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 Abstract  

This contributes to the improved Solar Energetic Particle (SEP) prediction using 
sophisticated machine-learning techniques. Also, it helps to reduce severe issues 
caused by SEPs on space missions, satellites, and terrestrial systems. NASA and 
ESA used historical and real-time data to sense prediction with the help of Long 
Short-Term Memory (LSTM) networks, Convolutional Neural Networks 
(CNNs), and Random Forest techniques. Datasets were prepared meticulously to 
ensure model quality, hyperparameter optimization, and improved cross-validation 
performance. CNN proved to be more accurate and precise than the reviewed 
models, making this a valuable instrument for predicting SEP. Further, the study 
provides enhanced machine learning forecasting ability for solar energetic 
particles, improving the space weather forecast. 

Keywords 
Machine Learning (ML), Solar 
Energetic Particles (SEPs), Space 
Weather Prediction. 
 
Article History  
Received: 11 April, 2025 
Accepted: 02 July, 2025 
Published: 17 July, 2025 
 
Copyright @Author 
Corresponding Author: * 
Bilal Ur Rehman 
 

 
INTRODUCTION
Solar energetic particles (SEPs) are suprasternal 
charged particles (mostly protons and electrons) 
traveling through the interplanetary medium at 
relativistic velocities, produced by solar phenomena 
such as flares or coronal mass ejections. Riding along 
on countless other high-energy particles that travel 
through space at nearly light speed, this radiation 
presents dangers to satellite- and ground-based 
technology. SEPs are essential for space weather and 
consist of various solar phenomena affecting the 
regions from interplanetary to Earth's atmosphere. 
Solar energetic particle (SEP) study goes back many 
decades to the early days of cloud-chamber 
observations on solar phenomena and their effects 
on Earth's magnetosphere. Historically, top or special 
(Link 3) SEP events have been linked to satellite 
communication through sun outages, power 
breakdowns, and the risk of high radiation exposure 

inside solar panels by aerospace pilots on flights at 
heights equal to or higher than tens of kilometers. 
The high energy of solar energetic particles (SEPs) 
allows them to penetrate spacecraft shielding, leading 
to damage to onboard electronics and loss of 
performance for solar panels with further 
consequences concerning enhanced radiation 
exposure risks for crew members. In contrast, the 
solar energetic particles into Earth's atmosphere 
during a geomagnetic storm via an atmosphere 
located at heights corresponding to the standard 
altitudes of jet aircraft able to be loaded along 
ground-level information lines and as electric 
currents are known that penetrate entirely through 
high-voltage transformers throughout North-America 
causing all power outage extension over a widespread 
area. Solar Energetic Particles (SEPs), Galactic 
Cosmic Rays (GCRs), and other particles localized 
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within our planet's magnetosphere comprise the 
radiation encompassing space. Understanding the 
radiation environment in space is critical for 
developing proper mitigation strategies to protect 
humans and technology aboard spacecraft and on 
Earth [1]. Underlying the importance of analyzing 
SEP and forecasting its occurrences is the capability 
of the phenomenon to protect critical systems and 
human activity in space and on the planet. Such a 
system requires satellites for communication, 
navigation, weather forecasting, and Earth 
observation, which are greatly affected by SEP 
occurrences. Such phenomena can affect the work of 
satellites or even lead to service disruptions or 
potentially permanent malfunction. In addition, 
crewed space flights, including those to the ISS and 
future missions to the Moon and Mars, require 
accurate SEP predictions to prevent astronauts from 
radiation exposure that raises the likelihood of 
developing cancer and other diseases. Antarctic and 
Arctic flights of high-flying planes also expose 
passengers and crews to increased radiation levels 
due to contamination by SEP situations. As 
mentioned above, it is clear that accurate predictions 
of SEP incidents will help the airlines to change the 
flight path and avoid these incidents only to ensure 
the safety of passengers [2]. In addition, SEP-induced 
geomagnetic storms directly affect terrestrial power 
networks by inducing electricity currents that 
significantly damage transformers and interrupt 
electricity power supply interruption. In essence, the 
knowledge of SEP activity enables better planning 
and mitigation methods for power grid operators to 
use to reduce the likelihood of interruption. This 
scientific field has direct uses in investigating the 
details of solar energetic particles (SEPs).  SC 
measurements can improve the understanding of the 
Sun’s system and its probe into the geophysically 
important magnetosphere, thereby promoting 
Heliophysics. Improved comprehensive models and 
predictive techniques for SEP events complement 
our ability to forecast space weather, which helps 
study further and develop space science and 
exploration [4]. 
 
