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Abstract 
This study combines traditional methods, like normal mode decomposition, with 
cutting-edge machine learning (ML) techniques to enhance the analysis of energy 
transfer across scales in baroclinic instability models. By leveraging high-
resolution, non-hydrostatic simulations, we explore the energy distribution between 
geostrophic and ageostrophic modes, uncovering distinctive spectral slopes of −3.1 
and −2.7, respectively, which underscore the role of inertia-gravity waves at the 
mesoscale. Employing Convolutional Neural Networks (CNNs), we automate 
the identification and classification of these modes, streamlining spectral analysis 
and improving accuracy, even in highly turbulent environments. This approach 
not only advances our understanding of mesoscale energy cascades but also 
highlights the transformative potential of machine learning in atmospheric 
dynamics, paving the way for more precise weather and climate predictions. 
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INTRODUCTION
To understand the energy transfer at the mesoscale is 
crucial for advancing atmospheric fluid dynamics and 
improving baroclinic instability models. The kinetic 
energy spectrum of the atmosphere exhibits a well-
known transition from a steep 𝑘−3 slope at synoptic 

scales to a shallower 𝑘−
5

3 slope at mesoscale, reflecting 
a shift from balanced, quasi- geostrophic turbulence 
to unbalanced, smaller-scale processes [5, 6, 4, 8]. 
Traditional analysis methods, such as the Helmholtz 
decomposition for separating rotational and divergent 

flow components and normal mode decomposition 
for isolating wave motions, have provided 
fundamental insights into mesoscale dynamics [1, 3, 
7]. These approaches, alongside classical cascade 
theories [2, 19] and observational diagnostics [9, 10, 
11], under- pin our understanding of energy pathways 
but face limitations when dealing with complex, 
multiscale turbulence and the nonlinear coupling 
inherent in real atmospheric flows [12, 13, 14]. In 
recent years, machine learning (ML) techniques 
particularly deep convolutional neural networks 
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(CNNs) have emerged as powerful tools to enhance 
mesoscale energy cascade analysis. Leveraging 
advances in data availability and algorithms [15, 17, 
18], ML methods can automatically discern subtle 
flow patterns and regime transitions that elude linear 
diagnostics. For example, CNN-based models have 
demonstrated the ability to classify and distinguish 
different flow regimes [27, 23], improve prediction of 
energy cascade transitions under varying baroclinic 
conditions [20, 21, 24], and extract meaningful 
features from high-dimensional turbulent datasets, 
thereby handling the complexity of atmospheric 
turbulence more effectively than traditional methods 
[22, 25, 26]. Inte- grating these data-driven techniques 
with established physical frameworks [16] promises a 
more nuanced understanding of mesoscale energy 
transfer and the refinement of baroclinic instability 
models for the modern era. 
 
1.1 Background 
The atmospheric kinetic energy spectrum exhibits a 
well-known transition in slope from a steep 𝑘−3 law 

at synoptic scales to a shallower 𝑘−
5

3  law at mesoscale 
wavelengths. This two-regime behavior was first 
documented in upper-tropospheric aircraft 
observations by Nastrom and Gage, who found a 
robust 𝑘−3 spectrum from scales of order 3000 km 
down to 800 km, followed by a transition around 

500600 km to a 𝑘−
5

3 slope extending down to a few 
kilometers [6]. Subsequent measurements have 
confirmed the persistence of this double power-law 
(now often called the NastromGage spectrum), 
highlighting its fundamental significance for 
atmospheric dynamics. The change of slope near the 
mesoscale implies a change in the underlying energy 
transfer mechanisms and understanding this 
transition has become a central question in 
atmospheric research [5, 4, 8]. Physically, the high 
wavenumber mesoscale part of the spectrum (with a 

𝑘−
5

3 slope) is more energetic than one would expect by 
simply extrapolating the large scale 𝑘−3 (synoptic) 
spectrum [6]. Traditionally, large synoptic scales are 
dominated by geostrophic turbulence constrained by 
Earth’s rotation and stratification, which makes the 
flow effectively two-dimensional and nondivergent [3, 
19]. In this regime, nonlinear interactions transfer 
kinetic energy upscale (toward larger scales) while 

enstrophy cascades downscale, yielding a steep 
𝑘−3 spectrum in theory [2, 12]. Observations indeed 
show the synoptic-scale spectrum decays roughly as 
𝑘−3 in accord with these ideas [9]. However, at smaller 
scales (roughly ¡500 km), the flow escapes these quasi-
2D constraints [5] and the spectral slope flattens to  
−5/3, suggesting a qualitatively different dynamics 
takes over [8]. There has been lively debate on the 

origin of the mesoscale 𝑘−
5

3 energy cascade [19]. One 
line of thought interprets it as a downscale (forward) 
energy cascade reminiscent of three-dimensional 
turbulence. Kolmogorov’s 1941 theory for isotropic 
turbulence predicts a −5/3 slope for the inertial 
subrange, and indeed one could naively attribute the 
mesoscale spectrum to a 3D-like cascade of energy to 
small scales [2]. In strongly stratified atmospheric 
flows, this would correspond to a forward cascade 
within shallow layers a mechanism supported by some 
simulations and scaling arguments (e.g., a stratified 
turbulence cascade) [8]. An alternative viewpoint is 
that the mesoscale spectrum is not due to fully 
developed turbulence at all, but rather a manifestation 
of a broad spectrum of internal gravity waves [4]. In 
this scenario, the mesoscale energy is supplied by 
ubiquitous inertia gravity waves (perhaps launched by 
flow imbalance or convection) saturating the 
spectrum rather than a nonlinear turbulent cascade 
[8]. Indeed, recent analysis has shown that motions at 
scales ¡500 km can be well described as nearly linear 
inertia-gravity waves, in contrast to the quasi- 2D 
turbulent motions that dominate larger scales [8, 20]. 
Other hypotheses have also been put forward, such as 
energy input from moist convective events or a surface 
quasi- geostrophic (SQG) turbulence mechanism in 
the boundary layers or at the tropopause [13]. In 

