input size of the YOLOv11 model 
standard and makes feature extraction consistent. 
 
2. Normalization 
• Values of pixels within the range [0, 1] were 
scaled. 
• Assists in a quicker convergence in training 
and provides regularizing of the gradient updates. 
 
3. Data Augmentation 
• Techniques Used: 
• Rotation: Random rotations in -15 to +15. 
• Horizontal Flipping: Randomly flips the 
image in order to imitate left/right hand movements. 
• Blur Application: Gaussian and maximum 
amount of 10px to give real-life type of blur. 
• Auto-Augment: Composite: with rotation, 
scaling and color jittering. 
• Image Composition: There were some 
augmentation techniques that entailed merging 4 
images into a single image in a bid to emulate the 
diversity of backgrounds. 
Simulates real world variability (e.g. lighting, 
orientation, background changes) and promotes 
generalization, as is proposed in [11] Khan et al, 
(2023) to enhance the robustness of the PSL dataset. 
 
4. Auto-Orientation 
• Makes sure that every picture is correctly 
oriented no matter the way it was taken. 
• Avoids misalignment that would lead to 
poor accuracy of the models. 
 
5. Color Consistency 
• Pictures were changed to a uniform RGB 
color format. 

• Guarantees even color representation of all 
the input samples. 
 
6. Background Class Inclusion 
• To illustrate the effects of a background class 
inclusion, the following example will be used. 
• A special class of background (non-gesture) 
frames. 
• Assists the model to work out the gestures 
among other random arm/ noise activities. 
 
5.2 Model Configuration and Training Setup 
The model used was a YOLOv11 which was set up 
and trained as below. 
• Model: Experimental variant of the family of 
YOLO models, YOLOv11, which is run with the 
Ultralytics framework (ultralytics.YOLO). There have 
probably been some optimisation to be faster or 
more accurate than its predecessors, but no 
architectural changes are described in the given 
documents. 
• Task: Detection of sign language gestures of 
the Pakistan Sign Language (PSL) dataset. 
• Dataset A labeled dataset of 13 PSL gestures 
(busy, female, hello, help, rest, wait, work, support, 
sorry, fine, male_word, practice) and a background 
class. 
• Image Size: 512x512 where a compromise 
between computation power and features is 
maintained. 
• Epochs: 50, which grants enough passes so 
that the model reaches the training data. 
• Batch Size: 32, to use GPU as effectively as 
possible in the course of training. 
• Data Preprocessing: Resize(Stretch to 640 
640), Auto-Orient. 
• Data Augmentations: Augmented Blur (up 
to 10px), Rotation (-15o to +15o) as well as 
Horizontal Flip to augment the robustness of the 
model by adding variation to the training data. The 
augmentations assist in enhancing the ability of the 
model to generalize to application in the real world, 
e.g., differing lighting or hand orientations. 
The training framework was such, that it could 
enable the model to recognize and identify PSL 
gestures in real-time with the single-pass detection 
framework provided by YOLOv11 in terms of fast 
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and efficient processing. The YOLOv11 model was 
set and trained under the specifications listed in 
Section 4.3 and the distribution of the dataset was 

visualized in Figure 5.1: Class Distribution in Test 
Set. 
 
 

Figure 5.1 Class Distribution in Test Set 

 
 
5.3 Performance Measurements 
The performance of the model was tested with 
various regular metrics of object detection which 
gives a detailed picture of its effectiveness: 
• mAP@50: 0.987 There was a 98.7% 
accuracy in detecting objects within an Intersection 
over Union (IoU) ratio of University. This is a very 
good outcome, which proves that the model is very 
precise and accurate in identifying and classifying 
gestures. 
• mAP@50:95: 0.63, where Average Precision 
(AP) is averaged over IoU thresholds ranging over 
50% to 95% by 5-percent steps. This metric is more 
difficult one, because bounding boxes are to overlap 
more with the ground truth labels. The score of 0.63 
is also regarded as good since it shows robustness of 
the model met under compositionally stricter 
conditions. 
• General Precision: There is a general 
precision of about 99 percent which implies that 
close to one hundred percent of the detected 
gestures were categorized appropriately. 
• Overall Recall: About 97 pointing out to the 
fact that the model managed to recognize about 97 
percent of all the true gestures in the dataset. 