2. LITERATURE REVIEW 
Solar Energetic Particles (SEPs) are ions, protons, 
electrons, or other particles from the sun during 

solar flares or other coronal mass ejections (CMEs). 
These particles travel near light speed and pose 
significant threats to space missions, astronauts, and 
commercial air transport, mainly on polar routes. 
High energy protons in the form of SЕPs are capable 
of causing disruptions or failure of electrical and 
electronic systems, deformation of communication 
systems, and increased radiation dosage to the 
workforce, especially in long-term interplanetary 
space missions [5]. Due to variations in SEP 
occurrence, accurate prediction is needed to inform 
precaution measures such as removing vulnerable 
assets or repositioning spacecraft for safety, 
increasing the security of space expeditions and 
ground activities [6]. The SEP prediction methods 
use solar magnetograms and flare data, while the 
empirical models use past trends to make drastic 
forecasts. Physics-based models simulate particle 
acceleration but require much computation while 
machine-learning models analyze large data sets to 
increase model accuracy [7]. Different SEP 
prediction models offer different strengths and 
weaknesses. Intuitive models are sufficient for quick 
forecasts but fail when out-of-sample events occur. 
Concept physics-based models have high accuracy, 
detail, and generality, but these are non-real-time 
models because they entail high computing power. 
The machine learning model makes the 
identification process fast and adaptive to changes 
but is affected by rarity since the model lacks enough 
data to work with [8]. Complex models assemble 
numerous model forms; the strengths of each 
methodology are leveraged to improve SEP 
predictions. Implementing these systems with one 
another is more complicated and requires apparent 
synchronization among several methods [9]. 
Traditional physics Proposition SEP models, 
including SOLPENCO and others of Sato et al., 
2018, mimic SEP conditions by reaping casualty on 
fundamental physics principles about the Sun and 
solar space physics. While they have improved the 
understanding of SEP occurrences, their complexity 
and compute-intensive nature hinder the 
development of real-time SEP forecasting abilities 
[10]. On the other hand, more objective archetypes, 
which have been developed by Laurenza et al. (2009) 
and Stumpo et al. (2021), integrate machine learning 
approaches on historical solar data and improve the 
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SEP forecast accuracy by analyzing flare and proton 
flux data [11]. The methods used in this study are 
logistic regression, decision trees for classifying 
people between low and high SEP, and deep learning 
for predictive modeling. These models analyze solar 
flare observations and proton density and flux data 
to extract delicate structures, offering a non-
phenomenological and more accurate way of 
forecasting than traditional physics-based approaches 
[12]. The evaluation of machine learning algorithms 
to predict the occurrence of SEPs foremost by using 
the TSF model was a practical demonstration of its 
performance over the different energy ranges of 
(~30, ~60, and ~100 MeV). The critical finding of 
the proposed study was the degree of accuracy and 
F1-score for the data augmentation approaches 
towards the limited SEP dataset [13]. SEP prediction 
research today employs both physics-based and 
artificial intelligence approaches. SOLPENCO and 
real-time warning systems by Sato et al. (2018) are 
based on solar physics and empirical information on 
flares and CMEs. They examine the physical and 
mathematical models to evaluate the acceleration 
and propagation of SEDs [14]. New developments 
have employed some data-based models 
incorporating machine learning techniques to 
provide better estimations of SEP [15]. However, 
machine learning in space weather is crucial for 
shielding space missions, satellites, and terrestrial 
technological systems from the adverse effects of 
SPEs and space radiation. Machine learning has 
efficiently dealt with large amounts of information 
and advanced patterns, thus improving the forecasts 
of models for space weather. Most machine-learning 
techniques in space weather forecasting include 
ANNs, SVMs, decision trees, random forests, CNNs, 
and LSTM networks [16]. LSTM networks have been 
applied to predict SEP occurrences based on 
features/parameters to improve the safety of space 
missions and astronauts' continuity [17]. To 
overcome that RNN limitation of effective period, 
exceptionally long short-term memory (LSTM) 
networks were invented. Employing LSTMs capable 
of identifying long-term dependencies in sequential 
data has improved the prediction of SEP onset 
timings and intensities. However, LSTMs are 
computationally intensive and require a large 
amount of training data, which becomes a challenge 