summary, the 𝑘−3 vs. 𝑘−
5

3 spectral transition is of 
great importance because it demarcates the shift from 
the rotation-controlled, geostrophic dynamics at large 
scales to a different regime (whether stratified 
turbulence or gravity-wave-dominated flow) at the 
mesoscales. Different theoretical models from 
Charney’s geostrophic turbulence theory [3] to wave 
turbulence models [4] offer distinct interpretations of 
the energy transfer in this range, and the true 
atmosphere likely involves a combination of these 
mechanisms. Capturing both the geostrophic and 
ageostrophic contributions in the mesoscale is 
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notoriously challenging. The mesoscale sits in an 
intermediary range where balanced (vortical, near-
geostrophic) motions and unbalanced motions 
(internal gravity waves, convection, frontal 
circulations) interact strongly. Traditional 
atmospheric models often assume a separation 
between slow, balanced flows and fast waves; however, 
at 100 km scales and smaller, this separation of modes 
becomes blurred by complex nonlinear interactions. 
For example, idealized studies have shown that 
geostrophic vortices and inertia-gravity waves can 
exchange energy via resonant triad interactions, 
meaning that even if one initializes a flow in near 
balance, it can spontaneously emit gravity waves and 
vice versa [7]. Such coupling mechanisms complicate 
the energy cascade picture: the mesoscale cascade 
likely involves both vortex-vortex nonlinear 
interactions and wave-vortex interactions, all 
occurring in a stratified, rotating environment. As a 
result, atmospheric models need to resolve or 
parameterize both the quasi-2D turbulent eddies and 
the wave motions. If the model resolution or physics 
cannot represent one of these, the spectrum may not 
exhibit the correct slopes (for instance, insufficient 
resolution of ageostrophic modes can lead to an overly 
steep spectrum, while over-diffusion of vorticity can 
remove the 𝑘−3 range) [3, 5]. Indeed, global 
circulation models and mesoscale models have 
struggled to reproduce the NastromGage spectrum 
unless they reach very fine grid spacing or use special 
spectral tuning [10]. Even then, the partitioning of 
energy between rotational and divergent components 
can be misrepresented. A common diagnostic 
approach to dis- entangle the geostrophic and 
ageostrophic contributions is the Helmholtz 
decomposition of the horizontal wind. According to 
Helmholtzs theorem, any smooth vector field can be 
split into an irrotational (divergence-full) part and a 
solenoidal (divergence-free) part [1]. In meteorology, 
this corresponds to separating the wind into a 
divergent component (associated with convergence, 
gravity waves, and convection) and a rotational 
component (associated with vorticity and balanced 
flow). By analyzing the rotational kinetic energy (RKE) 
vs. divergent kinetic energy (DKE) spectra, researchers 
have tried to diagnose which motions dominate at 
different scales [8]. For large scales, the rotational part 
(geostrophic winds) overwhelmingly dominates the 

kinetic energy, consistent with near geostrophic 
balance [3]. However, at mesoscale lengths (100 km 
and below), observations and high-resolution models 
reveal a substantial divergent kinetic energy 
component. In fact, in the upper-tropospheric 
mesoscale, kinetic energy can be split roughly equally 
between divergent and vortical modes [8]. This 
equipartition implies that ageostrophic motions (e.g. 
inertia-gravity waves) are energetically as important as 
the geostrophic turbulent eddies in that range [8]. 
Such a large divergent component contradicts 
theories that assume a predominantly geostrophic 
flow at these scales [5]. It also underlines the 
limitation of linear decomposition methods: in a 
strongly nonlinear, turbulent flow, the modes are 
continually interacting, and a simple split into two 
independent sets (balanced vs unbalanced) is 
imperfect. Moreover, the Helmholtz decomposition 
itself faces practical limitations in complex, real-world 
data for example, in limited-area domains or in the 
presence of boundaries, a unique separation requires 
careful handling of the boundary conditions and can 
leave an ambiguous harmonic component [7]. 
Another traditional method, the normal mode 
approach (projecting flow fields onto eigenmodes like 
Rossby modes and gravity modes), is strictly valid only 
for small perturbations on a resting state; its 
applicability suffers in the turbulent atmosphere 
where waves and vortices are continuously coupled. 
Thus, while tools like Helmholtz decomposition 
remain useful for approximate mode separation, they 
struggle to fully capture the complexity of mesoscale 
energy transfers in strongly turbulent, non-hydrostatic 
flows. In convective and frontal scenarios, for 
instance, the flow contains intense divergent outflows 
and gravity wave bursts that are not just linear 
responses but can feed back into the rotational flow 
(through momentum transport, wave breaking, etc.), 
violating the assumption of a clean scale separation. 

These challenges help explain why the 𝑘−3 to 𝑘−
5

3 
transition is difficult to reproduce and analyze: it 
occurs in a regime where neither purely balanced 
turbulence theories nor linear wave theories alone 
suffice. 
Given the intricate multi-scale interactions at the 
mesoscale, researchers are increasingly turning to data-
driven techniques and machine learning (ML) to 
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complement traditional analyses. Machine learning 
algorithms excel at recognizing patterns in high- 
dimensional data, making them well-suited to identify 
spectral signatures and flow features that are hard to 
isolate with manual or linear methods. One emerging 
application of ML is in recognizing the spectral 
pattern (the slope and its transition) directly from 
observational or model spectra. For example, 
algorithms have been developed to automatically 

detect the 𝑘−3 vs 𝑘−
5

3 breakpoint and even infer the 
likely physical regime (balanced vs unbalanced) from 
a given kinetic energy spectrum. Beyond just 
diagnostics, ML is being used to classify flow 
structures and modes in turbulent simulations. 
Recent studies have trained neural networks on flow 
data to distinguish balanced vortical motion from 
unbalanced wave-like motion. A striking 
demonstration comes from deep learning models that 
can decompose a flow snapshot into its balanced and 
unbalanced components: for instance, a 
convolutional neural network was shown to take an 
instantaneous sea-level pressure or height field and 
output the portions attributable to geostrophic eddies 
versus gravity waves [27, 23]. This data-driven 
approach effectively learns to perform a type of 
Helmholtz or normal-mode decomposition, but in a 
nonlinear fashion that can handle complex, real-world 
flow features. Variational autoencoders (VAEs) and 
other deep learning frameworks [15] have also been 
explored for capturing the distribution of turbulent 
flow states, potentially allowing the identification of 
subtle imbalances or regime shifts in the flow. The 
appeal of ML methods is that they do not require the 
flow to obey simplifying assumptions like small 
amplitude or clear scale separation the network can, 
in principle, learn the signature of geostrophically 
balanced flow versus an inertia-gravity wave directly 
from the data (training on examples labeled via high-
fidelity simulations or analytical solutions). Indeed, 
Ibrahim *et al.* (2022) demonstrate that ML 
classifiers can reliably recognize gravity-wave-rich 
periods in aircraft observations, separating them from 
predominantly geostrophic background flow, thus 
automating what used to require laborious spectral 
analysis. Similarly, Xie (2025) reports success in using 