• Overall F1 Score: It is around 98 percent, 
which is a harmonic average of the precision and 
recall demonstrating a modest compromise between 
the two. 
• Test Accuracy: 99.70 % which is calculated 
on the basis of the scores of the assessment data 
according to which the model shows how minor 
gestures may be identified accurately within an 
independent test set. 
Such metrics demonstrate the great performance of 
the model, especially when reaching the IoU 
threshold = 50 percent, which is frequently applied 
to the object detection tasks. The relatively low 
mAP@50:95 indicates that the model is better at 
predicting gesture correctnesses, but the quality of 
predictions regarding bounding boxes should be 
improved in terms of precision when overlap 
threshold is higher, as explained in Section 4.4. All 
these metrics are in line with the ones employed by 
Dasgupta et al. (2025) in their evaluation process of 
YOLOv11 inputted into ASL recognition, suggesting 
the high performance of the model in similar tasks. 
Figure 5.2: Predicted vs Ground Truth per Class 
should further be used to demonstrate the results as 
it represents the agreement that provided results and 
actual gesture labels. 
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Figure 5.2 Predicted vs ground truth per class 

 
 
5.4 Class-Wise Performance Analysis 
A per-class breakdown of metrics shows that there is 
a difference in performance of the 13 gestures: 
• busy: precision 0.995, recall 1, F1 0.995 
• female: Precision 0.994, Recall 0.99, F1 0.99 
• hello: exact 0.988, recall 1, F1 0.99 
• help: 0.950, 0.90, 0.92 
• rest: precision 0.958, recall 0.93, f1 0.94 
Wait, work, support, sorry, fine: All obtained F1 
scores close to 0.995 and thus were all nearly 
perfectly detected and classified. 
The classes, help, and rest, are lower in scores as F1 
(90-94 percent) are mainly because of 
misclassifications. This may be explained by the 
imbalance in the classes that were used to make the 
dataset because according to the documents, the 
words, i.e. "hello" and "wait" were not numerous and 
there were more instances of the words, i.e. 
"practice", rest, and sorry. This can also be attributed 
to under fitting of some of the classes (especially the 
help and rest gesture) since the representation of 
certain classes was lower compared to others. The 
performance per-class is plotted in Figure 5.2: 
Predicted vs Ground Truth per Class. 
Misclassifications to the terms of help and rest can 
be traced back to [13] Anonymous (2024), where 
visual gestures close to PSL were mentioned as 
problematic. 
 
 
 
 
 

5.5 Insights to Confusion Matrix 
The confusion matrix offers the clear picture of the 
correctness of model predictions concerning the 
classes: 
• Overall Accuracy: The classification was 
near-perfect in most classes being between 90-100% 
on the validation set. 
• Low Confusion: The model confused 
different categories to a minimal extent and so it was 
able to distinguish different gestures. Background 
class also got detected in an ideal way that suggests 
that the model can differentiate among the gestures 
and the non-gesture regions. 
• Misclassifications: The help and rest classes 
were misclassified in minor degrees as expected by 
their lower F1 scores. Incidentally, as an example, 
certain token of help might have been mistaken with 
other such homologous gesture, such as rest, because 
of shared visual characteristics, such as the locations 
of hands. 
The high value of the elements of the confusion 
matrix (strong diagonal (mentioned in the 
documents)) is a sign of the high rate of consistency 
between expected and real labels, another 
confirmation of the strength of the model. The 
confusion matrix gives the relationship between the 
accuracy of predictions on various classes of the 
model in detail based on Section 4.4. This can be 
represented as in Figure 5.3: Confusion Matrix, 
where there is just a slight misclassification of the 
help and the rest labels, however, the accuracy is very 
high. 
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Figure 5.3 Confusion Metrix 

 
 
5.6 Loss curves analysis 
The curves of training and validation loss give ideas 
about how the model learns: 
• Box Loss: Coming down in a steady way which 
means that, the model covered more ground in 
predicting the correct bounding boxes as it went 
along. 
• Class Loss: This also reduced monotonously, 
indicating that the model has a better ability to 
classify the gestures. 
• Object Loss: This also experienced a decline in a 
similar manner implying that the model was learning 
as far as determining the presence of objects 
(gestures) in the images was concerned. 
The all loss decline is continuous and without 
indicators of difference in training and validation 

losses, which points out that learning is consistent 
and productive. The validation losses showed a 
similar trend of decreasing as the training losses and 
the graph did not show any overfitting. Such stability 
proves the success of the training arrangement such 
as the application of data augmentations and 
reasonable batch size. Training and validation loss 
curves used in the previous section do not show 
overfitting as the learning is not gaining steadily. 
Those trends are not depicted in a figure but 
justified by the reported performance metrics. 
 
