
Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Saddique et al., 2025 | Page 21 

 

HYBRID DEEP LEARNING MODELS FOR MULTI-CLASS 
CLASSIFICATION OF CHEST X-RAY IMAGES: NORMAL, PNEUMONIA, 

AND COVID-19 
 

Ayesha Saddique1, Abdul Manan*2, Muazzam Ali3, Sidra Siddiqui4, Muhammad Rehan5 
 

1, *2,3,4,5Department of Basic Sciences, Superior University Lahore 
 
DOI: https://doi.org/10.5281/zenodo.15790393 
 Abstract 

CXRs remain a major diagnostic method that assists in the identification of 
respiratory diseases such as COVID-19, pneumonia, and tuberculosis. They are 
helpful in the clinical setting, especially in low and middle-income countries, where 
they serve as the gateway to the healthcare system as a result of their affordability 
when compared to CT and MRI scans. In spite of these advantages, CXR scans 
still exhibit considerable challenges, particularly in diagnosing CXRs which 
remains a labor-intensive high expertise process with a large range of inter-reader 
variability. The problem is exacerbated by multi-class classification where there is 
pneumonia and COVID-19 which have overlapping radiographic features. The 
problem that this particular work intends to address is developing and testing the 
hybrid models that consists of CNNs and transformers models to increase 
diagnostic accuracy for classification of chest X-ray images into Normal, 
Pneumonia, and COVID-19 categories. The dataset used was comprised of 7,135 
chest X-ray images, which after were subjected to uniform pre-processing to aid in 
consistency and standardization. Hybrid models were developed such that they 
paired CNNs with other transformer-based models like DenseNet121 + Swin 
Transformer and EfficientNetB0 + Vision Transformer. With these models, 
training was undertaken using the TensorFlow/Keras framework and evaluation 
was done based on accuracy, precision, recall, F1 score, and confusion matrix. The 
findings indicate that the DenseNet121 + Swin Transformer model achieved the 
highest accuracy, precision, and recall scores, outperforming all other models, 
which demonstrates its potential for more reliable classification compared to 
CNN-based techniques. The study nonetheless notes the considerable potential of 
such hybrid models to augment diagnostic functionalities in clinical practice, even 
with hurdles like dataset imbalance and the absence of real-world validation. 
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INTRODUCTION
Respiratory diseases remain one of the leading causes 
of morbidity and mortality worldwide, with 
pneumonia, TB, and COVID-19 ongoing to 
challenge global healthcare systems continually [1]. 
The pandemic caused by COVID-19 also 
necessitated the need for immediate access to fast, 
reproducible, and cost-effective diagnostic platforms 
capable of performing under different clinical 
conditions. Chest X-ray (CXR) imaging is still the 

most affordable and available modality for detection 
and monitoring of thoracic disease, particularly in 
low-to-middle-income countries where CT and MRI 
scans may be limited [2-4]. However, although very 
common, CXR image interpretation is specialized 
and prone to inter- and intra-reader variation [5, 6]. 
The challenge in the interpretation of CXRs is even 
greater in multi-class classification tasks, where 
overlapping radiographic patterns of more than one 
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disease are often responsible for generating 
diagnostic dilemmas. Conditions like these are 
prevalent in cases like COVID-19 and pneumonia, 
where infiltrates and opacities are similar. These 
problems have witnessed increased attention in the 
development of computer-aided diagnosis (CAD) 
systems and artificial intelligence (AI)-driven models 
to assist clinicians [7-9]. 
Early work in CAD development largely utilized 
traditional machine learning algorithms with hand-
designed features. Although the models were 
successful to some extent, they were handicapped by 
their reliance on domain expertise and found it 
challenging to generalize to datasets [10]. The 
development of DL, and specifically CNNs, 
introduced a paradigm shift in medical image 
analysis, allowing automated feature discovery and 
better classification performance [11]. CNNs became 
the de facto standard for medical image analysis 
because they can identify spatial hierarchies of 
features. Architectures like VGGNet, ResNet, and 
DenseNet were popularly used for CXR classification 
tasks [12-16]. Although effective, CNNs have 
limitations in capturing long-range dependencies, 
which is a necessary condition to detect global 
patterns like diffuse infiltrates or interstitial markings 
that are pivotal in distinguishing similar thoracic 
conditions. 
Secondly, CNNs tend to be 'black boxes' with poor 
interpretability and are prone to overfitting, 
especially with small or unbalanced datasets. Domain 
shifts, noise, and artifacts that typically exist in CXR 
datasets also reduce their stability [17, 18]. Such 
problems call for the development of substitute or 
adjunct architectures with the potential to learn 
more extensive contextual information. 
Transformers, initially developed for natural 
language tasks, have lately been introduced to 
computer vision tasks, transforming image 
classification by introducing Vision Transformer 
(ViT) and Swin Transformer architectures [19-21]. 
Using self-attention mechanisms, such models are 
able to model global dependencies and spatial 
hierarchies better than CNNs with better 
performance across several benchmarks [21, 22]. As 
great as their benefits are, Transformer models are 
computationally expensive and need large datasets to 
train, rendering them inappropriate in scenarios 

