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 Abstract 

The adaptability of a passive optical network necessitates the employment of an 
appropriate multiple-access method that can offer the requisite transmission 
capacity in terms of data, reach, and number of users while being simple to 
construct and low in cost. Because of its asynchronous nature and simultaneous 
access to the channel for different users, the spectral amplitude coding- photonic 
code division multiple access system is expected to offer the needed capacity. 
However, in high cardinality systems, the 1D character of the spectral amplitude 
coding method restricts the reduction of multiple access interference and the 
related phase-generated intensity noise. In addition, dividing available spectral 
windows restricts support for large cardinality in zero or fixed-phase cross-
correlation systems. As a result, for high transmission capacity and a large number 
of users across a long distance, a new dimension must be added to the existing 1D 
code. To include spatial encoding, currently employed 2D spectral amplitude 
coding-optical code division multiple access systems use spectral/spatial coding 
techniques that necessitate a significant number of optical fiber media between the 
transmission and reception modules. This severely affects the practicality of 
implementing 2D optical code division multiple access in a passive optical 
network. As a result, spectral/temporal coding has been optimized for low-cost 
passive optical networks. To support a high number of users while maintaining a 
low bit error rate, spectral/temporal coding is necessary. Based on current 1D 
multidiagonal and improved multidiagonal codes, this work proposes a unique 2-
D spectral/temporal coding method. We do a thorough mathematical study using 
bit error rate, quality factor, and eye diagram as performance metrics. The system's 
performance shows that the code is efficient in terms of user count, multiple access 
interference, and encoder/decoder architecture. 
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INTRODUCTION
When compared to conventional time division 
multiple access (TMDA) and frequency division 
multiple access (FMDA), optical code division 
multiple access (OCMDA) is a promising technique 
because it provides high security, dynamic bandwidth 

assignment, asynchronous channel access, and 
support for multimedia applications [1]. By 
combining orthogonal code sequences, OCDMA 
allows users to access the same media at the same 
time. Non-coherent OCMDA has a simple and low-
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cost architecture, but coherent OCDMA has a 
greater performance. SAC is a good approach for 
finding information in non-coherent OCMDA by 
employing orthogonal code sequences [2]. SAC has 
lately attracted a lot of interest due to its ease of 
installation and ability to attenuate noise. SAC 
blocks enable the use of spectrum components of 
broadband light sources known as spectral chips, 
which are typically based on the orthogonal code 
sequence supplied to each user. As a result, code 
design is critical in noise suppression. Several codes 
are proposed for the SAC-OCDMA system, however 
these codes have disadvantages such as long code 
sequences, parameter selection, non-ideal cross-
correlation, and user count [3]. The number of users 
increases multiple access interference (MAI), receiver 
complexity, and system throughput. SAC-OCDMA 
performance is restricted by short noise, thermal 
noise, and, most importantly, MAI and related phase 
intensity-induced noise (PIIN).  
A coding system with low cross correlation can assist 
minimise overlapping spectra and, as a result, the 
PIIN. By combining additional temporal or 
geographical dimension with the current spectral 
dimension, 2-D codes for SAC- OCDMA can lower 
MAI. Multiple optical fibres and star couplers are 
employed to extend into spatial dimension for 2-D 
spectral/spatial coding, where the system complexity 
grows linearly with code weight and code length [1]. 
To add spatial encoding, currently utilised 2-D SAC-
OCMDA systems use spectral/spatial coding 
techniques that need a significant number of optical 
fibre media between the transmission and reception 
modules. This severely affects the practicality of 
implementing 2-D OCDMA on a passive optical 
network (PON). As a result, spectral/temporal 
coding has been modified for low-cost PON. To 
handle a high number of users while maintaining a 
low bit error rate (BER), spectral/temporal coding is 
necessary. 
Based on the phase information exchanged with the 
receiver, OCDMA detection is classified as coherent 
or non-coherent. SAC-OCDMA is a non-coherent 
spread spectrum technology that uses a coding 
system to transmit/block spectral chips [4]. 
 
 
 