5.7 Comparison with Other Classifiers 
To validate the choice of YOLOv11, its performance 
was compared with other classifiers on the same PSL 
dataset: 

 
Table 5.1: Comparison of YOLOv11 with other Classifiers on PSL Dataset 
Model Accuracy Pros Cons 
SVM Low-Med Good for small datasets Not good for images 
KNN Low Simple, explainable Very slow on big data 
CNN (Only Classifier) Good Learns features well Needs bounding box 

separately 
YOLOv11 High (98.7% mAP) Real-time, 

detection+class 
Needs more compute 

 
• SVM and KNN: these classical machine 
learning algorithms scored bottom, as accuracy was 
low to medium. SVMs are more applicable to small 
dataset whereas it is hard to work with high 
dimensional image data whereas KNN cannot  
 

 
sufficiently compute large scale datasets and do not 
have the capacity to learn complex features. 
• CNN (Only Classifier): A CNN that was 
trained solely to classify resulted in a good balance of 
accuracy but a separate mechanism was needed to 
identify bounding boxes and this is not ideal when it 
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comes to using CNNs to undertake a real time object 
detection work such as in the case of sign language 
recognitions. 
• YOLOv11 : Attained a good score of mAP at 
98.7 which was higher than other models. It is more 
suitable in real time applications although it needs 
additional computing resources due to its capability 
to do detection and classification in one pass. 
Such a comparison highlights why YOLOv11 will 
help better solve the problem of real-time sign 
language detection because this model offers a high 
accuracy level with fast processing time required 
when handling live video streams. In order to justify 
the selection of YOLOv11, the performance of the 
classifier was contrasted with other classifiers on the 
same PSL dataset as indicated in Table 5.1: 
Comparison of YOLOv11 with other Classifiers on 
PSL Dataset. Such an assertion is backed by [16] 
Anonymous (2023) which draws a parallel between 
the effectiveness of the YOLO-based models and the 
conventional classsifiers, such as SVM or KNN, in 
the context of real-time detection activities. 
 
5.8 Real-Time Application Performance 
YOLOv11 model was implemented in a real-time 
system, with graphical user interface (GUI) made on 
the basis of Tkinter and OpenCV: 
• Functionality: With GUI, the GUI accesses 
live video input of a webcam, streams through the 
YOLOv11 model, and prints the detected movement 
in the form of text on the screen. 
• Performance: The model is able to work 
efficiently with an ability of detecting gestures in 
time to allow real-time interaction. This follows the 
most important characteristic of YOLO, which is the 
real-time speed since it can run video frames at a 
suitable frame rate to live applications. 
• User experience: The usability of the system 
is that it offers instant confirmation since gestures 
are being converted into text and this renders the 
system viable as a communication tool in real life 
situations. 
The effective application of the model into a real-
time environment proves its usage convenience and 
confirms the choices used during development. The 
YOLOv11 model was used to create a real-time 
application that uses a graphical user interface (GUI) 
created with Tkinter and OpenCV as presented in 

Section 4.5. The particular real-time execution is 
consistent with the results found in [8] Anonymous 
(2024) that proved the feasibility of YOLOv11 to 
serve as an efficient gesture detection system used on 
a live video stream. The performance complies with 
the workflow Figure 4.3: Methodology. 
 