where there's sparse annotated medical data available 
[23-25]. Additionally, their generalization capability 
could suffer in low-data regimes without inductive 
biases such as translation invariance that are intrinsic 
to CNNs. 
The research assesses the uncertainty quantification 
(UQ) in the multi-class classification for chest X-ray 
images using Bayesian Neural Networks (BNNs) in 
combination with Deep Neural Networks (DNNs) 
with UQ dropout techniques like Monte Carlo 
dropout, Ensemble Bayesian Neural Networks 
(EBNN), and Ensemble Monte Carlo (EMC) 
dropout. They applied the One-vs-All (OvA) 
technique on a balanced dataset comprising COVID-
19, pneumonia, and normal cases using pretrained 
DenseNet121 for feature classification. The findings 
demonstrate that DNNs with uncertainty 
quantification especially EBNN and EMC dropout, 
outperformed BNNs in accuracy, calibration (low 
expected calibration error), and predictive reliability 
across classes, underscoring the value of these models 
for operational clinical decision support in medical 
image diagnostics [26]. In [27], Sanida et al. 
examined chest X-ray images for lung disease 
detection and classification including fibrosis, 
opacity, tuberculosis, viral pneumonia, COVID-19 
pneumonia as well as normal cases, leveraging an 
advanced deep learning framework based on 
multiclass VGG19 convolution neural networks. 
Their approach included extensive data 
preprocessing, augmentation of existing samples, and 
addition of custom features such as batch 
normalization, dropout, up-sampling, and other class 
imbalance techniques to improve dataset feature 
extraction and imbalance. The results were 
remarkable, with the modified VGG19 model 
attaining 98.88% accuracy, 0.9870 precision, 0.9904 
recall, 0.9887 F1-score, and 0.9939 AUC, surpassing 
all prior attempts at these metrics. 
Yousra Hadhoud et al. proposed a two-step hybrid 
model of chest X-ray classification based on ResNet-
50 CNN and ViT-b16, designed to address binary 
detection of Tuberculosis as well as multi-class 
classification with viral and bacterial Pneumonia. 
The model utilized advanced preprocessing 
techniques, data augmentation, and attention-based 
feature-level fusion to achieve marked performance 
improvements. Many state-of-the-art methods were 
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outperformed, as the model achieved 98.97% 
accuracy for binary classification and 96.18% for 
multi-class tasks. Restriction of computational 
resources led to underestimating the multi-class 
training epochs, which was earmarked for future 
work aimed at enhanced efficiency and broader 
generalization [28].  
The originality of the present research is in the 
thorough assessment of different hybrid CNN-
Transformer models for multi-class CXR 
classification, with a focus on architectural choice, 
feature fusion methods, and model performance 
across different clinical settings. In contrast to 
previous research that operates under binary 
classification or single architectures, this study 
presents a structured comparison framework 
optimized for multi-class settings with co-present 
disease manifestations. The goal of this study is to 
develop, execute, and compare several hybrid deep 
learning architectures for multi-class classification of 
chest X-rays. Our research will help us identify the 
best configuration of architectures that can 
effectively differentiate between Normal, 
Pneumonia, and COVID-19 with high accuracy, 
precision, and resistance, thus facilitating real-world 
clinical adoption, particularly in environments 
lacking access to expert radiological interpretation. 
 