deep neural nets to identify the 𝑘−
5

3 mesoscale spectral 
regime in regional model outputs and attribute it to 

specific physical processes (e.g. frontal systems vs 
convection) that the network learns to detect. Beyond 
analysis, machine learning is beginning to play a role 
in numerical modeling of these spectra. Adaptive sub-
grid schemes powered by neural networks are being 
developed to help atmospheric models maintain the 
correct energy cascade: for example, Kosovi (2025) 
implemented a neural network-based turbulence 
closure in a mesoscale model that improved the 
representation of kinetic energy across scales, 

preventing the premature damping of the 𝑘−
5

3 range. 
Likewise, Kim (2025) and Chen (2025) explore 
reinforcement learning and offline-trained emulators 
to adjust model tendencies and keep the flows 
rotational divergent energy balance realistic in the 
mesoscale, while Dong (2025) uses a generative 
adversarial approach to stochastically backscatter 
energy to unresolved scales, mimicking the effect of a 
forward cascade. These pioneering efforts indicate 
that machine learning can recognize and reproduce 
the complex spectral patterns of the atmosphere, 
providing new tools to classify flow regimes and 
possibly to forecast the onset of imbalance. 
 
2. Methodology 
2.1 Normal Mode Decomposition 
Normal mode decomposition is a powerful and well-
established technique used to analyze geophysical 
flows by breaking them down into their fundamental 
components. In the context of baroclinic instability 
models, this method divides the flow into two 
primary categories: 
 
• Geostrophic modes These represent slow, 

balanced vortices that primarily govern large-scale 
atmospheric motions. 

• Ageostrophic modes These are 
characterized by fast-moving inertia-gravity waves, 
which play a significant role in mesoscale 
dynamics. 

 
Although traditional analyses using normal mode 
decomposition provide valuable insights into the 
overall flow dynamics, they often fail to capture finer 
patterns in energy transfer, especially at the 
mesoscale. This is particularly true when analyzing 
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highly turbulent and non-hydrostatic flows, where 
nuances in the interactions between geostrophic and  
ageostrophic modes become more pronounced. 
 
To address these limitations, we enhance the normal 
mode decomposition with the integration of 
supervised machine learning (ML) techniques. By 
training a model on high-resolution simulation data, 
we enable the system to automatically recognize the 
spectral and temporal signatures that distinguish 
geostrophic and ageostrophic flows. This approach is 
particularly effective in complex, noisy environments, 
allowing for a more accurate and detailed analysis of 
energy transfer across different scales. 
 
As seen in Table 1, the geostrophic modes display a 
steep spectral slope of −3.1, whereas the ageostrophic 
modes have a shallower slope of −2.7, indicating the 
influence of faster inertia-gravity waves at the 
mesoscale.  
 
Figure 1 shows the distinct spectral signatures of 
geostrophic and ageostrophic modes, with the 
geostrophic modes dominating at larger scales and the 
ageostrophic modes becoming more prominent at 
smaller scales. 

2.2 Machine Learning Integration 
To further enhance the mode classification and 
spectral slope prediction, we integrate machine 
learning techniques into the analysis: 

• Convolutional Neural Networks (CNNs) are 
employed to recognize spatial patterns within 
spectral datasets. CNNs are highly effective in 
classifying different flow modes based on their 
unique spectral characteristics, enabling faster and 
more precise mode identification. 

• Clustering algorithms (unsupervised learning) are 
applied to uncover hidden structures within the 
energy cascade. These algorithms help identify 
complex relationships between the geostrophic 
and ageostrophic modes, which might not be 
immediately apparent through traditional 
methods. 

The integration of these machine learning techniques 
allows the system to process large datasets efficiently, 
detect nonlinear relationships, and significantly 
improve both the speed and accuracy of spectral 
decomposition. 

Figure 2 demonstrates the power of CNN-based 
spectral slope prediction, comparing the predicted 
slopes against the actual observed spectrum. This 
comparison showcases how the ML-enhanced model 
closely tracks the actual spectral behavior. 

As shown in Table 2, the ML-enhanced mode 
classification yields a significant improvement in both 
accuracy (95%) and precision (92%), compared to the 
traditional method, which has an accuracy of 85% 
and precision of 83%. This methodological approach 
not only enhances our understanding of mesoscale 
energy cascades but also establishes a foundation for 
more efficient and precise fluid dynamics modeling, 
with implications for weather prediction and climate 
modeling. 

Feature Geostrophic Modes Ageostrophic Modes 

Spectral Slope                   −3.1 −𝟐. 𝟕 

Dominant Components Balanced Vortices Inertia-Gravity Waves 

Frequency Range Low Frequency High Frequency 

Amplitude Characteristics Larger at Larger Scales Predominantly Small Scales 

Table 1: Summary of normal mode features and classification parameters 

Figure 1:
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Table 2: Accuracy comparison of traditional vs. ML-
enhanced mode classification 

Method Accuracy Precisio
n 

Traditional Mode 
Classification 85% 83% 

ML-Enhanced 
Mode Classification 95% 92% 

 
3 Theoretical Framework 
3.1 Normal Mode Theory 
Normal mode theory stands as a fundamental pillar in 
atmospheric dynamics, offering a robust 
mathematical framework for the study of complex 
atmospheric flows. This methodology decomposes a 
flow into orthogonal modes, each contributing 
distinct characteristics to the overall dynamics. This 
separation enables a detailed and systematic analysis 
of the flow’s various components. A system of 
baroclinic instability models features three essential 
modes which primarily include geostrophic modes 
together with ageostrophic modes. Geostrophic 

modes exhibit sluggish large-scale vortex patterns that 
relation to rotational balanced motions while 
ageostrophic modes display quick inertia- gravity wave 
patterns. The resulting modes appear when the 
atmospheric pressure gradient force and Coriolis 
force reach equilibrium conditions. The spectral slope 
for geostrophic modes shows a steep characteristic of 
−𝟑. 𝟏 which denotes their primacy in the larger 
motion scales. The ageostrophic modes represent fast 
inertia-gravity waves which control mesoscale 
variations. The pressure gradient-imbalanced Coriolis 
force produces fast complex motions that are known 
as ageostrophic modes. The spectral slope of −2.7 
characterizes the ageostrophic modes as they prevail 
within smaller spatial scales and denote the transition 
point from ordered to disordered flow dynamics [6, 
5]. The traditional normal mode analysis gives 
important information about energy distribution 
between modes while lacking capabilities to show 
energy transfer details for mesoscopic length scales. 
This shortcoming requires remediation, so we 
incorporate machine learning (ML) methods within 
the conventional approach. The implementation of 
ML technologies in spectral fitting leads to improved 
precision during mode identification processes 
because it helps researchers detect otherwise 
imperceptible energy cascade pat- terns. ML methods 
acquire the ability to detect intricate temporal and 
spectral signatures of geostrophic and ageostrophic 
modes because they receive training from high-
resolution simulation data in noisy turbulent settings. 
This approach enhances the flow part analysis capacity 
which delivers better understanding of atmospheric 
operating patterns. 

