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 Abstract 

The advent of sixth generation (6G) wireless networks brings unprecedented challenges in 
managing ultra-dense, dynamic, and heterogeneous environments. Classical optimization 
methods lack the scalability, adaptability, and selflessness required to address the challenge 
of resource management. This paper proposes an AI-enabled resource allocation framework 
specifically designed for 6G networks through the integration of state-of-the-art machine 
learning (ML), deep reinforcement learning (DRL), federated learning (FL), and graph 
neural networks (GNNs). The envisioned multi-layered architecture allows edge devices, 
UAVs, and base stations to perceive nearby environments, forecast traffic trends, make in -
real-time decisions, and jointly train models with privacy preserved. An end-to-end global 
controller from GNN provides orchestration over the network topology. We review state -of-
the-art AI methods and discuss their adequacy in accommodating resource allocation 
complexity with trade-offs between convergence, latency, and scalability. We conclude by 
describing current challenges—heterogeneous data, stable convergence, and limited 
computations—and sketch future directions of research towards reliable, explainable, and 
energy-efficient AI deployment in 6G systems. 
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INTRODUCTION
The ongoing advancement of wireless 
communications has recently entered a revolutionary 
tipping point with the advent of sixth-generation 
(6G) networks. Hyped to enable applications like 
holographic communication, tactile internet, 
extended reality (XR), and pervasive connectivity 
over terrestrial and non-terrestrial networks (NTNs), 
6G will operate from sub-THz frequencies to visible 
light frequencies and connect a staggering number of 
heterogeneous devices [1]. These multifarious 
requirements call for ultra-low latency (<1 ms), end-
to-end extreme data rate (>1 Tbps), high energy 
efficiency, and fault-tolerant connectivity—orders of 

magnitude beyond the capabilities of traditional 
resource allocation algorithms. 
In contrast to fifth-generation (5G), which was based 
mainly on centralized and semi-static optimization 
techniques [2], 6G demands AI-native, self-organized 
orchestration mechanisms with the ability to adapt 
dynamically in highly fluctuating environments. The 
challenge lies in the integration of a diversity of 
future paradigms like massive machine-type 
communication (mMTC), ultra-reliable low-latency 
communication (URLLC), integrated sensing and 
communication (ISAC), and network slicing in 
terrestrial, aerial, and satellite environments [3][4]. 
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Traditional rule-based and optimization techniques 
are constrained within such environments by: 
• Scalability barriers with super-dense 

deployments. 
• Lack of generalizability across pervasive 

spatiotemporal patterns. 
• Inefficient handling of sudden context changes 

(e.g., UAV handovers, THz link obstruction) [4]. 
Counter to such challenges, Artificial Intelligence 
(AI) and more prominently Machine Learning (ML), 
Deep Reinforcement Learning (DRL), Federated 
Learning (FL), and Graph Neural Networks (GNNs) 
possess disruptive capabilities for autonomous 
management of resources [3][4][5][6]. These AI 
mechanisms facilitate real-time decision-making, 
predictive modeling, privacy-preserving collaboration, 
and topology-conscious optimization—rendering 
them a sine qua non for 6G. 
This paper is a concept for multi-layer AI-based self-
organized resource management in 6G integrating 
edge intelligence, hierarchical learning, and global 
orchestration. The major contributions are: 
• Hierarchical workflow of operations from 

perception and sensing to federated training and 
graph-based control. 

• In-depth mapping of AI approaches to 6G 
resource management applications. 

• Description of challenges in implementation, 
such as convergence, data heterogeneity, and 
compute constraints. 

• Future research opportunities for further 
improving AI-native 6G systems. 

The rest of this paper is structured as follows: 
Section 2 describes the detailed literature review. 
Section 3 gives the proposed framework. Section 4 
identifies technical challenges and future 
opportunities. Section 5 introduces the suggested 
running flow. Section 6 concludes this paper with 
future work directions. 
 
2. Literature Review 
The increasing necessity for independent and self-
managed resource management in wireless 
communications has inspired a surge of research 
over the past few years [7][8]. The rest of this section 
covers recent developments and challenges of AI-
based resource management for 5G and future, with 
emphasis on the path to 6G architectures. 

 
2.1 Traditional Resource Allocation in 5G 
Networks 
5G system resource allocation techniques have 
mostly been based on centralized optimization 
approaches, such as convex optimization, game 
theory, and heuristics. In [1], for instance, emphasize 
the superiority of these methods in power control 
and beamforming management, while [2] utilize 
game-theoretic approaches to multi-user resource 
contention. These methods do possess idealized 
assumptions and are not very scalable in real-time 
due to: 
• High computational complexity in big 

deployments. 
• Inflexibility in dynamic environments. 
• Lack of cross-layer and context-sensitive 

adaptation. 
Such limitations have spurred the need for adaptive, 
distributed solutions with AI for 6G. 
 
