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 Abstract 

Principal Component Analysis (PCA) is one of the most widely used techniques 
for dimensionality reduction in data analysis and machine learning. This work 
offers a mathematical based introduction to PCA, presenting its interpretation 
through the perspective of linear algebra. We begin by giving our view about the 
motivation for dimensionality reduction and by introducing the foundational 
concepts such as vectors, matrices, covariance, and eigen decomposition. We then 
present our work starting from the PCA algorithm step by step for projecting it 
onto a lower dimensional subspace reduced from the centred data. An example 
based on two-dimensional Seeds dataset is demonstrated to explain the entire 
process, which is supported by implementing machine learning model (LightGMB 
classifier) and staging visualizations. For this model, we achieved an improved 
accuracy score (ROC AUC score) after applying PCA and have discussed the 
comparison of classification performances. We further explore practical 
applications of PCA in image compression, noise reduction and machine learning. 
Finally, we discuss the strengths and limitations of PCA, highlighting when it is 
appropriate and when more complex techniques may be essential. The work is 
produced for the machine learning practitioners with a basic understanding of 
linear algebra and programming. 
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INTRODUCTION
In existing data analysis and machine learning, 
datasets often comprise a large number of features 
which comprise hundreds or thousands per 
observation. The high dimensional data being 
informative in most cases, poses computational and 
analytical challenges. Such huge data often cause 
overfitting in predictive models, enhanced training 
time, and complications in visualizing and proper 
interpreting the structure of data. Such situation is 
often related to the curse of dimensionality [1]. As 
the dimensionality increases, the volume of the 
feature space grows exponentially, where data points 
become sparse and conclusions become statistically 
less reliable. A powerful statistical tool properly 

known as Principal Component Analysis (PCA) 
handles these challenges by transforming high 
dimensional data into lower dimensional data. The 
PCA approach preserves the structure that 
contributes most to its variance. It employs 
orthogonal directions which are called principal 
components, along which data varies the most [2]. 
The implementation of PCA in this study achieves 
dimensionality reduction, retaining the most 
meaningful variation in the data. In early 1900’s, 
Karl Pearson (1901) introduced a method of finding 
the best-fitting linear subspace for multivariate data 
[3], a type dimensionality reduction.  Later, it was 
adopted more formally as PCA technique by 
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Hotelling (1993) in a study based on spatial genetic 
structure [4]. The technique of PCA has been used 
since then and has become a cornerstone in both 
supervised and unsupervised learning. The PCA is 
commonly used in image compression, gene 
expression analysis, face recognition, and more [5].   
There are several undeniable reasons to employ PCA 
in handling high-dimensional data. In visualization, 
data with many features can be visualized more 
effectively using the top few principal components. 
PCA can help eliminate noise by discarding 
components with small variances that often 
correspond to measurement errors. It is often used 
in machine learning pipelines to reduce 
dimensionality prior to model training for improved 
generalization [6]. By keeping the top components 
using this approach, a minimum storage can be used 
and a significant computational efficiency can be 
achieved.   
The technique of PCA works as linear method, it 
captures linear relationships in the data where 
nonlinear relationships are prevailing. The examples 
of these techniques, which are mostly preferred, 
include Kernel PCA [7], t-distributed Stochastic 
Neighbour Embedding (t-SNE) [8], and 
Autoencoders [9].  
This article presents a structured, linear algebra-based 
introduction to PCA with a mathematical intuition 
behind this technique. To demonstrate the 
application of PCA, we have utilized seeds dataset. It 
is well known dataset in pattern recognition and 
clustering. The dataset consists of 210 samples of 
three different varieties (Kama, Rose, Canadian) of 
wheat. Each sample is described using seven 
numerical features derived from geometrical 
properties of wheat kernels, such as area, perimeter, 
compactness, kernel length, width, asymmetry 
coefficient, and groove length. The technique of 
PCA is employed to project the seven-dimensional 
data into lower dimensions, allowing us to explore 
how well-separated the wheat varieties are in the 
principal component space.  
Readers will gain insight into the geometric 
interpretation of PCA, learn to compute it step-by-
step, and explore real-world applications through 
illustrative examples. By the end, readers should be 
equipped to apply PCA thoughtfully, understand its 

limitations, and recognize when more advanced 
nonlinear methods are necessary. 
 