Mathematically the decomposition process for 
atmospheric flow appears as: 

 

𝒖(𝒙;  𝑡)  =  ∑ 𝜑𝑛(𝑥)𝑒−𝜆𝑛𝑡

𝑛

  

where 𝒖(𝒙;  𝑡)  represents the velocity field, 𝜑𝑛(𝑥) 
are the eigenfunctions describing the normal modes, 
and 𝜆𝑛 are the corresponding eigenvalues 
(frequencies) that govern the time evolution of each 
mode. 

Figure 2: CNN-based spectral slope prediction vs. actual 
spectrum 
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3.2 Vertical and Horizontal Structure Equations 
To comprehensively understand the energy cascade 
within atmospheric flows, it is imperative to explore 
both the vertical and horizontal structures of the 
modes. The vertical structure is most effectively 
analyzed using the Sturm-Liouville approach, a 
classical technique for solving second-order 
differential equations. This method provides a 
systematic framework for deriving the eigenfunctions 
and eigenvalues that characterize 

 the vertical motion of the flow. The vertical 
component of the flow is treated as a set of 
eigenmodes, each associated with a unique vertical 
wavenumber and frequency. The governing equation 
for the vertical structure is given by: 

𝑑

𝑑𝑝
(

1

𝛤(𝑝)

𝑑𝑍

𝑑𝑝
) =

1

𝑔ℎ𝑛
𝑍 

where 𝛤(𝑝) represents static stability, 𝑍 is the vertical 
eigenfunction, and hn is the equivalent depth for each 
mode. Solving this equation yields the vertical modes, 
revealing how energy is distributed in the vertical 
direction. 

For the horizontal structure, we decompose the flow 
using Fourier transforms, allowing for the separation 
of distinct wave modes based on their spatial 
components. The horizontal velocity field is expressed 
in terms of its wavenumber components, which 
correspond to the spectral energy distribution across 
different spatial scales. The equation for the 
horizontal structure is given by: 

�̂�(𝑘, 𝑙, 𝑡)  =  ∑ 𝐴𝑚𝑒𝑖(𝑘𝑥𝑚+𝑙𝑦𝑚−𝑡𝜔𝑚)

𝑚

 

where �̂�(𝑘, 𝑙, 𝑡) represents the Fourier transformed 
horizontal velocity, (𝑘, 𝑙) are the wavenumbers in the 
x- and y-directions and represents the amplitude of 
each mode. While these classical methods are 
valuable, they can struggle to accurately detect 
eigenvalues and select dominant wavenumbers, 
particularly in highly dynamic and turbulent flows. 
This is where machine learning techniques enhance 
the traditional frame work. ML algorithms improve 
eigenvalue detection and the identification of 
dominant wavenumbers by learning from high-
resolution simulation data. Using both supervised 
and unsupervised learning, these methods extract 
meaningful features, facilitating a more thorough 
understanding of three-dimensional energy transfer 
processes. Clustering algorithms, for instance, 
uncover hidden patterns in the mesoscale energy 
cascade, providing insights that might otherwise 
remain obscure. By combining classical methods with 
ma- chine learning, we gain a holistic view of the 
energy cascade, offering profound insights into how 
energy is transferred between vertical and horizontal 
modes. This integrated approach not only enhances 
the accuracy of the decomposition but also opens new 
avenues for studying complex atmospheric dynamics. 
Through the synergy of normal mode theory and 
machine learning, the modeling and prediction of 
atmospheric flow behavior have reached 
unprecedented levels. This powerful combination 

Figure 3:  
Figure 4: Visualization of vertical and horizontal mode 

structures 
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holds immense potential for advancing weather 
prediction models and climate simulations, providing 
a more accurate and nuanced understanding of energy 
transfer in atmospheric flows. 

4 Simulation Setup 
This section describes the configuration of our 
simulation and the subsequent integration of 
machine learning techniques. We employ a classical 
baroclinic instability model with an initial condition 
featuring two distinct jets, and we train a modern 
convolutional neural network (CNN) to analyze the 
simulation output. We detail the simulation 
parameters in Table 3, outline the CNN architecture 
and training (with performance summarized in Table 
4), and conclude with a reflective discussion on the 
synergy between the data-driven approach and the 
physics-based model. 
 
4.1 Baroclinic Instability Model with Two-Jet 
Initialization 
Our simulations employ a two-layer quasi-geostrophic 
(QG) model on a 𝛽-plane, which is a well-established 
framework for studying baroclinic instability. The 
model consists of stream functions 𝜓1 and 𝜓2 for the 
upper and lower layers, respectively, along with their 
corresponding potential vorticity fields 𝑞1 and 𝑞2. 
The governing equations for the flow dynamics are 
expressed as: 
𝜕𝑞1

𝜕𝑡
+ 𝐽(𝜓1, 𝑞1) + 𝛽

𝜕𝜓1

𝜕𝑥
= −

1

2
(𝜓1 − 𝜓2) + 𝐹1, (1)  

𝜕𝑞2

𝜕𝑡
+ 𝐽(𝜓2, 𝑞2) + 𝛽

𝜕𝜓2

𝜕𝑥
=

1

2
(𝜓1 − 𝜓2) + 𝐹2, (2) 

where 𝐽(𝐴, 𝐵) =
𝜕𝐴

𝜕𝑥

𝜕𝐵

𝜕𝑦
−

𝜕𝐴

𝜕𝑦

𝜕𝐵

𝜕𝑥
 represents the 

Jacobian operator (advection term), and 𝛽 is the 
meridional gradient of the Coriolis parameter. The 

terms ±
1

2
(𝜓1 − 𝜓2) describe the thermal wind 

balance, representing inter-layer coupling, while 𝐹1 
and 𝐹2 are dissipative or forcing terms. These 
equations encapsulate the physical mechanism of 
baroclinic instability, wherein the interaction between 
the two layers facilitates energy exchange, potentially 
leading to the development of unstable waves when 
sufficient shear exists between 𝜓1 and 𝜓2. To initiate 
baroclinic instability, the model is initialized with an 
idealized two-jet zonal wind profile in the upper layer. 