2.2 Machine Learning in Wireless Networks 
Machine learning has been a convenient means to 
deal with the increasing intricacy of wireless 
networks. Supervised learning methods such as 
Support Vector Machines and Random Forests have 
been applied to traffic prediction and anomaly 
detection [9]. Unsupervised learning methods such 
as K-means clustering and autoencoders have 
provided mobility pattern analysis and 
dimensionality reduction [10]. 
Reinforcement learning (RL), and deep 
reinforcement learning (DRL), has been in high 
demand for real-time resource assignments. DRL 
agents, for instance, have been found beneficial for 
operations such as access point choice, power 
management, and load balancing [1][11]. Despite 
their advantages, these ML models often depend on 
centralized training, which limits scalability and 
raises privacy concerns—issues that become more 
prominent in 6G scenarios involving edge devices 
and distributed infrastructures. 
 
2.3 Federated Learning and Edge Intelligence 
To resolve privacy and scalability issues, distributed 
learning paradigm federated learning (FL) has been a 
promising area of research. FL allows devices like 
base stations, UAVs, and sensors to jointly train 
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models without exchanging raw data. In [12] 
demonstrates how FL significantly alleviates backhaul 
load while maintaining data privacy. The authors in 
[6] illustrates FL's resilience in edge computing 
scenarios. FL also brings about new technical 
challenges: 
• Non-IID (non-independent and identically 

distributed) client data. 
• Asynchronous updates caused by network 

instability. 
• Slower convergence in heterogeneous computing 

environments. 
Despite these challenges, FL is vital for enabling 
decentralized intelligence in future 6G networks. 
 
2.4 Graph Neural Networks for Network-Wide 
Optimization 
The novel and dynaic topologies contemplated in 
6G—terrestrial, aerial, and space aspects—require 
topology-conscious learning paradigms. Graph 
Neural Networks (GNNs) present a realistic 
alternative, representing network nodes and wireless 
links as nodes and edges, respectively. 
The work presented in [3] and [13] illustrate the 
application of GNNs in congestion control, routing, 
and topology optimization. GNNs capture spatial 
dependence and global context in the network better 
and are thus naturally appropriate to 6G resource 
orchestration. Yet, the majority of existing GNN 
applications have been simulated and lack support 
for real-time demands in high-mobility scenarios. 
 
2.5 Integrated AI Frameworks for 6G 
Some recent research also suggested integrated 
frameworks that incorporate multiple AI methods 
for 6G networks. Lai et al. [14] suggest 6GEdge, 
which incorporates edge computation with real-time 
optimization using ML. Huimei et al. [15] discuss 
over-the-air computation (AirComp) methods to 
enable communication-efficient federated learning. 
Abishu et al. [4] suggest a multi-agent DRL model to 
manage cooperation between ground nodes and 
aerial nodes. However, these designs isolate AI 
techniques and do not involve a general 
coordination among DRL, FL, GNN, and prediction 
modeling. Additionally, multi-domain orchestration, 
security, and explainability are not well addressed. 

 
2.6 Gaps and Motivation 
Although the existing contributions show the 
potential of AI in future networks, there are some 
significant gaps: 
• Limited hierarchical structures combining 

predictive intelligence, local learning, and global 
coordination. 

• Inadequate exploration of collaborative learning 
for BSs, UAVs, and RISs. 

• Limited treatment of adversarial risks and 
privacy in multi-agent settings. 

• Incomplete models of various 6G topologies 
using unified GNN-based orchestrators. 

Inspired by these deficiencies, this paper introduces 
an AI-based multi-layer architecture that integrates 
predictive ML, distributed DRL, federated training, 
and GNN-based global control—a complete solution 
for 6G resource management. 
 