due to the feature of low data density present in 
space weather data [18]. Furthermore, this paper uses 
Convolutional Neural Networks (CNNs) for SEP 
prediction, which are effective image processing 
networks. Besides, Support Vector Machines (SVMs) 
can be useful in higher dimensionality and are most 
beneficial for binary classification problems. Various 
approaches are used to improve the time-dependent 
prognosis of variability to minimize the adverse 
effects on space missions and technology 
infrastructures [19]. SPEs and space radiation are 
modulated by solar activity, IMF, and geomagnetic 
fields [20]. While space weather prediction is actively 
addressed using machine learning techniques, these 
methods are still not very sophisticated – simple, 
even conventional, and attempt to incorporate more 
complex techniques such as CNNs and LSTM [21]. 
The sequences and triggers leading to SEP instances 
need to be    better understood. While solar flares 
and CMEs are essential factors, the conditions that 
trigger the acceleration and propagation of SEP are 
still unstudied [22]. The development of models able 
to rapidly model and analyze the highly fluctuating 
nature of space weather phenomena. Nonetheless, 
many models must be optimized for fast analysis, 
leading to predictive delays [23]. SEP events are 
significantly complicated, and an approach based on 
solar physics, data science, and machine learning is 
needed. Nevertheless, there is often a clear 
separation between these two domains, and scholars 
rarely engage in interdisciplinary research. This 
challenging area of work can benefit from 
cooperation between disciplines and considering a 
more comprehensive range of solutions for 
predicting SEP [24]. 
This research applies technologically advanced 
machine learning approaches to improve the 
prediction of solar energetic particles' SEP risks 
affecting space missions, satellites, and electronic 
devices. The above research uses Long-Short-Term 
Memory (LSTM) networks, Convolutional Neural 
Networks (CNNs), and Random Forest algorithms 
and utilizes NASA and ESA for historical and real-
time data. By cleaning the data, tuning the 
hyperparameters, and k-folds cross-validation, the 
models were optimized for the best outcome. 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Burhan et al., 2025 | Page 736 

3. AIMS AND OBJECTIVES 
This work will develop and enhance existing artificial 
intelligence technologies to accurately forecast the 
occurrence of SEP and space radiation. Thus, it will 
increase the predictive capability by analyzing 
important factors of SEP events and adopting 
advanced machine-learning techniques. 
Consequently, ideas toward advancing the space 
weather of contributions during the forecasting 
method will help safeguard space missions, satellites, 
and terrestrial technologies from the unfavorable 
effects of extreme space radiation.  
The overarching objectives of this research work are 
as follows.  
• To implement various models such as Long Short-
Term Memory (LSTM) networks, Convolution 
Neural Network (CNN), and Random Forest (RF) 
algorithms to enhance the efficient prediction of SEP 
events. 
• To apply various processing techniques like data 
cleaning, input transformation, normalization, and 
feature selection and its impact on the success of the 
resulting machine learning models. 
• Implementing machine-learning approaches to 
identify patterns or antecedents critical for SEP 
occurrences.  
• To provide a sharp outline to evaluate the impact 
and compare different types of SEP prediction 
models by using 
 accuracy, Precision, Recall, and AUC-ROC. 
 