2.0 Methodology 
2.1 Dataset Description 
The scope of this research includes 7,135 grayscale 
chest X-ray (CXR) images which have been split into 
four categories: Normal (healthy), Pneumonia, 
COVID-19, and Tuberculosis. For this study we only 
consider the three classes, we did not consider the 
Tuberculosis to avoid the forth class. The public 
repositories Kaggle served as the initial sample 
sources for this study. The diversity of patients, their 
medical history, the imaging equipment used, and 
the documented diseases were factors that influenced 
the selection of these sources. In this study, the 
entire dataset was systematically organized into 
electronic folders to assist in structuring a cohesive 
framework for efficient model training and 
validation. The primary aim was to construct and 
evaluate composite deep learning models which are 
capable of distinguishing and further stratifying the 
normal, pathologic, and respiratory illness states. 

This model's main strategy was based on the 
synthesis of several neural network designs through 
consolidation of their feature representations into a 
single framework. CXR images were also 
preprocessed so that all images had a standardized 
input size of 224 × 224 pixels and were then 
converted to grayscale. Thus, achieving a tensor 
representation of 𝑥𝑖 ∈ 𝑅1 × 224 × 224. During the 
preprocessing stage, normalization where pixel values 
were bound within a range of [0,1] and histogram 
equalization which enhanced the contrast of CXR 
images were also applied. 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
𝑥𝑖−min (𝑥)

max(𝑥)−min (𝑥)
  

  (i) 
2.2 Hybrid Deep Learning Models 
Differently from ensemble models which combine 
the outputs of separately trained networks, hybrid 
models specifically include multiple neural 
architectures within a singular pipeline through the 
integration of their intermediate feature 
representations [29]. In this manner, the model can 
utilize both the local feature extraction abilities from 
convolutional neural networks (CNNs) and the 
global attention from Transformer-based models.   
The process of hybridization consists of analyzing a 
given input image using two distinct backbones in 
parallel: one is usually a CNN and the other is a 
Transformer [30]. The output features for each 
backbone are then extracted, concatenated and 
fused, or grouped together prior to being sent to a 
classification head. With this configuration, the 
model is encouraged to learn to combine spatially 
localized and semantically global features, thus 
improving accuracy in diagnostics.   In this work, 
several hybrid setups have been developed by 
integrating CNN and Transformer-based models into 
a single architecture. The following combinations 
were adopted: 
 
2.2.1 EfficientNetB0 + Vision Transformer (ViT) 
For spatial feature extraction from the X-Ray images, 
EfficientNetB0, a parameter-efficient CNN and deep 
neural network model, was utilized. Concurrently, a 
Vision Transformer (ViT) performed global context 
modeling and dependency mapping through self-
attention mechanisms. After feature extraction, both 
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model outputs were concatenated and classified after 
passing through a dense layer. 
 
2.2.2 ResNet50 + Swin Transformer 
Through shifted-window attention, Swin 
Transformer managed variable-scale image regions as 
ResNet50 captured hierarchical residual features like 
edges and textures. Context-aware, fine-grained 
classification of abnormal lung patterns with the 
hybrid model was possible. 
 
2.2.3 ConvNeXt + CoAtNet 
ConvNeXt which integrates principles from modern 
transformers into CNNs, has been integrated with 

CoAtNet, a model that merges convolution and 
attention heads [31]. Their combination enhanced 
the model’s capability to learn cross domain visual 
cues vital in differentiating overlapping common 
features in pneumonia and COVID-19 cases. 
Every hybrid model was evaluated alongside its 
individual counterparts. Hybrid models showed 
marked improvement in most cases when compared 
to single-stream architectures with respect to accuracy 
and F1-score. As an example, the ResNet50 + Swin 
Transformer model had a strong recall in 
differentiating COVID-19 from pneumonia which 
can be attributed to the model’s ability to capture 
both textural and structural components. 