5.9 Discussion of Results 
The YOLOv11 model performed notably in PSL 
dataset, recording the mAP@50 of 0.987, an overall 
precision of ~99%, recall of ~97%, and an F1 score 
of ~98%. These findings point out that the model is 
quite efficient in recognition and identification of 
sign language gestures and this is workable solution 
to real time interpretation. The 99.70% test accuracy 
also adds to the conformance of the robustness of 
the model against the unseen data. 
Nevertheless, the slightly decreased mAP@50:95 
score of 0.63 indicates that under more rigid IoU 
thresholds the model may be improved in its 
bounding box predictions. This could be because 
some movements are complicated or differ in hand 
placements that could cause an overlap of the 
bounding box with the ground truths markers. The 
analysis based on classes showed that the F1 scores of 
help and rest were lower (90-94%), explaining why 
this was possibly caused by a class imbalance in data. 
As an illustration, underexposed classes such as hello 
and wait could have caused a poor performance of 
the model to identify visually similar gestures by 
finding distinctive characteristics of similar gestures. 
The comparison with the performance of other 
classifiers is made to indicate the positive aspects of 
using YOLOv11, primarily the opportunity provided 
to carry out both detection and classification with an 
equally favorable efficiency and in real-time mode. 
Despite being reasonable, SVM, KNN, and cnns-
based methods will not be suitable in this endeavor, 
as one cannot use them in the image data or they do 
not have a real-time application performance. The 
application output in real-time mode of the 
implemented software is a good demonstration of its 
practical applicability, however, there is a way to 
make it even better by paying attention to the 
problem of data unbalancing and their bounding 
box accuracy. Altogether, the findings prove the 
efficient work of YOLOv11 in signs language 
recognition and guarantee an excellent basis of 
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future enhancements. In the Section 4.4, the metrics 
and visualizations, such as Table 5.1 and Figures 5.1, 
5.2, and 5.3, are cited to prove the validity of the 
model and find the areas to improve. The findings 
match those of [1] Al-Qurishi et al. (2024), which 
highlights the possibility of deep learning models 
such as YOLOv11 in high-accuracy sign language 
recognition. 
 
6. System Diagrams 
A series of illustrations has shown to describe the 
design, process flows, and data architecture of the 
YOLOv11-based real-time sign language detection 
system in Pakistan Sign Language (PSL). All these 

diagrams are divided into separate sections which are 
named after their content, giving a clear and well-
structured view of all processes of the system, starting 
with the preparation of data and going all the way to 
the data being recognized on real time and the 
organization of data behind it. All diagrams are 
presented with a critical description in order to 
clarify its meaning within the project framework and 
used as the visual bulletin board of the methodology 
(Chapter 3) and experimentation findings (Chapter 
4). They can draw references on these diagrams to 
understand more in the architecture and general 
functioning of this system. 
 

 
6.1 State Diagram 

 
Figure 6.1 State Diagram 

 
The Video to Sign Prediction Flowchart shows how 
the detection system of the sign language works 
based on the phases of the process where the raw 
video data is converted into the predicted signs. The 
stages in the workflow entail the video capture where 
the signer is recorded using a camera to capture 
his/her movements. The videos then get changed 
into individual frames to facilitate the process of 
processing using images. The frames are gathered in 
the form of images, which are then followed by a 

process of hand extraction, which creates the area 
within a frame that is vital in recognition of gestures. 
Lastly, the system foresees the sign depicted by the 
hand gesture, which interprets the visual signal to 
meaningful one. This flowchart reflects on the 
preliminary process of data preparation that is a key 
process of training the YOLOv11 model on PSL 
gestures and being correct in the following steps of 
recognizing the signs. 
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6.2 Flow Diagram: 
 

 
Figure 6.2 Flow Diagram 

 
 

Detailed System Workflow diagram contains all of 
the details of how the entire development and 
deployment of the PSL detection system will occur. It 
begins by video acquisition, which means raw video 
data will be recorded, and data collection is used to 
generate a specific dataset of PSL gestures. The 
preprocessing is implemented to optimize the quality 
of the dataset (data augmentation and data 
normalization). As a result of feature extraction, the 
main visual patterns are found and the obtained 
information is utilized to train a Convolutional 
Neural Network (CNN) based on the YOLOv11 
model. In the diagram, hyper parameter tuning is 

also added to the diagram in order to optimize the 
performance of the models, the best model will be 
stored depending on Accuracy figures. It is then 
identified the use of OpenCV based camera to sense 
the real time hand sign, recognizing the sign and 
showing the related word. In case the motion is not 
identified, some adjustments should be made, 
including the position of the hands or lighting. The 
presented circle of workflow describes the iterative 
cycle of development, evaluation and real-time use of 
the model giving a pictorial comprehensiveness to 
the life cycle of the system. 
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6.3 Sequence Diagram for Real-Time Detection 