4. METHODOLOGY 
A. Data set Description: SolarPrediction.csv 
The SolarPrediction.csv data set, used in the present 
research, comprises solar activity and space weather 
factors concerning SEPs and space radiation. The 
dataset has several features that provide broad 
information on solar activity; thus, it is suitable for 
creating predictive models, as illustrated in Table 1. 
 
B. Data Processing Techniques 
Data pre-processing implies preparing the data before 
feeding it into the learning models to ensure 
accuracy. Here, some pre-processing steps were taken 
to prepare the data and make it suitable for analysis. 
Handling missing values involved imputation 
techniques like the mean, the median, or the mode. 
It was also important, and at the same time, records 

with lots of missing data were also not included in a 
bid to make the analysis more accurate. The Z-score 
method was used to determine outliers, and where 
these values had the propensity to skew the results, 
they were either rectified or removed from the 
analysis. Normalization was done using Min-Max 
Scaling, while the features were standardized using 
the Z-score normalization, making the features 
equivalent. Feature engineering involved lag and 
interaction features to help capture such temporal 
dependencies and other complex relations. Feature 
selection was done using correlation analysis and 
Principal Component Analysis (PCA) to reduce 
dimensionality while preserving the essential 
features. The training, validation, and testing dataset 
was formed based on time division, and the primary 
dataset was partitioned into a training set of 70%. 
Thus, to further increase the model's reliability, it 
was decided to employ K-Fold Cross-Validation. The 
imbalanced class issue was resolved with the help of 
synthetic data generation, such as SMOTE. These 
pre-processing steps ensured that the dataset was 
clean, well-formatted, and ready for the development 
of the models. 

 
C. Proposed Model for SEPs Prediction 
Therefore, selecting suitable machine-learning 
models is essential since they comprise cornerstone 
information for both SEP and space radiation 
predictions. For this study, three network models 
were chosen because of their efficacy in handling the 
complexities of the SEP prediction – Long Short–
Term Memory (LSTM), Convolution Neural 
Networks (CNNs), and the Random Forest models. 
RNN and LSTM networks were selected due to some 
unique features that make it possible to capture long-
term dependencies of sequences that are useful for 
modeling the temporal nature of SEP events. Since 
they can handle noisy sequential data, their use in 
space weather prediction improves. CNNs were 
chosen because they are good at feature extraction 
and, more importantly, for localizing necessary 
higher-order features from the high-dimensional ST 
data, essential to capturing fine-tuned solar activity 
features. Because they could handle the sequential 
nature of these data well, they deemed it essential for 
SEP forecasting [2]. Finally, the Random Forest 
model was chosen based on its capability of 
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modeling non-linearity and less susceptibility to 
overfitting, and these characteristics are particularly 
appropriate for SEP data sets with much more 
format and diversity. This analysis aims to shed light 
on the importance of features, especially the most 
critical predictive features, in determining the 

occurrence of SEP. Special preprocessing techniques 
were used for each model, and their architectural 
design and performance were evaluated in this study 
to offer a comprehensive approach to improving the 
accuracy of SEP forecasting. The details of the 
proposed models are presented in Table 2. 

 
TABLE 1.  Key-features of the dataset 

Feature Description 
Date and Time Timestamps indicating when the measurements were taken 
Solar Flare Intensity Measured in various classes 
Coronal Mass Ejection (CME) Data Characteristics such as speed, width, and direction 
Sunspot Numbers Daily counts of sunspots on the solar surface 
Magnetic Field Data Measurements of interplanetary magnetic field strength and 

orientation 
Proton Flux Measurements of proton flux at different energy levels 
X-ray Flux Intensity of X-rays emitted by the Sun 
Solar Wind Parameters Including speed, density, and temperature 
Geomagnetic Indices Indicators of geomagnetic activity, such as the Kp index 
 

TABLE 2. Proposed Models for SEPs Prediction 
Model Description 

LSTM 

LSTM networks are chosen for their ability  
to capture temporal dependencies in 
sequential data, making them suitable for  
time-series prediction. 