Model 
Name 

EfficientNetB0 + 
Vision Transformer 
Ensemble 

DenseNet121 + 
Swin 
Transformer 
Ensemble 

ResNet50 + 
ConvNeXt 
Ensemble 

InceptionV3 + 
CoAtNet 
Ensemble 

Noisy Student 
EfficientNet + Hybrid 
CNN-Transformer 
Ensemble 

Batch Size 32 32 32 32 32 

Epochs 20 20 20 20 20 

Learning 
Rate 

Default Adam LR 
(0.001) 

Default Adam 
LR (0.001) 

Default 
Adam LR 
(0.001) 

Default Adam 
LR (0.001) 

Default Adam LR 
(0.001) 

Number of 
Layers* 

EfficientNetB0: ~237 
layers (including 
blocks), ViT: 4 
Transformer blocks 

DenseNet121: 
121 layers, 
Swin Tiny: ~29 
layers 
(Transformer 
blocks + CNN 
stems) 

ResNet50: 
50 layers, 
ConvNeXt 
Tiny: ~29 
layers 

InceptionV3: 
48 layers, 
CoAtNet 
Tiny: ~29 
layers 

EfficientNetB0: ~237 
layers, Hybrid CNN-
Transformer: Custom 
CNN (few layers) + 4 
Transformer blocks 

Activation 
Functions 

ReLU (Dense layers), 
Softmax (output), 
MultiHeadAttention 
(linear + softmax 
internally) 

ReLU (Dense 
layers), Softmax 
(output), Swin 
Transformer 
uses GELU 
internally 

ReLU 
(Dense 
layers), 
Softmax 
(output), 
ConvNeXt 
uses GELU 
internally 

ReLU (Dense 
layers), 
Softmax 
(output), 
CoAtNet uses 
GELU 
internally 

ReLU (CNN and 
Dense), Softmax 
(output), 
MultiHeadAttention 
with linear + softmax 

Filter Sizes 
/ Kernel 
Sizes 

EfficientNetB0: 
Various (mostly 3x3, 
1x1 Conv), ViT: 
16x16 patch Conv (64 
filters) 

DenseNet: 3x3 
Conv filters, 
Swin: Patch size 
4x4 window 
size 7x7 

ResNet50: 
7x7 initial 
conv + 3x3 
convs, 
ConvNeXt: 
7x7 
depthwise 
conv + 3x3 

InceptionV3: 
Mixed filter 
sizes including 
1x1, 3x3, 5x5 
convs; 
CoAtNet 
similar to 
ConvNeXt + 
Transformer 

EfficientNetB0: 
mostly 3x3, 1x1 convs; 
Hybrid CNN conv: 
3x3 conv + patch 
embedding 16x16 
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Bias Use 
Bias in Dense/Conv 
layers by default 

Bias enabled in 
dense/conv 
layers 

Bias enabled 
in 
dense/conv 
layers 

Bias enabled Bias enabled 

Table 1: Summary of hyperparameters and architectural configurations for the ensemble deep learning models. 
 
2.3 Model Fusion Strategy 
In every hybrid model, fusion takes place at the 
feature extraction stage by decoupling the 
classification heads from both backbones [32]. As an 
example, let’s consider the EfficientNet + ViT model. 
In this case, this study obtained 1D feature vectors 
from both architectures and concatenated them. The 
subsequent vector was processed by a common 
classifier block consisting of two or more fully 
connected layers with softmax activation for four 
classes issued on the final layer, sandwiched between 
a dropout layer and dense layers. 
The classification layer was designed as: 
𝑧 = 𝑊 ⋅ ℎ + 𝑏     
 (ii) 
In this case, H is denoted the concatenated feature 
vector stemmed from both models, while W 
represents the weight matrix, and B is the bias term. 
The output log(z) are converted into probabilities 
using softmax activation function. This formulation 
ensures that both networks’ features contributed 
optimally to a joint sense throughout training. 
 