1. Literature Review 
Principal Component Analysis (PCA) is a vastly used 
as a dimensionality reduction tool in data science, 
machine learning and signal processing. Through 
this tool, a suitable set of features can be selected to 
obtain improved accuracy of a predictive model. Its 
importance in diverse applications have made PCA a 
subject of extensive theoretical and practical study.  
The foundation of this technique was first laid by 
karl Pearson in 1901 [3] to minimize dimensionality 
by projecting data onto directions of maximum 
variance. After that, it was implemented by Hotelling 
[4] for multivariate statistical analysis where 
interpretations were performed through eigen 
decomposition of the covariance matrix. The curse of 
dimensionality indicated by Bellman [1] refers to 
various occurrences that arise when working with 
high-dimensional spaces, like data sparsity and 
overfitting in machine learning models. In such 
situations, the dimensionality reduction techniques 
such as PCA play an important role as powerful tools 
for the improved generalization, reduction of 
computational resources, and enabling data 
visualizations. PCA has is a mathematical technique 
based on linear algebra, particularly the eigen 
decompositions of the covariance matrix or the 
singular value decomposition (SVD) of data matrix. 
The eigenvectors of the covariance matrix indicate 
the directions of greatest variance and eigenvalues 
represent the magnitude of variance along these 
directions [10]. Such understandings not only make 
PCA mathematically sophisticated but also provide 
strong geometric intuition. PCA obtains a low-
dimensional affine subspace that best approximates 
the data in the least-squares sense for a centred data 
[11].   
PCA has applications in bioinformatics which made 
possible to visualize high-dimensional gene 
expression data [12]. It has also been helpful in 
image compression to reduce the storage of high-
dimensional image data by retaining the most 
important components [13]. The applications that 
are developed for finance employ PCA to set out 
model interest rate term structures and to reduce risk 
exposure by identifying dominant modes in asset 
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returns [14]. Moreover, PCA has been helpful for 
noise reduction and visualization in fault detection, 
medical diagnostics, remote sensing, and speech and 
handwritten recognition.   
Most importantly, PCA is often used for feature pre-
processing steps in machine leaning pipelines. It 
helps to remove multicollinearity and reduce training 
time [15].  
Despite the importance and usefulness of PCA, it 
has limitations. It only obtains linear correlations 
and is sensitive to data scaling. To deal with such 
limitations, the researchers have proposed several 
other variants. Among these variants, the Kernel 
PCA [7] maps data to a higher-dimensional feature 
space using kernel functions before applying PCA. 
Another variant Robust PCA [16], decomposes data 
into low-rank and sparse matrices, which make such 
decomposition of data stronger against outliers. A 
variant of PCA called Sparse PCA [17] handles 
sparsity to make principal components more useful 
and interpretable. There are other nonlinear 
methods such as Autoencoders and t-SNE are as 
alternatives, but the PCA remains dominant due to 
its solid theoretical foundation, interpretability, and 
simplicity.  
The recent work based on PCA include gene 
expression data from COVID-19 patients. It was 
used in pre-processing to visualize patient clustering 
and to reduce noise for deep leaning models [18]. 
PCA technique was to compress hyperspectral 
imaging data, where it enabled more efficient 
classification using convolutional neural networks, 
such utilization reduced overfitting [19].  The 
implementation of PCA has been significant in 
biomedical domain, it demonstrated in pre-
processing EEG and ECG signals to extract signals 
without noise. This utility of PCA achieved 
improved accuracy in health condition classification 
based on the long short-term memory (LSTM) 
models where compressed representations were fed 
[20]. Also, the technique of PCA has been utilized 
for unsupervised clustering of MRI brain scans, 
contributing to early detection of neurodegenerative 
diseases [21].  
The technique of PCA has leveraged its functionality 
in the field of cybersecurity. It has been used to 
isolate anomalies in network traffic data by 

improving intrusion detection performance in a low 
computation cost [22].  
Moreover, the importance of PCA in exploratory 
data analysis has been very helpful where it has 
served as a gateway technique to understanding more 
complex dimensionality reduction methods. It has 
been applied various datasets for learning purposes. 
These datasets included Iris, Breast Cancer and other 
datasets available at Kaggle. This study focuses on 
PCA from a linear algebraic viewpoint, we use Seeds 
dataset as a case study to visualize the effect of 
dimensionality reduction. 
   