 
Figure 6.3 Sequence Diagram 

 
The Sequence Diagram of Real-Time Detection 
shows the interaction of the actor, camera, OpenCV, 
and CNN when detecting the sign language in real-
time. The actor then makes a gesture and this is 
recorded by the camera. Using the video stream, the 
camera transmits this video stream to OpenCV using 
which the OpenCV works on the stream by 
converting the video into the frames and isolating 
the hand regions through the segmentation of the 

images. The processed frames are then passed on to 
the CNN (YOLOv11 model), that predicts the label 
of the gesture. the estimated word is sent back to the 
OpenCV and uses the text label on the screen giving 
instant feedback to the actor. The diagram illustrates 
that there is a smooth flow of hardware and software 
which makes the system to be in real time operation 
which is very necessary in the real life application of 
sign language interpretation. 
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6.4 User-System Interaction Diagram 

 
Figure 6.4 Use Case Diagram 

 
The User-System Interaction Flowchart presents a 
diagram of the interaction of the user and the 
system, starting with the gesture acquisition up to 
results rendering. It begins by the user booting up a 
webcam to get a picture or video recording of a 
gesture. The gesture capturing process converts 
gesture to a format that was understood, features are 
extracted, comparison with the trained model ( 
YOLOv11), gesture recognition and lastly, the result 

is shown as text. This human-based working process 
emphasizes design of the system to be utilized in real-
time, it is also important that the users should be 
able to carry out the gesture with ease and get the 
feedback instantaneously due to system developed 
using Tkinter and OpenCV. The diagram highlights 
the practical value of the system that serves to enable 
the hearing-impaired to communicate with others, so 
far as it is easy and accessible. 

 
5.5 Entity-Relationship Diagram (ERD) 

 
Figure 6.5 Entity Relation Diagram 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Malik et al., 2025 | Page 819 

Entity-Relationship Diagram (ERD) displays the data 
structure and relationship among main entities of 
the PSL detection system including Deep Learning 
Model, Dataset, Gesture, Translation, and User. The 
Deep Learning Model entity (having such properties 
as a Model ID, Name, Version, and Accuracy) is 
associated with the Dataset entity (which includes 
Dataset ID, Image, Label, and Annotation), which 
means that the model is trained on the dataset. The 
Dataset relates to the Gesture entity (Gesture ID, 
Name, Description), where the PSL gestures that will 
be identified are represented. The Gesture entity 
refers to the Translation entity (Translation ID, 
Gesture ID, English Text) with how each gesture 
relates to its English equivalent. Lastly, the User 
entity (User ID, Name, Description) is connected to 
the system and it denotes the end-users of the 
application. The given ERD offers a well-organized 
description of the data structure, so it is quite clear 
how the data is properly stored and used in PSL 
gesture recognition that is essential to the safe 
performance of the system. 
 
7. Software Testing 
7.1 Deriving Test Case Specifications 
Specifications of test cases stipulate in detail the 
requirements and the execution environment of a 
scenario during test case execution. They provide an 
orderly way of achievement of reliability and 
consistency in the software testing phase. The 
strategy provided below reflects on the methods that 
are applied to the sign gesture detection system 
developed by using the YOLOv11. 
 
7.2 Testing Environment 
7.2.1 Computer Requirements 
• Memory: 8 GB 

• OS: windows 10 
• Blacja: Intel Core i 7 (64 bit) 
 
7.2.2 Requirements to Software 
• Web Browser: compatible modern browser 
or chrome or firefox. 
• Internet: The web-based application (Echo 
Lingo) will need the Internet connection. 
• Identifications: Whose Identification 
Testing 1. A person with cancer is older than the 
person without cancer b. One of the two people is a 
person diagnosed with cancer. 
There was an individual test case that was used to 
test every system module. The modules tested involve 
both the user side as well as the admin side modules. 
• User Modules: 
• Signup 
• Login 
• User Account ( account update ) 
• Search 
• Submit Review 
• Add Favorite 
• Sign Out 
• Admin Modules: 
• Add Society Record 
• Erase Society Record 
• Commodify Society Record 
• Approve Review 
• Waiting Review Management 
 
7.3 Testing Procedure 
A plan method of testing was followed. Test cases of 
each of the modules were run with an eye on how 
long the test runs and how the system acted. 
Products were tested against desirable qualities to test 
the strength of every product. 