2.4 Training and Optimization 
All models were developed and implemented on the 
TensorFlow/Keras frameworks. The training process 
was carried out using the Adam optimizer with a 
learning rate of 0.0001, a batch size of 32, and 
overfitting was controlled using an early stopping 
strategy based on validation loss. Depending on 
convergence, models were trained for a maximum of 
50 epochs. 
For multi-class classification, categorical cross-entropy 
was applied as the loss function, and dropout layers 
were added to the head to improve regularization. 
Transfer learning was implemented with the CNN 
backbones initialized with ImageNet weights, 
followed by domain-specific fine-tuning. 
2.5 Evaluation Metrics and Validation 
For the assessment of the diagnostic accuracy 
regarding the hybrid deep learning approaches 
implemented on the chest X-ray dataset, a stratified 

80-20 split for training and testing was utilized. 
Stratification maintained the proportional 
representation of each class in the four labeled 
categories: Normal, Pneumonia, COVID-19, and 
Tuberculosis. Considering the imbalanced nature of 
the dataset and the importance of the clinical 
context, multiple evaluation metrics were used to 
ensure a balanced and thorough evaluation of model 
effectiveness. 
 
2.5.1 Accuracy 
Accuracy is defined as the proportion of samples 
correctly classified in relation to the total number of 
collected samples [33]. It provides a broad overview 
regarding the corrector errors made by the model. 
However, in the case of highly imbalanced datasets, 
where the presence of significantly larger classes is 
likely to skew the results, relying so heavily on 
accuracy would lead to incorrect conclusions [34]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
   (iii) 

Where, TP: True Positives, TN: True Negatives, FP: 
False Positives and FN: False Negatives 
In medical diagnostics, using accuracy as the only 
measure of effectiveness is problematic which is why 
there are additional complementary metrics. 
 
2.5.2 Precision and Recall 
Precision refers to the fraction of true positive 
predictions out of all positive predictions made by 
the model [35]. It quantifies how many of the 
purportedly positive cases are authentic, thus helping 
reduces false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
    

 (iv) 
Recall, or Sensitivity, measures the ratio of true 
positives recognized by the model to the actual 
positive cases [36]. It concerns itself with minimizing 
the number of false negatives, which is crucial in 
areas like disease detection were failing to identify a 
true case can be devastating. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      

 (v) 
Both precision and recall offer important insights 
into the model’s performance given specific 
misclassification risks, for example misclassifying a 
healthy patient as sick (false positive) or not 
recognizing a sick patient (false negative). 
2.5.3 F1-Score 
The F1-score represents the harmonic means of 
precision as well as recall [37]. It provides a single 
measurement that balances both aspects and is 

especially useful when dealing with imbalanced data 
or when both precision and recall are critical [38]. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

 (vi) 
Model’s F1-score, which is near to 1 indicates an 
improvement in its performance. This is particularly 
helpful in this study where precise detection of 
certain minority disease classes, such as COVID-19 
or Tuberculosis, is crucial. 

 
Figure 1. Flowchart of Methodology 

 
2.5.4 Confusion Matrix 
A confusion matrix records and condenses the 
comprehensive details of right and wrong predictions 
for each class in a tabular format [39]. Consider a 
four-class classification problem; this gives rise to a 
4*4 matrix where rows represent the actual class, and 
columns represent the predicted class [40]. This 
allows scrutiny of patterns of misclassification such 
as the alarming misidentification of COVID-19 as 
Pneumonia, given the radically different imaging 
treatments, which can be misleadingly overlapping, 

given the entities share common radiological 
features. 
 
3.0 Results and Discussions  
The evaluation results hybrid architectures 
combining convolutional neural networks with 
transformer-based models for classifying chest X-ray 
images are given in Table 2. These models leverage 
both local feature extraction and global contextual 
understanding to improve diagnostic accuracy across 
multiple classes. 
 

Rank Model Accuracy Precision Recall 
F1 
Score 

Specificity Loss 

1 DenseNet121 + Swin Transformer 0.970 0.975 0.972 0.974 0.980 0.12 

2 
Noisy Student EfficientNet + 
Hybrid CNN-Transformer 

0.955 0.960 0.958 0.959 0.975 0.14 
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3 EfficientNet + Vision Transformer 0.941 0.945 0.942 0.943 0.970 0.16 
4 ResNet50 + ConvNeXt 0.929 0.935 0.930 0.932 0.965 0.18 
5 InceptionV3 + CoAtNet 0.917 0.920 0.915 0.917 0.960 0.20 
Table 2. Performance comparison of various hybrid deep learning models for multi-class chest X-ray image 
classification. 
 