3. Proposed Framework 
To tackle the shortcomings of conventional and 
siloed optimization techniques in next-generation 
wireless environments, we suggest a multi-layered AI-
native architecture supporting self-organized resource 
management. The suggested architecture combines 
edge intelligence, distributed learning, and graph-
based global orchestration-natively conceived for 
heterogeneous, dynamic, and ultra-dense 6G and 
beyond features. The architecture is structured into 
five functional layers as shown in Figure. 1, each 
mapping to a particular phase of the end-to-end 
resource management life cycle: 
• Sensing and Perception (Edge 

Devices/UAVs/BSs) 
• Predictive Intelligence (Edge + Regional 

Controllers) 
• Real-Time Decision Making (Local DRL Agents) 
• Collaborative Learning (Federated Learning) 
• Global Orchestration (Graph Neural Network-

Based Controller) 
Each layer operates autonomously while maintaining 
inter-layer feedback for adaptive, context-aware, and 
privacy-preserving optimization. Following is the 
detailed operational workflow of the proposed 
framework.  
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Figure 1. Multi-layered AI-native Framework 

 
Step 1: Sensing & Perception 
Along the network edge, UEs, UAVs, and BSs are 
heterogeneous devices that monitor local 
measurements in real-time: 
• Signal-to-Interference-plus-Noise Ratio (SINR) 
• Channel and propagation conditions 
• Queue/buffer status 
• User mobility and handover behavior 
• Device energy 
Autoencoders compress high-dimensional sensing 
information to save overhead and then forward 
compressed state representations to controllers. 
 
Step 2: Predictive Intelligence 
Forecasting on edge or regional nodes is performed 
by using machine learning models 
• LSTM (Long Short-Term Memory) models 

forecast traffic peak hours and user mobility 
patterns to support proactive power and 
bandwidth reservation [3]. 

• Random Forests and decision trees are used for 
user profiling to allow prioritization of slices 
based on latency or reliability requirements. 

This layer provides the system with the intelligence 
to avoid congestion and enhance service continuity, 
particularly in THz-based and UAV-enabled 
networks. 
 
Step 3: Real-Time Distributed Decision Making 
Each edge node executes an agent of DRL that has 
been trained by methods such as Deep Q-Networks 

(DQN) or Proximal Policy Optimization (PPO). The 
agent determines: 
• Transmission power control and scheduling 
• Channel/sub-band allocation 
• Beamforming vector choice 
• Association to base station or AP 
For non-terrestrial use such as UAVs and satellites, 
Multi-Agent DRL (MADRL) provides cooperative 
node operation [4]. 
 
Step 4: Collaborative Learning via Federated 
Learning (FL) 
Local DRL agents submit model gradients (instead of 
raw data) to a central aggregator at regular intervals: 
• Provides data privacy and bandwidth efficiency 
• Enables distributed training for activities like 

anomaly detection and spectrum sensing 
• Controls non-IID data distribution across 

geographically dispersed nodes [16]. 
This edge FL method minimizes cloud infrastructure 
reliance while allowing strong and scalable edge 
intelligence. 
 
Step 5: Global Orchestration Using Graph Neural 
Networks (GNNs) 
By definition, a centralized controller models the 
entire network as a dynamic graph: 
• Nodes: BSs, UAVs, RISs, satellites, MEC servers 
• Edges: mmWave, THz, optical (FSO), and 

backhaul links 
The GNN-based controller uses features from all 
edges and nodes to perform: 
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• End-to-end latency and energy optimization 
• Joint spectrum-power-load allocation 

• Failure recovery using rerouting in dynamic 
topologies [3]. 

 

 
Figure 2. Self-organization across heterogeneous network 

 
With spatial correlations and long-range 
dependencies learned, the GNN offers globally 
optimal policies in the near real-time. A simplified 
flowchart as shown in the Figure. 2 visualizes the full 
pipeline: 
• Edge Sensing 
• Predictive Modeling 
• Local DRL Decision-Making 
• Federated Training 
• GNN-Based Orchestration 
This end-to-end design embodies the concept of self-
organization across heterogeneous network elements 
and domains with the following key features. 
• Autonomy: End-to-end self-optimization from 

perception to orchestration. 
• Privacy-Awareness: FL enables compliance with 

data sovereignty. 
• Flexibility: ML/DRL layers learn to adapt to 

current changes (e.g., drone movement, traffic 
spikes). 

• Scalability: Hierarchical learning supports 
horizontal and vertical scalability. 

• Resilience: GNN and MADRL possess multi-
agent coordination and topology-aware fault 
recovery. 

 
4. Challenges and Opportunities 
This section categorizes the technical and practical 
issues preventing widespread application of AI-
enabled resource management in 6G and engages in 
an argument for possible future research and 
innovation. 
 