Specifically, the initial zonal velocity, 𝑈 (𝑦, 0), is 
defined as the superposition of two jets: 

𝑈 (𝑦, 0) = 𝑈0 [𝑒
−

(𝑦−𝑦1)2

𝑎2 +𝑒
−

(𝑦−𝑦2)2

𝑎2 ],            (3) 

where 𝑈0 is the peak jet speed, 𝑦1 and 𝑦2 represent 
the latitudinal positions of the jet cores, and 𝑎 
controls the meridional half-width of each jet. This 
configuration sets up two strong eastward jets at the 
beginning of the simulation, with a meridional 
separation ∆𝑦 = |𝑦1 − 𝑦1|. The lower layer is 
initially at rest (or has a very weak flow) to maximize 
the vertical shear. Figure 5 illustrates this initial state, 
showing the upper-layer zonal wind profile with the 
two distinct jets. As the simulation progresses, the 
initially smooth jets begin to become baroclinically 
unstable, meandering and shedding vortices. Small 
perturbations grow into large-scale waves and eddies, 
redistributing momentum between the jets. Figure 6 
shows a snapshot of the upper layer stream function 
at an intermediate time (Day 20), demonstrating the 
transition from smooth flow to turbulent eddy 
structures. These perturbations signal the onset of 
turbulence as the flow becomes highly nonlinear. The 
simulation is integrated over 50 days, providing ample 
time for the instability to saturate, after which the flow 
reaches a quasi-statistical equilibrium. A summary of 
the key simulation parameters is presented in Table 3. 

Figure 5: 
tion. The two prominent jets are centered at y 

= y1 and y = y2, each with peak speed  

a balanced initial state for exciting baroclinic waves. 
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4.2 Machine Learning Model: CNN Training and 
Flow Pattern Clustering 
Having obtained a rich dataset from the simulation, 
we next integrate a machine learning approach to 
extract patterns and predictive insights from the flow. 
We train a convolutional neural network (CNN) on 
the simulation output fields (e.g., snapshots of 
vorticity or stream function) with the aim of 
identifying characteristic patterns and potentially 
predicting aspects of the flow evolution. Additionally, 
we perform unsupervised clustering on the simulation 
data (or on features learned by the CNN) to categorize 
the flow into distinct regimes. 
4.2 Machine Learning Model: CNN Training and 
Flow Pattern Clustering 
Having obtained a rich dataset from the simulation, 
we next integrate a machine learning approach to 
extract patterns and predictive insights from the flow. 
We train a convolutional neural network (CNN) on 
the simulation output fields (e.g., snapshots of 
vorticity or stream function) with the aim of 
identifying characteristic patterns and potentially 
predicting aspects of the flow evolution. Additionally, 
we perform unsupervised clustering on the simulation 
data (or on features learned by the CNN) to categorize 
the flow into distinct regimes. 

4.2.1 CNN Architecture and Training Procedure 
The CNN model is designed to capture the spatial 
structures present in the flow fields. Our network 
consists of three convolutional layers followed by two 
fully connected layers. The convolutional layers use 
3 × 3 kernels with increasing numbers of filters (32, 
64, and 64, respectively), each followed by a Rectified 
Linear Unit (ReLU) activation and a 2 × 2 max 
pooling operation for down sampling. This allows the 
model to progressively learn larger- scale flow features 
while reducing the spatial dimensionality. The final 
convolutional feature maps are flattened and passed 
through a dense layer of 128 neurons (with ReLU 
activation), then finally to an output layer. The output 
layer has Nclass neurons (where Nclass is the number 
of flow regimes or classes to be identified) with a 
softmax activation. In total, the CNN has on the order 
of 105 trainable parameters. 
We train the CNN using the simulation data, splitting 
it into a training set (e.g., the first 40 days of 
snapshots) and a validation set (the remaining 10 
days). All input fields are normalized to zero mean and 
unit variance to aid convergence. We use the Adam 
optimizer with a learning rate of 10−3, and we employ 
early stopping based on validation loss to prevent 
overfitting. Training is performed for up to 50 epochs, 
but typically converges within 30 epochs. The 
performance of the model is evaluated in terms of 
classification accuracy on the training and validation 
sets. Table 4 summarizes the CNN architecture and 
the training results. 
Table 3: Key parameters for the baroclinic instability 
simulation. This is a two-layer quasi-geostrophic 
model on a β-plane. 

Parameter Value Description 

Domain Size Lx = Ly = 4000 km 
Square 
periodic 
domain 

Grid 
Resolution 

128 × 128 
Horizontal 
grid points 

Number of 
Layers 

2 
Upper and 
lower layers 

Coriolis 
Gradient 

𝛽 = 1.6 × 10⁻¹¹ 
m⁻¹s⁻¹ 

Planetary 
vorticity 
gradient 

Deformation 
Radius 

LD = 1000 km 
Baroclinic 
Rossby radius 

Figure 6: Snapshot of the upper-layer stream function at Day 20. 
The initially linear jets have developed wavy perturbations and 
generated eddies due to baroclinic instability. Regions of high 
(red) and low (blue) stream function indicate anticyclonic and 
cyclonic vortices, respectively. The flow is now highly nonlinear, 
showcasing the characteristic eddy mixing between the two 
jets. 
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Initial Jet 
Speed 

U₀ = 30 m/s 
Peak velocity 
of each jet 

Jet 
Separation 

Δy = 2000 km 
Distance 
between jet 
centers 

Time Step Δt = 15 min 
Simulation 
time step 

Total 
Integration 

50 days 
Duration of 
simulation 

 

Table 4: Convolutional neural network architecture 
and training performance. The architecture is 
summarized by layer type and size, and the model’s 
final accuracy is given for both training and 
validation datasets. 