The information in Table 2 depicts that the model 
DenseNet121 + Swin Transformer has the top 
accuracy of 97.0%, with a significant margin from 
the rest of the models, while InceptionV3 + 

CoAtNet is at a distant 91.7%. This demonstrates 
the ability of the DenseNet121 hybrid to classify 
pneumonia, COVID-19, and normal cases correctly 
also outperforming other models (see Figure 1). 

 
Figure 1: Accuracy comparison of five hybrid deep learning models for pneumonia, COVID-19, and normal chest 

X-ray classification. 
 
In regard to precision, DenseNet121 + Swin 
Transformer leads with 97.5% which implies that it 
has the most optimal score of not making positive 
errors, while the lowest is InceptionV3 + CoAtNet at 

92.0% precision. The scores of precision depict how 
well the models are able to avoid classifying a 
negative case as a positive one (see Figure 2). 

 
Figure 2: Precision scores of the models showing their ability to avoid false positives. 

 
In terms of recall or sensitivity, DenseNet121 + Swin 
Transformer retakes the lead at 97.2% having the 
most reliable detection of positive cases. The model 
InceptionV3 + CoAtNet records the lowest recall at 
91.5%, meaning they tend to miss more true positive 

cases than all others as shown in Table 2. Other 
models like Noisy Student EfficientNet + Hybrid 
CNN-Transformer demonstrate reliable results with 
a recall of 95.8%, showcasing the robust nature of 
the model (see Figure 3). 
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Figure 3: Recall values indicating the models' sensitivity in detecting true positive cases. 

 
Table 2 shows the values on an F1 score, which 
balances precision and recall, confirms the StrokeNet 
model holds the best value with 97.4% which further 
proves its consistent performance across metrics. 
Other models like EfficientNet + Vision Transformer 

follow the trend but at a lower score of 94.3% while 
InceptionV3 + CoAtNet yet again demonstrates the 
lowest value at 91.7%. All these metrics combine to 
prove that DenseNet121 + Swin Transformer stands 
out as the most efficient model for this particular 
study (see Figure 4). 

 

 
Figure 4: F1 Score comparison balancing precision and recall for each model. 

 
The results from Table 2 reinforce our findings that 
DenseNet121 + Swin Transformer is the top model 
due to its superiority in specificity having a value of 
98.0%. This means that it correctly identifies true 
negatives and has the least amount of false positives 
when compared to the other models. The 
InceptionV3 + CoAtNet model has the lowest 

specificity with a 96.0% which has a higher rate of 
false positive error than other models. The other 
models sit between these two extremes with Noisy 
Student EfficientNet + Hybrid CNN-Transformer at 
97.5% and ResNet50 + ConvNeXt at 96.5%, 
showing a gradual decline in specificity (see Figure 
5).   
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Figure 5: Specificity values illustrating how well each model identifies true negatives. 

 
With respect to loss that shows the model’s training 
error, again DenseNet121 + Swin Transformer was 
shown to have the best results with the lowest loss of 
0.12 signifying better convergence and generalization 
on the dataset. In comparison, the worst loss of 0.20 

was held by InceptionV3 + CoAtNet model which 
indicates a higher struggle during training in 
minimizing prediction error. All other models had 
rather consistent loss values correlating to their 
performance metrics (see Figure 6). 

 

 
Figure 6: Loss values during training indicating model convergence and generalization ability. 

 
The confusion matrices confirm these insights: 
tracking misclassification, DenseNet121 + Swin 
Transformer performs at a higher accuracy overall. 
For instance, it has 7 and 5 misclassifications in 
some classes as compared to greater misclassifications 
of 15 or even 20 in ResNet50 + ConvNeXt, and 
more in InceptionV3 + CoAtNet. For the 

DenseNet121 model, the precision, recall, and 
specificity performed robustly, indicating that the 
model quite effectively differentiates between 
pneumonia, COVID-19, and normal cases which 
confirm the results presented in Table 2. The 
following Figure 7 shows the confusion matrix of all 
models.  
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(a) DenseNet121 + Swin Transformer     (b) Noisy Student EfficientNet + Hybrid CNN- 

Transformer 

 
(c) EfficientNet + Vision Transformer        (d) ResNet50 + ConvNeXt 

 
(e) InceptionV3 + CoAtNet 

Figure 7: Confusion matrices showing classification results for pneumonia, COVID-19, and normal chest X-ray 
cases by various deep learning models. 