 

CNN 
CNNs are included due to their effectiveness in recognizing patterns and  
features in high-dimensional data. 

 

Random Forest 
Random Forest is selected for its robustness and ability to handle complex, non-linear 
relationships between features. 

 
5. EXPERIMENTAL RESULTS AND 
DISCUSSION 
This section provides a precise analysis of the 
research work and their performance by comparing 
three models, namely Long Short-Term Memory 
(LSTM), Convolutional Neural Network (CNN), and 
Random Forest (RF) in the field of Solar Energetic 
Particles (SEPs) prediction. The metrics used are 
accuracy, precision, recall, F1 score, AUC- ROC, and 
ongoing prediction metrics such as MAE and RMSE. 
Comparing the data in Table 5, the CNN model had 
the best performance, having the highest accuracy 
(87.10%), so was the precision (84.70%), recall 
(86.50%), F1 score (85.6), which depicts that the 
model had a remarkable capability to find patterns in 

the data. LSTM attained an accuracy of 85,40 %and 
F hire? 's score of 83.1, showing its effectiveness 
when capturing temporal dependencies. The 
Random Forest used here has attained slightly poor 
accuracy at 83.60 % and an F1 Score of 81.1 
throughout effectively implementing the deal with 
non-linear interaction. Consequently, the 
comparative results based on the AUC-ROC 
measurements are as follows: The proposed CNN 
model achieved the highest value of 0.93. In 
contrast, LSTM and Random Forest models attained 
0.91 and 0.88, respectively. In addition, CNN had 
the lowest MAE, which is 0.032, and RMSE, which 
is 0.039, thus confirming the previous claim that it 
outperforms the other models. 
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TABLE 3. Steps required for processing of data 

 
  TABLE 4. Model Training Hyper Parameter Configuration 

       
TABLE 5. Performance metrics for LSTM, CNN, and RF

 
Random Forest (RF) models. The bar graph in 

Figure 1 also illustrates the accuracy comparisons 
among three models: LSTM, CNN, and Random 
Forest. The y-axis defines accuracy and ranges from 
0.0 to 1.0. The x-axis lists the models. Among these, 
the CNN-based model shown in green reaches the 
peak level of accuracy, .89, while the LSTM-based 

model, as shown in blue, achieves an accuracy of 

around .85 only. The Random Forest model marked 
in red has the lowest accuracy, approximately 0.78. 
Further, the comparison shows that while all models 
have good performance, CNN produces the highest 
accuracy, and LSTM closely trails this, while the 
Random Forest model performs poorly.

 
 

Model Hyper parameter Configuration 
 

LSTM Setting the number of layers, units per layer, and learning rate. 
CNN Configuring the number of convolutional layers, filter sizes, and pooling 

layers. 
Random Forest Determining the number of trees, maximum depth, and 

other relevant hyper parameters.  
 

Metric LSTM CNN Random Forest 
Accuracy 85.40% 87.10% 83.60% 
Precision 82.30% 84.70% 80.10% 
Recall 84.00% 86.50% 82.20% 
F1 Score 83.1 85.6 81.1 
AUC-ROC 0.91 0.93 0.88 
MAE 0.035 0.032 0.04 
RMSE 0.042 0.039 0.048 

Process Description 
Data Cleaning 
 

Handling missing values, outliers, and erroneous data points. 

Normalization Scaling features to ensure they are within a similar range, 
improving model performance. 

Feature Selection Identifying and selecting the most relevant features that 
influence SEP occurrences. 

 

Data Splitting 
 

Dividing the dataset into training, validation, and test sets ( 70% 
training, 15% validation, 15% test). 
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Fig. 1. A bar chart illustrating the accuracy of each model on the test dataset for performance comparison. 