2. Mathematical Foundations 
In this section, the important mathematical tools are 
presented that form the backbone of PCA. It relies 
on fundamental linear algebra concepts such as 
vectors, projections, matrices, covariance, and eigen 
decomposition. This section provides a concise 
review of these concepts to build intuition of 
working of PCA.  
First of all, we illustrate the vectors and linear 
transformations. A vector represents a point or 
direction in space, commonly express as column of 
numbers. A linear transformation maps vectors from 
one space to another using a matrix. 
In PCA, the data points are treated as vectors ℝ𝑑 
space and seek transformations that align them along 
principal axes. 
The dot product 𝐮 and 𝐯 is given by: 

𝐮 ⋅ 𝐯 = ‖𝐮‖‖𝐯‖𝑐𝑜𝑠𝜃 (1) 
The expression given in equation (1) quantifies the 
directional similarity between two vectors and is 
important in projections and principal component 
analysis.  
The projection of a vector 𝐱 onto another vector 𝐰, 
which is given as follows:  

proj𝐰(𝐱)=
𝐱⋅𝐰

‖𝐰‖2
𝐰  (2) 

PCA projects data points onto directions (principal 
components) that maximize variance [10].  
Given a dataset with 𝑛 samples and 𝑑 features, we 
arrange the data in an 𝑛 × 𝑑 matrix 𝑋, where row is 
a data point. It must be made sure before computing 
the covariance matrix, the data must be centred and 
each feature has zero mean.  
The covariance matrix is defined as: 

∑ =
𝟏

𝒏−𝟏
𝑋T𝑋  (3) 
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Basically, the covariance matrix given in equation (2) 
is square matrix, a type of symmetric table that shows 
how the feature in the data relate to each other. The 
values on the diagonal indicate how much each 
individual feature varies by itself. This is called the 
variance of that feature. The values off the diagonal 
inform how two different features change together 
and this is called the covariance between those two 
features. Simply, the matrix helps to understand not 
only how spread out each feature is, but also whether 
some features increase or decrease [5].  
Following we show how eigenvalues and eigenvectors 
contribute to PCA by illustrating the fundamental 
concept. 
Let 𝐴 ∈ ℝ𝑑×𝑑 be a square matrix. A non-zero vector 
𝐯 is called an eigenvector of 𝐴 if: 

𝐴𝐯 = 𝜆𝐯 (4) 

where 𝜆 is the corresponding eigenvalue.  
The eigenvalues and eigenvectors of covariance 
matrix are calculated in PCA. The sample equation 
is given for covariance matrix calculation is given in 
equation (3) and equation for eigenvalues and 
eigenvectors is given in equation (4). It must be 
noted that the eigenvalues measure the variance 
captured along the principal directions represented 
by eigenvectors. The first principal component 
corresponds to the eigenvector with the largest 
eigenvalue and then a set of principal components is 
built through sorting eigenvectors by descending 
eigenvalues. Such decomposition lays out the strategy 
to reduce the dimensionality of the data by selecting 
only top 𝑘 eigenvectors [23], [24].  
3. General Implementation of PCA 
This section presents the step by step mathematical 
process of principal component analysis. PCA works 
by transforming the original dataset into a new 
coordinate system where the axes, generally called 
principal components, represent directions of 
maximum variance. The overall process is presented 
in five fundamental steps based on linear algebra.  
 
3.1 Centring the Data 
Centering the data is a first step in PCA, the mean of 
each feature is subtracted from actual features to 
obtain zero mean. This step is crucial for PCA for 
making the first principal component correspond to 
the direction of maximum variance. The 

mathematical for of this step is given in equation (5), 
given as follows:   

�̃� = 𝑋 − 𝜇 (5) 

where 𝜇 is the mean vector computed across all rows 
(samples).  
 
4.2 Computing the Covariance Matrix 
In the second step, the covariance matrix is 
computing using equation (3). The covariance matrix 
obtains the variance of each feature and the 
covariance between each pair of features. The matrix 
contained in covariance matrix is symmetric and 
yields insights into the structure of the data.  
 
4.3 Performing Eigen Decomposition  
Third step performs the eigen decomposition of the 
covariance matrix using equation (4) where 𝐴 is 
covariance matrix. This step provides a set of 
eigenvectors (principal directions) and eigenvalues 
(variance explained along each direction).  
 
4.4 Selecting top-𝒌 Eigenvectors 
The fourth step is about selecting top-𝑘 eigenvectors 
which correspond to the largest eigenvalues 
(directions of highest variance). This process reduces 
the dimensionality by sorting eigenvalues in 
descending order and selecting the corresponding 𝑘 
eigenvectors.  
 
4.5 Projecting the Data onto the New Subspace 
Finally, the step five performs the projection of data 
onto a new subspace. Once there are the top-𝑘 
eigenvectors, the original data is projected not the 
new subspace. The process presents the reduced 
representation of the data. The mathematical form 
of this step is given in below:  

𝑍 = 𝑋.̃𝑊𝑘 (6) 

Where 𝑍 is the projected data and 𝑊𝑘 is the matrix 
of top-𝑘 eigenvectors. 
 