4.1 Data Heterogeneity and Distribution 
6G networks feature a heterogeneous composition of 
devices such as UAVs, IoT sensors, satellites, and 
terminals, which produce non-IID, non-uniform 
data. This poses a major challenge for AI model 
training, especially in federated learning (FL) 
environments, where edge devices share samples for 
training global models without direct mutual 
aggregation of data. 
Non-IID data distributions lead to divergence of the 
model and decrease federated DRL agent 
performance [6]. Furthermore, hardware limitations 
leading to differences in update frequencies generate 
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asynchronous gradient aggregation affecting 
convergence. 
Opportunity: Customized FL algorithms (i.e., 
FedProx, FedAvgM) and adaptive aggregations can be 
combined to become more robust against statistical 
as well as system heterogeneity [16]. 
 
4.2 Convergence and Scalability of DRL Agents 
DRL agents need to undergo extensive training to 
converge to the best policies, particularly in highly 
dynamic and ultra-high-density scenarios involving 
thousands of nodes. Convergence time is 
exacerbated by the curse of dimensionality, and 
multi-agent DRL (MADRL) systems are plagued by 
coordination under partial observability and 
communication limitations [4], [6], [11]. 
Opportunity: Methods like hierarchical RL, 
curriculum learning, and meta-reinforcement 
learning can be utilized to hasten policy 
generalization and lower the training complexity in 
enormous-scale 6G networks [17]. 
 
4.3 Computational Constraints at the Edge 
Although edge computing minimizes latency and 
allows real-time inference, edge nodes (e.g., IoT 
gateways, UAVs) usually have limited energy and 
computational capacity. Executing sophisticated 
DRL or GNN models on the edge might overload 
edge processors or power out battery-operated nodes. 
Opportunity: Low-weight AI models, model 
pruning, quantization, and offloading mechanisms 
(to nearby MEC or local nodes) are used in order to 
preserve model performance taking into account the 
resource limitations [18]. 
 
4.4 Privacy and Security in Distributed Learning 
Federated learning and distributed DRL agents are 
susceptible to various adversarial attacks including 

model poisoning, inference attack, and data evasion. 
Attackers can poison model gradients or reverse-
engineer training data from the update [6][19]. 
Opportunity: The union of blockchain for secure 
gradient logging, differential privacy for gradient 
masking, and Byzantine-resistant aggregation 
protocols has the potential to provide stronger 
promises of privacy and higher trustworthiness in 
distributed AI systems [20]. 
 
4.5 Dynamic Topologies and Mobility Management 
Non-terrestrial nodes such as UAVs, LEO satellites, 
and reconfigurable intelligent surfaces (RISs) bring 
along dynamic topologies with intermittent links. 
Smooth and reliable handover of resources, 
balancing the load, and trajectory-aware 
orchestration in such a dynamic setting is a critical 
research gap. 
Opportunity: Graph-based learning approaches like 
Graph Neural Networks (GNNs) are best to learn 
variations in temporal and spatial topology, allowing 
proactive re-allocation of resources and prevention of 
failures [21]. 
 
4.6 Standardization and Interoperability 
The absence of shared AI-native interfaces and 
interoperable control loops across multi-vendor and 
multi-domain networks hinders actual-world 
deployment. Existing standards (e.g., O-RAN, ETSI 
ZSM) are in the process of maturing and do not 
generally facilitate cross-layer learning feedback or 
semantic model transfer. 
Opportunity: Interaction with industrial consortia 
and standardization committees can lead to modular, 
interoperable AI interfaces and semantic-aware 
orchestration protocols to enable multi-domain 6G 
networks [22]. 

 
Table 1. Summary of Challenges and Future Opportunities 
Challenge Emerging Opportunity 
Non-IID data across nodes Personalized and adaptive FL algorithms 
DRL convergence in large networks Meta-RL and hierarchical DRL to accelerate learning 
Edge resource constraints Lightweight models and dynamic offloading 
Privacy and poisoning attacks Blockchain and differentially private FL 
Dynamic mobility/topology GNNs and mobility-aware control strategies 
Standardization limitations Unified APIs, semantic ML interfaces, and control-data 

decoupling frameworks 
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5. Conclusion and Future Work 
This paper introduced an AI-based paradigm of self-
organizing resource control for 6G networks through 
the fusion of ML, DRL, FL, and GNN technologies 
into a multi-layer framework. By predictive modeling, 
distributed decision-making, privacy-preserving 
cooperation, and global graph-based coordination, 
the paradigm meets significant performance 
demands including ultra-low latency, energy 
efficiency, and scalability. However, challenges persist 
in convergence stability, security, and 
standardization. The future work will include the 
introduction of explainable AI, non-IID federated 
learning environment optimization, real-time edge 
inference via model compression, and the design of 
cross-layer co-design techniques for AI-native 6G 
architecture. 
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