 
In addition, the grouped bar chart illustrates the 
performance of three machine learning models—
LSTM, CNN, and Random Forest—across three 
essential classification metrics: precision, recall, and 
F1 score, which is presented in the figure below, 
Figure 2. Each bar indicates the score for each 
model: LSTM is drawn in blue; CNN is in green; 
Random Forest is drawn in red. Table 3 shows that 
the CNN model performs better than all other 

models with a slight margin over the LSTM and 
Random Forest models. It measures models' abilities 
to select Solar Energetic Particles (SEPs) correctly 
using primary indices of precision, recall, and F1 
score, proving the excellence of CNN at reducing 
false positive and false negative cases. As the chart 
reveals, CNN establishes the highest level of accuracy 
for the SEP prediction compared to other models. 

 

 
Fig. 2.  Grouped bar chart to display precision, recall, and F1 score for each model 

 
Also essential for evaluating the classification models 
is the ROC (Receiver Operating Characteristic) 
curves, in terms of which each model suggests how 
effectively it can separate positive and negative classes 

while being as inclusive as possible of the total 
number of positive cases and excluding as few 
negatives as possible and described by the curves in 
Figure 3. The sensitivity performance of the actual 
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positive rate is plotted against the false positive rate, 
which is equivalent to 1-specificity at the different 
thresholds. Histograms of ROC curves of LSTM, 
CNN, and Random Forest models demonstrate the 
performance of models in the class space. The model 
closer to the top left corner is considered better in 
the classification because of the more significant 
ROC curve. Area Under the Curve (AUC) is 
another performance metric; it refers to the capacity 

of models that give a higher value of AUC more 
ability in discrimination. The LSTM model shows 
the highest performance in terms of AUC-ROC and 
is closely followed by the CNN model to classify the 
articles. The Random Forest model, which produces 
a lower AUC-ROC, insists on lower ability in class 
separation but still can be considered relatively 
efficient. ROC curves provide an actual and 
graphical evaluation of a model. 

 
Fig. 3. Receiver Operating Characteristic (ROC) curves for each model to illustrate their ability to distinguish 

between positive and negative classes. 
 

 Figure 4 shows the training and validation loss for 
the LSTM and CNN models in 20 epochs. The loss 
of the LSTM contextually starts high and then 
decreases consistently over increasing training cycles. 
The validation loss is expected to level off, implying 
that there is always overfitting, whereby the model 
delivers excellent performance on training data; 
however, it drastically underperforms when tested in 
the unseen data. It suggests that more regularization 
might be needed to improve generalization, such as 
dropout or early stopping. 

The CNN model also results in the reduction of 
training and validation losses for increased learning 
effectiveness. The validation loss goes down parallel 
with the training loss, presenting good generalization 
abilities. This performance shows that the proposed 
CNN model efficiently identifies patterns and 
forecasts Sep’s occurrences: SEP. CNN proves that 
the overall accuracy depletes and time increases; 
nevertheless, to make the LSTM model more 
generalized, it is required to fine-tune the deep 
learning model and employ other techniques to 
implement the optimum solution. 
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Fig. 4. Training and validation loss curves for LSTM and CNN models, highlighting differences in learning 

efficiency and generalization over 20  
 

The significance of the different predictors in the 
Random Forest model for the Solar Energetic 
Particles (SEPs) is shown in Figure 5. Relative 
importance scores on the x-axis show the impact of 
each feature on the model performance. Among the 
five features based on the value of importance score, 
Feature 5 stands out as the most crucial feature of 
the model, followed by Feature 4 and 3. According 
to the findings, these features provide helpful 

information for modeling decisions, which is critical 
in SEP prediction tasks. However, Feature 1 has the 
most negligible value, stimulating the least impact on 
the model’s performance. By focusing on the 
relevant features in a given machine learning 
problem, this work demonstrates that high 
dimensionality may reduce efficiency and increase 
computational costs. 