4. PCA Implementation on the Seeds Dataset 
To present the practical implementation of Principal 
Component Analysis (PCA), it is employed to a real-
world classification dataset. This is Seeds Dataset 
which is taken from the Kaggle datasets and is 
available at: 
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https://www.kaggle.com/datasets/rwzhang/seeds-
dataset.  
The dataset contains seven numerical features 
extracted from geometric properties of wheat kernels, 
and each instance belongs to one of three wheat 
varieties. These varieties are comprised of Kama, 
Rosa, and Canadian. The dataset contains 210 
samples and seven features, which were derived from 

X-ray images, of wheat kernels. The column names or 
features in the dataset are Area, Perimeter, 
Compactness, Kernel Length, Kernel Width, 
Asymmetry Coefficient, and Length Kernel Groove. 
The target variable is Class which indicates the wheat 
variety (1, 2 and 3).  A snap shot of the head of 
dataset is shown in Figure 1.   
 

 

Figure 1. The first five rows of the Seeds dataset. 
 
It is a multiclass classification problem based on 
moderately small number of features and is chosen 
in this study to demonstrate the application of PCA. 
However, the PCA can be implemented on large size 
datasets to reduce the dimensionality.  
The dataset does not contain any missing or 
categorical values. Only the standardization was 
applied using StandardScalar utility to have zero 
mean and unit variance. This standardization is 
necessary for PCA due to its sensitivity to scale of the 
input features. The dataset was split into train and 
test sets into the slice of 0.80 and 0.20 respectively. 
The LightGBM (LGBM) classifier machine learning 
model has been applied to evaluate classification 
performance before and after applying PCA.  

The PCA was applied to reduce the original 7-
dimensional datasets into 4 principal components. 
The transformed data after applying PCA showed 
the three wheat classes are separated in the two-
dimensional subspace.  
We have used ROC AUC score (macro-average) as 
the evaluation metric for multiclass classification. 
The ROC AUC score before applying PCA was 
0.9754, whereas after dimensionality reduction using 
PCA, it improved slightly to 0.9788. The plot shown 
in Figure 2 clearly displays ROC curves for multiclass 
classification task performed using LGBM classifier, 
both before and after applying PCA to the feature 
space.  

 
Figure 2. ROC Curves for the LGBM Classifier before and after applying PCA. 
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The comparison of ROC curves has been shown in 
Figure 2 for a classification performance on the 
Seeds dataset using the original feature space. A clear 
difference can be observed after PCA, with AUC 
increasing from 0.9754 to 0.9788, indicating 
effective dimensionality reduction without loss of 
discriminative power. 
 
5. Conclusions 
In this study, we have presented the theoretical 
foundations and practical applications of Principal 
Component Analysis (PCA) in perspective of linear 
algebra. The technique of PCA is vastly utilized for 
dimensionality reduction that transforms high-
dimensional data into a lower-dimensional subspace 
while preserving the directions of maximum 
variance. PCA enables simplification of datasets 
while retaining their essential structure. This process 
involves centring the data, computing the covariance 
matrix, performing eigen decomposition, and 
projecting onto the top principal components.  
To better understand the implementation of PCA, 
we conducted a worked example using the Seeds 
dataset, a real-world classification problem for the 
identification of wheat varieties based on geometrical 
features. A comparison was presented for 
classification performance using LightGBM classifier 
which was trained on the original features and on 
the transformed data using PCA. The ROC AUC 
scores before and after PCA were 0.9745 and 
0.9788. We achieved a small improved accuracy 
score while reducing the feature space.  
Basically, the PCA is based on linear relationships 
for and may not perform optimally for highly 
nonlinear datasets. Its simplicity, efficiency and 
interpretability make it a foundational technique in 
data machine learning and data science. For more 
complex data or higher dimensional data, other 
advanced techniques like Kernel PCA or nonlinear 
dimensionality reduction methods such as t-SNE or 
UMAP can be benefited. The transformed data 
through these advanced techniques can be employed 
to stronger machine learning or deep learning 
models to the get higher accuracy.  
This work presents PCA and its relevance as a 
conceptual framework and a practical tool for the 
transformation high-dimensional data into 
meaningful lower-dimensional representations. It 

serves as a bridge between mathematical theory and 
machine learning practice, highlighting the power of 
linear algebra in solving real-world data problems. 
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