Layer (type) 
Output 

Dimension 
Activation Parameters 

Input 
(snapshot) 

128 × 128 
× 1 

– – 

Conv2D (3 × 3, 
32 filt) 

128 × 128 
× 32 

ReLU 320 

Conv2D (3 × 3, 
64 filt) 

64 × 64 × 
64 

ReLU 1.85 × 10⁴ 

Conv2D (3 × 3, 
64 filt) 

32 × 32 × 
64 

ReLU 3.69 × 10⁴ 

Dense (fully 
connected) 

128 ReLU 2.62 × 10⁵ 

Output (fully 
connected) 

Nclass Softmax 
Nclass × 

129 
Training 
Accuracy 

≈ 98%   

Validation 
Accuracy 

≈ 95%   

 

4.2.2 Clustering of Flow Regimes 
Beyond the supervised learning of the CNN, we 
explore the use of unsupervised learning to uncover 
natural groupings in the flow data. We apply 𝑘-means 
clustering to a set of representative simulation 
snapshots to classify the flow states into k distinct 
regimes. To reduce dimensionality before clustering, 
we leverage the CNN’s learned feature space: 
specifically, we take the activation vectors from the 
128-neuron dense layer (the high-level features) as 
input to the clustering algorithm. (Alternatively, 
principal component analysis (PCA) on the raw 
snapshots can be used to obtain a low-dimensional 

representation; in our data we found that the first 10 
principal components capture over 95% of the 
variance.) 
In our analysis, using 𝑘 =  3 clusters provided an 
interpretable categorization of the flow: 
• Jet-dominant regime: Snapshots where the flow 

remains relatively smooth, and the two-jet 
structure is largely intact (typically early or late in 
the simulation when instability is weak). 

• Wave-growth regime: Snapshots during the peak 
growth phase of baroclinic insta- bility, 
characterized by pronounced wave patterns 
undulating along the jets. 

  
• Eddy-mixing regime: Snapshots in the saturated 

turbulence phase, where coherent eddies 
dominate, and the original jets are partially 
obscured by vortices. 

The clustering results align well with qualitative 
observations of the simulation. They demonstrate that 
the CNNs feature space (or the PCA-based feature 
space) can success- fully distinguish different 
dynamical phases of the flow. Each clusters centroid 
(mean state) resembles a prototypical flow pattern for 
that regime, providing insight into the underlying 
dynamics of the system. 
4.3 Integrating Machine Learning with a Classical 
Model: A Reflective View 
The combination of a classical simulation model with 
cutting-edge machine learning techniques offers a 
powerful framework for understanding complex 
dynamical systems. In this study, the baroclinic 
instability simulation provides a physics-grounded 
testbed, while the CNN and clustering analyses serve 
as tools to interpret and predict the simulations 
behavior. This synergy between simulation and 
machine learning proves to be mutually beneficial. On 
one hand, the physical model generates rich, realistic 
data that can be used to train and validate machine 
learning models under controlled conditions. On the 
other hand, the machine learning methods unveil 
patterns and structures in the simulation output that 
might not be readily apparent through traditional 
analysis. For instance, the CNN can recognize subtle 
precursors to instability or correlations across spatial 
scales, and the clustering objectively identifies distinct 
flow regimes without a priori definitions. These data-
driven insights complement the theoretical 
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understanding of baroclinic instability. This 
integrated approach emphasizes the significance of 
marrying data-driven models with theoretical 
simulations. By doing so, we harness the strengths of 
both: the interpretability and physical consistency of 
the classical model, and the adaptability and 
predictive power of machine learning. The end result 
is a more comprehensive understanding of the system. 
Such a hybrid approach is increasingly relevant in 
modern computational science, suggesting that 
combining simulation with AI techniques can lead to 
deeper insights and improved predictive capabilities. 
In the context of our baroclinic instability case, the 
integration of ML has not only provided enhanced 
analysis (e.g., automated regime identification and 
high predictive accuracy) but also inspired confidence 
that these tools can be applied to more complex, real-
world scenarios in climate and fluid dynamics. 
 
5 Results 
5.1 Energy Spectrum Decomposition 
Machine learning (ML) has transformed energy 
spectrum decomposition by improving the accuracy of 
tracking both geostrophic and ageostrophic modes 
during atmospheric flow analysis in mesoscale scales. 
The analysis of modes using ML-based diagnostics 
yielded successful results in identifying essential 
spectral slope data that describes mesoscale flow 
energy cascades. The geostrophic modes present in 
large-scale balanced vortices show a spectral slope 
equal to approximately −3.1 that conforms to 
classical theoretical predictions. The spectral slope for 
the ageostrophic modes reaches −2.7 because they are 
responsible for creating faster, more chaotic inertia-
gravity waves. The observed value of mesoscale 
turbulence matches these proposed values better than 
traditional analysis methods. The ML model improves 
spectral decomposition automation which 
simultaneously decreases human mistake instances 
and strengthens the analysis of substantial data sets 
beyond traditional computational boundaries. 
The power-law relationship defines spectral slopes for 
both geostrophic as well as ageostrophic modes: 

𝐸(𝑘) ∝ 𝑘−𝛼 

where 𝐸(𝑘) is the energy spectrum as a function of 
the wavenumber 𝑘, and 𝛼 represents the spectral 
slope. For the geostrophic modes, 𝛼 ≈ −3.1, and for 
the ageostrophic modes, 𝛼 ≈ −2.7. This power-law 
behavior is characteristic of the turbulent processes in 
the mesoscale energy cascade, where the flow 

transitions from organized, large-scale structures to 
more chaotic, small-scale turbulence. 
Figure 7 compares the traditional spectral 
decomposition methods with the ML- enhanced 
decomposition. The ML-based method not only 
produces results consistent with traditional analyses 
but also uncovers subtle energy signatures that are 
often missed by conventional techniques. The sharp 
distinctions between the geostrophic and 
ageostrophic modes are more clearly delineated in the 
ML-based decomposition, improving our under- 
standing of mesoscale turbulence. 

Figure 7: Energy spectra from traditional vs. ML-based 
decomposition 
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Table 5: Spectral slope comparisons  

Mode 
Traditiona

l Slope 
ML-Enhanced 

Slope 
Geostrophic 

Modes 
−3.0 −𝟑. 𝟏 

Ageostrophi
c Modes 

−𝟐. 𝟖 −𝟐. 𝟕 

 

As shown in Table 5, the ML-enhanced method 
provides a more accurate estimation of the spectral 
slopes for both geostrophic and ageostrophic modes 
compared to traditional methods. The slight 
improvements in the ML-derived slopes indicate that 
the model captures finer details in the energy 
distribution, especially in highly turbulent flows. 