 
7.4 Test Cases 
7.4.1 Real-Time Gesture Detection (Web Interface)  
Table 7.4.1 
Tested By:       Hafsa Jamal 
Test Type:           Integration Testing 
Test Case No 01 
Test Case Name Real-Time Gesture Detection (Web Interface) 
Test Case Description This test validates the Echo Lingo application's ability 

to access the webcam, detect PSL gestures in real time, 
and return correct predictions through the Flask-based 
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YOLOv11 model. 
Items to be Tested: • Enable webcam in browser. 

• Perform a PSL gesture from the 13 supported 
signs. 
• Observe the detected gesture displayed on the 
interface. 

Specification Input  User performs a known gesture such as "hello" or "help" 
in front of the webcam. 

Expected Result: 
 

• The system should initialize the webcam and 
show live feed. 
• Within 1 second, the performed gesture should 
be correctly identified and displayed as text. 
• The output should match the PSL gesture 
performed with no noticeable delay. 

Actual Output: 
 
 

The system accurately detects the gesture within 1 
second. The text output corresponds to the correct 
sign, confirming real-time detection works as intended. 

 
7.4.2 Similar Gesture Misclassification Check 
Table 7.4.2 
Tested By Talha Malik 
Test Type Functional Testing 
Test Case No 02 
Test Case   Similar Gesture Misclassification Check 
Test Case Description Tests the system’s ability to distinguish between visually 

similar PSL gestures such as “help” and “rest,” and evaluate 
how misclassifications are handled. 

Items to be Tested 
 

• Perform a gesture for “help.” 
• Observe detection results. 
• Repeat for “rest.” 

Specification Input Perform gestures with slight variation in hand angle or 
distance from the camera. 

Expected Result 
 

• The system should correctly classify both gestures. 
• Misclassification, if any, should be logged or 
highlighted (e.g., low confidence score). 
• If detected incorrectly, system should not crash or 
freeze. 

Actual Output 
 

The system correctly identifies “rest,” but sometimes 
confuses “help” with it in low light. Detection remains 
stable with no crashes 

 
7.4.3. Detection Reset Function (Echo Lingo) 
Table 7.4.3 
Tested By  Anum Ayub 
Test Type Unit Testing 
Test Case No 03 
Test Case Name Reset Detection Button Functionality 
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Test Case Description 
 
 

Verifies that clicking the “Reset Detection” button clears 
the current recognition result and prepares the system 
for a new gesture. 

Items to be Tested 
 

• Perform a gesture. 
• Observe detection. 
• Click “Reset Detection.” 
• Perform another gesture 

Specification Input Perform "fine" → Reset → Perform "sorry" 
Expected Result • “fine” should be detected. 

• Reset clears the display area. 
• “sorry” is detected afterward correctly. 

Actual Output “fine” is detected, and reset clears the text as expected. 
“sorry” is detected correctly on the second attempt. 

 
7.4.4. Text-to-Speech Output for Detected Gesture (Desktop GUI) 
Table 7.4.4 
Tested By:  Hafsa Jamal 
Test Type:  System Testing 
Test Case No.:  04 
Test Case Name:  Speech Output Verification 
Test Case Description: 
 
 

Ensures that the detected PSL gesture is converted to 
audible speech using a TTS engine (e.g., pyttsx3) after 
recognition. 

Items to be Tested: 
 

• Perform a gesture via the desktop GUI. 
• Wait for gesture recognition. 
• Listen to the corresponding spoken output. 
 

Specification Input:. 
 

Gesture “hello” shown to the webcam 

Expected Result: 
 

• “hello” should be detected. 
• Speech output (e.g., “Hello”) is heard clearly. 
• No lag or mismatch in the text-to-speech 
conversion. 
 