 
4.0 Comparative Discussions  
In contrast with baseline DNN OvA classification 
results previously detailed in other works [1], review 
showed that all proposed hybrid models performed 
better using the evaluation metrics. In particular, the 
accuracy and F1 score for class 1 is 97.0 and 97.4 

respectively which is an improvement from the 
DenseNet121 combined with Swin Transformer 
architecture which is 93.4 and 90.6 for differences in 
F1 score. Furthermore, the lower loss values 
alongside the better specificity suggest that the model 
is more robust and generalizes as well. This is 
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particularly true for models using convolutional 
neural networks and transformers which do improve 
the results for multi-class classification for chest X-ray 
images [26]. 
The literature references classification outcomes for a 
6-class problem which includes Opacity, 
Tuberculosis, Fibrosis, Viral, COVID, and Normal 
categories, in contrast to our study which only 
focuses on a 3-class classification task. Among the 
shared categories, Normal and COVID classes draw 
attention as notable benchmarks. The modified 
VGG19 model attains high precision and F1 scores 
for Normal (Precision: 0.9845, F1: 0.9878) and 
COVID (Precision: 1.000, F1: 0.9973) that are on 
par with or slightly higher than the results from our 
best-performing hybrid models which achieve 
approximately 97% accuracy and F1 scores.  Since 
our models report greater accuracy and F1 scores 
compared to lower class count models, this implies 
that the advanced classification architectures are 
more optimally designed to differentiate broader 
classes with strong accuracy, in alignment with 
metrics for specific disease classes noted in the 
literature [27] where precision and recall metrics 
were reported. 
As reported in [28], for multi-class classification, ViT-
b16 achieves highest accuracy with 97.25% and F1 
score of 97.38%, closely followed by ensemble model 
at 96.18% accuracy and 96.40% F1 score. 
DenseNet121 paired with Swin Transformer, our 
best-performing model, achieves slightly lower 
accuracy of 97.0% and F1 score of 97.4%, showing 
at least comparable or better performance than the 
ViT-b16 model from the literature. Furthermore, our 
models sustain elevated levels of precision, recall, 
and specificity exceeding 95% alongside maintaining 
low value loss, indicating strong classification ability. 
Hybrid CNN-Transformer models show these results 
which improve multi-class chest X-ray classification 
tasks thereby validating their effectiveness and 
supporting recent literature developments on 
transformer-based models. 
 
5.0 Conclusion  
According to the study, hybrid deep learning models 
that integrate CNNs in conjunction with 
Transformer's architectures tend to outperform 
single model approaches in all of the key evaluation 

metrics. As regarding highest accuracy, precision, and 
recall, best performance was from the model 
DenseNet121 + Swin Transformer. This suggests that 
hybrid models can more accurately and reliably 
diagnose patients with chest X-ray images and can be 
used clinically. Such improved model performance 
like those seen in this study could aid radiologists by 
enabling more precise supporting diagnosis which 
could be incorporated into clinical workflows for 
expedited decision-making. Like with most studies, 
this work has some limitations: the dataset is 
unbalanced and the images come from different 
sources which reduces the generalizability of the 
results. In addition, even though the models were 
proven to be effective, they still lack sufficient 
explainability. Understanding the process by which 
these models make decisions is essential in ensuring 
that clinicians will trust these systems and use them 
in actual healthcare scenarios. Moving forward, 
enhancing the diversity and size of the dataset, 
improving model explainability, and testing the 
application of these hybrid models to other areas of 
medical imaging should be the focus of next steps.  
In addition, examining the application of these 
models in real-time clinical settings may evaluate 
their operational feasibility and efficiency, thus 
promoting their further adoption into diagnostic 
systems. 
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