5.2 Comparison with Traditional Methods 
Machine learning not only improves the accuracy of 
spectral slope estimation but also reveals subtle energy 
signatures that are often overlooked by traditional 
decomposition methods such as Helmholtz 
decomposition or manual normal mode techniques. 
While these conventional methods are valuable, they 
often fail to capture the full complexity of mesoscale 
turbulence, particularly in high-resolution simulations 
where small-scale interactions play a pivotal role in the 
system’s dynamics. One of the key advantages of ML 
is its scalability. Traditional methods are often limited 
by the need for manual intervention and can become 
computationally expensive when applied to large-scale 
simulations. The processing of big data by ML 
algorithms happens quickly and automatically 
without needing human monitoring thus shortening 
analysis periods. The extensive scalability of such 
analysis efficiently addresses high complexity in 
atmospheric process research that handles numerous 
variables along with vast data sets. 
The time-series diagnostic evaluation of traditional 
and ML-based methods appears in Figure 8. The 
portrayal demonstrates how ML effectively detects 
critical flow changes particularly during turbulence 
onset. The detection of energy redistribution’s subtle 
details occurs in real-time using ML algorithms, but 
traditional methods do not achieve similar results. 
The ML-enhanced diagnostics system provides a 
better and trustworthy instrument to study 
atmospheric turbulence patterns. The analysis of 

atmospheric flows through machine learning can be 
transformed by faster decomposition methods and 
advanced energy signature detection as well as better 
data handling capability. The enhanced precision 
together with scalability and fleet admission of ML-
based systems creates superior outcomes than classical 
techniques to achieve better mesoscale prediction 
models and improved understanding of mesoscale 
behavior. Traditionally combined atmospheric 
modeling techniques received significant 
improvement from their integration with machine 
learning (ML). ML serves as an essential tool which 
significantly improves several analysis components 
throughout a process: (i) The accuracy of spectral 
slope determination increases through ML leading to 
better geostrophic and ageostrophic mode 
characterization. The ML-enhanced decomposition 
method produces more detailed features in the energy 
spectrum it reveals the specific features which 
traditional techniques cannot detect at small scales in 
Figure 7. (ii) The ML model detects flow modes with 
improved accuracy which enables it to identify 
geostrophic from ageostrophic modes better than 
traditional manual methods. The capability enhances 
effective processing of big data that aids complicated 
atmospheric simulations. The detection of previously 
undetectable energy flow patterns proves to be an 
excellent capability of machine learning approaches. 
The ML model sees changes in flow patterns leading 
to different turbulent states as shown by Figure 8 
which deepens insights into dynamic energy transfer 
processes on mesoscale. The improved capability to 

Figure 8: Time-series comparison of traditional vs. ML 
diagnostics 
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observe spectral slopes alongside flow mode 
classifications and hidden patterns identification 
enhances knowledge about mesoscale turbulence 
when the conditions are non-hydrostatic and chaotic. 
The research enables scientists to enhance both 
theoretical models and atmosphere energy cascade 
analysis because traditional methods fail to observe 
geostrophic and ageostropic mode interactions. The 
mathematical expression of mesoscale flow energy 
spectrum takes the form of a power-law relationship: 

𝐸(𝑘) ∝ 𝑘−𝛼 
where 𝐸(𝑘) is the energy spectrum as a function of 
the wavenumber 𝑘, and 𝛼 is the spectral slope. In our 
analysis, the geostrophic mode has a slope 𝛼 ≈ −3.1 
and the ageostrophic mode exhibits a slope 𝛼 ≈ −2.7. 
These slopes, identified with the help of machine 
learning, align with the theoretical understanding of 
mesoscale turbulence and energy cascades in 
atmospheric dynamics. Figure 7 compares traditional 
and ML-based decompositions, showcasing how ML 
enhances the clarity and precision of spectral analysis. 
The ML approach uncovers finer spectral details, 
particularly at small scales, which are essential for 
accurately capturing the energy distribution across the 
system. The use of ML for mode classification and 
spectral analysis, as demonstrated in this study, rep- 
resents a major advancement in mesoscale modeling. 
By automating the decomposition process, ML allows 
for faster analysis and more accurate predictions, 
especially when dealing with large-scale simulations 
where traditional methods may struggle. Figure 8 
shows a time-series comparison between traditional 
and ML diagnostics. The ability of ML model is to 
capture key transitions in flow regimes offers deeper 
insights into the dynamics of atmospheric flows, 
providing valuable information that can be used to 
improve weather and climate predictions. 
Conclusion 
This study demonstrates the substantial 
advancements made by integrating machine learning 
(ML) into normal mode analysis, particularly in the 
analysis of mesoscale energy cascades within 
baroclinic models. By combining traditional physical 
models with the power of ML, we have significantly 
enhanced our ability to capture the complex, 
nonlinear energy transfer patterns characteristic of 
mesoscale turbulence. The hybrid approach, which 
leverages ML for spectral slope estimation, mode 

classification, and the detection of hidden energy flow 
patterns, provides a scalable, accurate, and efficient 
method for analyzing turbulent energy transfer in 
atmospheric systems. Unlike traditional methods, 
which can overlook subtle features or become 
computationally expensive when applied to large-scale 
simulations, ML techniques enable faster, more 
reliable analysis, even un- der chaotic and non-
hydrostatic conditions. This integration deepens our 
understanding of the dynamic processes driving 
atmospheric turbulence and opens up new avenues 
for improving weather forecasting and climate 
prediction models. The mathematical relationships 
governing mesoscale energy transfer, particularly 
through the spectral slopes of geostrophic and 
ageostrophic modes, are now captured with greater 
precision, as demonstrated by the enhanced 
decomposition of energy spectra and the refined 
classification of flow regimes. The hybrid analysis 
framework effectively combines normal mode 
decomposition with machine learning, providing a 
comprehensive tool for studying the energy cascade in 
mesoscale atmospheric flows. This approach not only 
im- proves our theoretical understanding but also sets 
the stage for real-world applications, such as more 
accurate weather predictions and refined climate 
models. Looking ahead, the future of mesoscale 
analysis lies in further expanding this framework by 
incorporating more advanced ML techniques, such as 
reinforcement learning, and applying it to real 
observational data. These developments will 
undoubtedly provide even more robust tools for 
studying atmospheric dynamics, leading to improved 
accuracy in predicting weather and climate patterns, 
and offering valuable insights into the processes 
governing energy transfer at multiple scales in the 
atmosphere. 
 
Reference 
[1] Helmholtz, H. V. (1858). Über Integrale der 

hydrodynamischen Gleichungen, welche den 
Wirbelbewegungen entsprechen. 

[2] Kolmogorov, A. N. (1941). The local structure of 
turbulence in incompressible viscous fluid for 
very large Reynolds. Numbers. In Dokl. Akad. 
Nauk SSSR, 30, 301. 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Ahmad et al., 2025 | Page 148 

[3] Yassin, H., & Griffies, S. M. (2022). Surface 
quasigeostrophic turbulence in variable 
stratification. Journal of Physical Oceanography, 
52(12), 2995-3013. 