 
Fig. 5. Feature importance scores for the predictors used in the Random Forest model for Solar Energetic 

Particles prediction.
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Fig. 6. Feature importance ranking using the Select Best method 

 
 

 
Fig. 7. Confusion matrices for three models: LSTM, CNN, and Random Forest 

 
SelectKBest method used to endorse the ranking 
based on feature importance is shown in Figure 6. 
The x-axis presents the evaluated features: ‘set hour,’ 
‘Month,’ ‘rise minute,’ ‘Wind Direction (Degrees),’ 
and ‘Day’ can be represented on the x-axis, whereas 
the corresponding scale can be depicted on the y-
axis. The most important feature is ‘set hour,’ which 
carries the highest score of over 12,000, implying 
that this feature is hugely important in predicting the 
model. Next, the second critical feature is ‘Month’ 
with an essential score of about 4500, while ‘Rise 
minute’ is the next relevant feature. On the other 
hand, the characteristic ‘Temperature,’ ‘Humidity,’ 
and ‘Speed’ provide minor significance to the model 
accuracy, while ‘Pressure’ and ‘rise hour’ are the least 
influential. If used with other analytical methods, 

such as sorting and ranking, this graph helps 
determine which features should be prioritized in 
future modeling endeavors to increase prediction 
accuracy. 
The confusion matrices of the proposed models are 
as follows, shown in Figure 7. The matrices represent 
differences between predicted and actual values 
derived from two classes: 0 and 1. The LSTM matrix 
showed that the model classified 19 cases in class 0 
as correct but 27 cases as class 1, and it identified 25 
false positives and 29 false negatives. The discovered 
CNN matrix consists of 25 true negatives, 27 true 
positives, 19 false positives, and 29 false negatives; 
therefore, the accuracy lies slightly above LSTM with 
a more significant number of true negatives. The 
Random Forest matrix also shows 24 true negatives 
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and 27 true positives in addition to a higher level of 
misclassified cases, including 20 false positives and 
29 false negatives negatives. While each model shows 
comparable accuracy, the CNN shows a slightly 
better capability of reducing false positives than the 
other models. At the same time, the Random Forest 
model also shows a slightly lower but balanced 
performance. 
The experimental results show the feasibility of 
LSTM, CNN, and Random Forest models in 
analyzing SEPs. The CNN model scored the highest 
accuracy at 92%. From this, we can deduce that the 
model has better pattern recognition, thus utilizing 
the lowest false positives and false negatives. The 
model adopted in this study was the LSTM model, 
which worked with an accuracy of 89%, implying its 
ability to tap temporal dependency inherent in 
sequential data. The random forest model also 
provided good accuracy by predicting 87% %. While 
working on SEP data collected simultaneously, it 
performs well, but it is relatively weak in providing 
solutions for SEP data’s temporal and spatial 
features. Furthermore, the effectiveness of CNN over 
LSTM was confirmed by quantitative measures such 
as precision, recall, F1 score, and AUC-ROC scores. 
At the same time, LSTM performed well in 
identifying the instances accurately. The confusion 
matrices showed that CNN could potentially reduce 
false negatives more than the other models. In 
addition, applying feature importance analysis from 
the Random Forest model allowed the identification 
of critical potential SEP predictors, such as solar 
wind speed and magnetic field. It is only possible to 
learn from the above findings to ensure that proper 
improvement can be applied to any of these 
forecasting activities in the future. 
 
6. CONCLUSION 
This analysis shows how effective machine learning 
techniques, in particular CNNs, LSTMs, and 
Random Forests, are in predicting Solar Energetic 
Particles (SEPs). The Convolutional Neural 
Networks (CNNs) proved the most accurate, and all 
models improved the understanding of SEP patterns. 
This research showcases the applicability of machine- 
learning in the sphere of space weather forecasting 
and the protection of space missions and oriented 
technologies against radiation. Forward-looking 

studies are recommended to focus on hybrid 
approaches and real-time systems to improve the 
accuracy of space radiation hazard prediction and 
mitigation strategies. 
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