Actual Output: 
 
 

The system announces “Hello” within 2 seconds of 
detection. Output is clear and matches the detected 
gesture. 

 
8. Web-Based Application (Echo Lingo) 
This section introduces Echo Lingo, a web-based 
application that has been created to expand the real-
time sign language recognition system based on 
YOLOv11 and Pakistan Sign Language (PSL), which 
was presented in previous sections. Echo Lingo is 
platform-independent and accessible through any 
browser; the user can execute sign gestures before a 
webcam, and the program will give an immediate  

 
response in terms of recognition. It supplements the 
GUI described in Section 3.5 that is based on a 
desktop by eliminating installation requirements and 
increasing the ease of use by the user. The chapter 
explains the frontend (HTML, CSS, JavaScript), 
backend embedding, and how the system is 
conceptually operated, communicated user(s), and its 
performance, as well as, future recommendations. 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Malik et al., 2025 | Page 822 

8.1 Overview of Echo Lingo 
Echo Lingo is meant to enable one to carry out PSL 
signs using the webcam where identified signs can be 
shown in real time. The web version (after Echo 
Lingo) does not need a specific platform (like the 
desktop one in Section 3.5) as it runs through the 
browser, thus negating the software dependence 
issue. It is appropriate with desktops, laptops and 
mobile. 
The application interacts with a backend 
implemented in Flask that streams video to the 
client, frames the video using the YOLOv11 
detection model and returns the decoded gesture. 
Echo Lingo will be usable and accessible to people 
with hearing or speech impairment which is relevant 
to the use-case scenarios described in Section 1.4. 
 
8.2 Frontend Implementation 
Echo Lingo is implemented with typical web 
technologies that include HTML to provide 
structure, CSS to ensure variation and JavaScript to 
deliver the interaction. It is flexible, neat and 
intuitive. 
 
8.2.1 HTML Structure 
The HTML shapes the interface into large sections: 
• Navigation Bar: a navigation bar which stays 
at the top of the page with the Echo Lingo logo and 
links (Home, About, Features, Detection). It has 
been encoded with Flexbox and is always open as a 
sticky design. 
• Detection Interface: 
o Introduction header of the detection 
functionality. 
o A tutorial block to instruct the inhabitants 
on the way of activating the camera and location. 
o Video container where the actual webcam 
material is held though an <img> tag which is related 
with the Flask route video_feed. 
o A sensing panel to indicate the gesture 
identified, the camera status as well as a reset button. 
• Loading Overlay: A full-page overlay with 
spinner that is given when the camera is starting. 
The architecture has semantics clarity, accessibility 
and flexibility in the recent browsers. 
 
 
 

8.2.2 CSS Styling 
The look and feel is defined by CSS. Its main 
characteristics are: 
• Variables: Maintainability: Centralized color 
themes ( e.g. --primary-color,--text-color) 
• Reset Rules: Consolidated box-sizing, 
margin and padding. 
• Gradient Background: Increases aesthetic 
value through use of color transition. 
• Sticky Header: Having the effect of hover 
and being semi-transparent, is visible by having a 
shadow. 
• Main Content Area: Centrally aligned 
detection panel with styled text and instructions. 
• Webcam and Detection Panel: Deck style 
that will be used when a card is selected, basic 
shadow with rounded corners and dynamic resizing 
(max-height: 70vh). 
• Status Dot: Green indicates, active, red 
indicates inactive and adjacent to status text. 
• Loading Spinner: loading feedback created 
with CSS keyframe animation. 
• Responsiveness: Media queries can make the 
media fit into smaller screens with the adjustments 
of the layout, font size, and navigation elements to 
be user friendly. 
 
8.2.3 Javascript Functionality 
JavaScript accommodates a basic interactivity and 
real time capabilities: 
Start up: It runs after the DOM is loaded, and 
points at a target on UI (video feed, status indicator, 
reset button). 
• Camera Management: 
o The loading overlaying is represented in the 
setting of the camera. 
o In the case of its success, it conceals the 
overlay and leaves a flag indicating that the camera is 
in use. 
o Failed and the error message appears and 
inactive the status. 
• Live Detection: 
o Set up polls /get_detection at one second 
interval with setInterval(). 
o Makes use of the detected label by 
YOLOv11 to update detection text. 
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o Handles blank responses or bad responses 
sensibly. 
• Reset Button: 
o Sends a request to /reset_detection. 
o Clears the detection field and puts back 
messaging to default. 
o There are cases of errors, in this case it is 
noted in the console without interrupting the user. 
o This logic of light ensures easy performance 
even on hardware that is limited in nature. 
 