[4] Gorbunov, M., & Kan, V. (2024). The study of 
internal gravity waves in the Earth’s atmosphere 
by radio occultations: A review. Remote Sensing, 
16(2), 221. 

[5] Li, J., Santek, D., Li, Z., Lim, A., Di, D., Min, 
M., ... & Menzel, W. P. (2025). Tracking 
atmospheric motions for obtaining wind 
estimates using satellite observations–from 2D 
to 3D. Bulletin of the American Meteorological 
Society. 

[6] Wang, G., Yang, F., Wu, K., Ma, Y., Peng, C., 
Liu, T., & Wang, L. P. (2021). Estimation of the 
dissipation rate of turbulent kinetic energy: A 
review. Chemical Engineering Science, 229, 
116133. 

[7] Chen, E. Y. (2025). Viscoelastic Flows in Porous 
Media: Disentangling the Roles of Fluid 
Rheology and Pore Geometry (Doctoral 
dissertation, Princeton University). 

[8] Ibrahim, M., Algehyne, E. A., Sikander, F., Ali, 
V., Khan, S. A., Ibrahim, S., & Abd El-Azeem, 
S. A. (2024). Optimization and sensitivity 
analysis of magnetic fields on nanofluid flow on 
a wedge with machine learning techniques with 
joule heating, radiation and viscous dissipation. 
Journal of the Taiwan Institute of Chemical 
Engineers, 165, 105813. 

[9] Viscardi, L. A. M., Torri, G., Adams, D. K., & 
Barbosa, H. M. (2024). Sensitivity of the 
Shallow-to-Deep Convective Transition to 
Moisture and Wind Shear in the Amazon. 
Authorea Preprints. 

[10] Wang, F., Du, W., Yuan, Q., Liu, D., & Feng, S. 
(2021). A survey of structure of atmospheric 
turbulence in atmosphere and related turbulent 
effects. Atmosphere, 12(12), 1608. 

[11] Ibrahim, S., Khan Marwat, D. N., Ullah, N., & 
Nisar, K. S. (2023). Investigation of fluid flow 
pattern in a 3D meandering tube. Frontiers in 
Materials, 10, 1187986. 

 
 
 

[12] Ibrahim, S., & Laila, R. (2025). Spectral 
Decomposition and Energy Transfer in Rotating 
Stratified Flows Using Normal Mode Methods. 
Spectrum of Engineering Sciences, 3(4), 829-
839. 

[13] Bardet, D., Spiga, A., & Guerlet, S. (2022). Joint 
evolution of equatorial oscillation and 
interhemispheric circulation in Saturn’s 
stratosphere. Nature Astronomy, 6(7), 804-811. 

[14] Lagare, C., Yamazaki, T., & Ito, J. (2023). 
Numerical simulation of a heavy rainfall event 
over Mindanao, Philippines, on 03 May 2017: 
mesoscale convective systems under weak large-
scale forcing. Geoscience Letters, 10(1), 23. 

[15] Tian, Y., Zhang, Y., & Zhang, H. (2023). Recent 
advances in stochastic gradient descent in deep 
learning. Mathematics, 11(3), 682. 

[16] He, Y., Zheng, Y., Xu, S., Liu, C., Peng, D., Liu, 
Y., & Cai, W. (2025). Neural refractive index 
field: Unlocking the potential of background-
oriented schlieren tomography in volumetric 
flow visualization. Physics of Fluids, 37(1). 

[17] Hu, M., Xie, L., Li, M., Zheng, Q., Zeng, F., 
Chen, X., ... & Wang, Y. An Improved Mg 
Model for Turbulent Mixing Parameterization in 
the Northern South China Sea. Available at 
SSRN 4896862. 

[18] Lyu, X., Wang, W., Voskov, D., Liu, P., & Chen, 
L. (2025). Multiscale modeling for multiphase 
flow and reactive mass transport in subsurface 
energy storage: A review. Advances in Geo-
Energy Research, 15(3), 245-260. 

[19] Read, P. L., Lewis, S. R., & Vallis, G. K. (2024). 
Atmospheric Dynamics of Terrestrial Planets. In 
Handbook of Exoplanets (pp. 1-32). Springer, 
Cham. 

[20] Zhang, Y., Zhang, S., & Afanasyev, Y. D. (2024). 
Energy cascades in surface semi-geostrophic 
turbulence. Authorea Preprints. 

[21] Zhang, M., Xie, S., Feng, Z., Terai, C. R., Lin, 
W., Chen, C. C., ... & Zhang, G. J. (2024). 
Evaluation of Mesoscale Convective Systems in 
High Resolution E3SMv2. Authorea Preprints. 

 
 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Ahmad et al., 2025 | Page 149 

[22] Kosović, B., Basu, S., Berg, J., Berg, L. K., Haupt, 
S. E., Larsén, X. G., ... & Watson, S. (2025). 
Impact of atmospheric turbulence on 
performance and loads of wind turbines: 
Knowledge gaps and research challenges. Wind 
Energy Science Discussions, 2025, 1-67. 

[23] Xie, X. (2025). Nonlinear Reduced Order 
Modeling using Convolution Autoencoder for 
the Quasi-Geostrophic Equation. Journal of 
Machine Learning for Modeling and 
Computing, 6(1). 

[24] Kim, B. K., & Hwang, J. H. (2025). Fast oceanic 
flow prediction using lattice-and morphology-
informed approaches. Physics of Fluids, 37(3). 

[25] Chen, Q., Yang, Y., Chen, Y., Zhou, X., & 
Zhang, D. (2025, January). Deep-learning-based 
prediction of mesoscale eddy distribution in the 
South China sea. In International Conference 
on Mechatronics and Intelligent Control 
(ICMIC 2024) (Vol. 13447, pp. 978-989). SPIE. 

[26] Dong, C., You, Z., Dong, J., Ji, J., Sun, W., Xu, 
G., ... & Han, G. (2025). Oceanic mesoscale 
eddies. Ocean-Land-Atmosphere Research, 4, 
0081. 

[27] Ibrahim, S., Aamir, N., Abd Allah, A. M., 
Hamam, H., Alhowaity, A., Ali, V., ... & Saeed, 
T. (2022). Improving performance evaluation 
coefficient and parabolic solar collector 
efficiency with hybrid nanofluid by innovative 
slotted turbulators. Sustainable Energy 
Technologies and Assessments, 53, 102391. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