8.3 Backend Integration 
There is no detailed backend explanation but most 
likely, Echo Lingo will be linked to the Flask-based 
server that is in the communication with the 
YOLOv11 model (Chapter 3). It has the following 
end points that are the most crucial: 
• /video_feed -Displays a webcam feed to the 
frontend. 
• get_detection: Returns detected gesture in a 
JSON object (e.g. { text: "hello"). 
• reset_detection: Sets the current state of the 
gestures back to zero, and returns a status message 
(e.g. { status: "success" }). 
The communications between the front end 
elements are made through the use of ordinary 
HTTP requests. YOLOv11 architecture is a solution 
to the needs of detection in the real-time high-quality 
(mAP@50 = 0.987, Section 4.2) and would enable 
recognition in the browser environment to be 
achieved. 
 
8.4 User Experience Workflow 
User workflow is rather prioritized to intuitive and 
easy: 
1. Access: the User opens the page Detection; 
loading overlay visible. 
2. Initialization: Webcam feeds up; overlay 
fades; status of camera becomes green. 
3. Gesture Recognition: the user completes a 
PSL gesture; the gesture is identified by YOLOv11 
and the related text is displayed. 
4. Reset: Clicking the button on the screen 
called Reset Detection will reset gestures detection. 
5. Devices Adaptability: Layout adapts 
dynamically to mobile, tablet and desktop pages with 
same functionality. 
 

8.5 Performance and Evaluation 
The study was analysed and it turned out as follows: 
• Response time: The single-run efficiency of 
the YOLOv11 latest problems in the trial retention 
of the real-time recognition. The suitable polling 
frequency is 1 second that balances response with 
performance. 
• Accuracy: The recognition accuracy is of 
backend variety (99.70% test accuracy, Section 4.2). 
On visually similar gestures (such as the example 
help and rest (Section 4.3)), inconsistencies by value 
were felt lightly. 
• UX: The design enables its easy use. It has 
status indicator and loaders that orient the user. 
• Limitations: When compared to 
WebSocket-based methods, polling has a low latency. 
Poor support of error usage can be an issue in 
unrestricted devices where the access is restricted. 
 
8.6 Future Enhancements 
The proposal will comprise the following 
developments in order to enhance the capability of 
Echo Lingo and break the limitations: 
• WebSocket Incorporation: utilize 
WebSockets to provide near real-time updates 
(instead of a polling mechanism). 
• Error Handling: Deal with the errors to 
display a kindled message to the user in case of 
camera access failure and others. 
• Accessibility Upgrades: 
• Aria label the screen reader. 
• Whole Keyboard board navigation. 
• Visual Cues: Paint on animation effects so 
that the gesture can be verified; alternately the 
confidence scores. 
• Instruction support: Provide the users with 
the instruction tutorial videos or images so that they 
are able to make gestures correctly. 
• Offline-Friendly: To serve part of the 
information when there is no connection (e.g. offline 
instructions with a service worker). 
• Cross-Browser Compatibility: extend the 
coverage of testing on Safari, Edge, and Firefox and 
optimize. 
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9. Conclusion 
The main goal of developing a real-time system that 
recognizes PSL gestures with a high degree of 
accuracy is achieved in the context of this project 
since a real-time system based on YOLOv11 was 
developed. The system was able to achieve its goals of 
developing a custom dataset, training a working 
model, writing a real-time GUI code and assessment 
its performance in detail. The system can fill the 
communication gap within the deaf community in 
Pakistan because it scores 0.987 in mAP@50, 99.70 
in test accuracy, and has a feasible desktop interface. 
Although some obstacles should be improved, such 
as class imbalance and bounding box accuracy, the 
findings confirm that the use of YOLOv11 is 
effective in implementing this task, which is 
beneficial in terms of assistive technologies 
development and sign language recognition. 
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