Coherent and Incoherent OCDMA 
In inconsistent OCDMA, a transmitter encodes 
using an ultrashort spectrum light source, and the 
same phase information is exchanged with the 
receiver to decode. The bipolarity of a coherent 
system allows for tight orthogonality, which 
eliminates MAI across different users. Coherent 
OCDMA is classified into two types: Spectral Phase 
Coded (SPC)-OCDMA and Temporal Phase Coded 
(TPC)-OCDMA. Because the phase of a coherent 
system must be synchronized, the system complexity 
increases [5]. In general, synchronous schemes with 
detailed transmission plans yield greater throughput 
than asynchronous schemes when system access is 
random and collision occurs. 
In incoherent OCDMA with direct or balanced 
detection, intensity modulation is utilized. 
Incoherent systems are unipolar because they only 
send "Ones" and "Zeros." The performance of an 
incoherent system is lower than that of a coherent 
system, but it offers simplicity, cost-effectiveness, no 
phase constraint, and other benefits. As a result, 
incoherent systems are becoming more prevalent in 
PON and Sensor Networks (SN). 
Incoherent access is classified into three types: 
temporal spreading, spatial coding, and SAC) [2]. A 
single bit is broken into tiny duration chips equal to 
the code length in temporal spreading, and the chips 
are repeated for each bit code-weight times to match 
the code family. Due to the high number of users 
and the weight of various users, chip overlapping 
occurs, resulting in MAI at the receiving end. In 
contrast, numerous cores of single-mode fiber are 
employed in spatial coding. Researchers proposed 
2D codes such as temporal/spatial codes and 
spectral/spatial codes. Spatial codes have the 
drawback of having an equal light path and requiring 
a large amount of optical fiber, which makes this 
technology expensive [6]. In contrast, with SAC, 
wideband light is transmitted and filtered according 
to the coding system. To extract the information, it 
employs an appropriate detection approach. The 
SAC system presents a simple, low-cost, incoherent 
optical source transmitter and receiver configuration. 
By minimizing MAI and improving system 
performance, SAC- OCDMA is the most suited 
system for optical multi-access method over other 
OCDMA systems. The design of better codes with 
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essential auto- and cross-correlation features is one of 
the profitable techniques for reducing interference. 
 
Literature Review 
In wireless communication, Code Division Multiple 
Access (CMDA) provides various advantages. It has 
inspired researchers to implement it in the optical 
domain. Viterbi demonstrated the viability of 
CDMA in the optical domain in 1986. In 1989, 
Salehi evaluated and analyzed the technique's 
performance and proposed the Optical Orthogonal 
Code (OOC) for Optical CDMA [7]. 
Yadav et al. presented the prime sequence codes with 
limited hamming space of P-1, where P is a prime 
integer in [8]. Prime code may be built in two steps: 
first, for a prime integer P and the Galois Field 
GF(P), create prime sequences. Second, previously 
created prime sequences are mapped onto binary 
sequences. The length of codeset P2 and the weight 
of code P both contain P prime sequences. The 
codeset of the preceding generating method for 
prime number P can provide the P number of codes. 
Furthermore, the number of concurrent active users 
is determined by the correlation features of these 
codes while maintaining a minimal BER. The 
number of concurrent active users can be raised by 
raising the prime number P. The code sequences' 
autocorrelation is so low that it is less than the 
number P, and the highest cross-correlation is two. 
The author also described the extended prime code, 
which increases the length of the code sequences 
considerably. The updated code has lowered the 
cross-correlation to one, which improves the MAI if 
the sequence autocorrelation is the same as the 
original. 
Chung et al. presented optical orthogonal codes with 
family 071 that had good autocorrelation and cross-
correlation features in [9]. The peak of 
autocorrelation is strong, but the peak of cross-
correlation is low between any two sequences. 
Because the orthogonal code is incomplete, the code 
is known as pseudo orthogonal code. The cyclic shift 
in the code may not affect the sequences' correlation 
characteristics. Cyclic shift increases the cardinality 
of the code, allowing for a greater number of users. 
Wong et al. presented a novel prime code called 
modified prime codes for synchronous mode in [10]. 
Many codes are recommended for asynchronous 

mode; however, because the code is also useable in 
synchronous mode, it outperforms the rest of the 
prime codes. Because the codes may be utilized in 
synchronous transmission, they have higher code 
cardinality and performance than asynchronous 
codes. We may witness a significant rise in the 
number of prospective subscribers and simultaneous 
users in the OCDMA network as a result of the 
cyclic shift in code generation. By cyclically changing 
the initial prime code sequence P times, MPCs can 
be generated. The number of code sequences can 
therefore be expanded by the original prime code, 
resulting in enhanced cardinality. 
In [11], the author suggested the MQC/MQC code 
for the wavelength/time scheme, as well as the 
transmitter design and balanced structure for the 
receiver design, using Tunable Optical Fibre Delay 
Line (TOFDL) for the time dimension and Fibre 
Brag Granting (FBG) for the wavelength dimension. 
The design calculated BER by counting PIIN, shot 
noise, and thermal noise and then verifying the 
results with simulation. The system supports more 
users, requires a low-power signal for the light source, 
and uses bandwidth more effectively, although the 
MQC code development is difficult. 
Based on test findings using matrix codes, the author 
in [12] presented a system of 2D temporal/spatial 
(T/S) with non-coherent OCDMA. The framework 
is implemented by separating multimode optical 
couplers and delay lines. This code is being 
investigated provisionally based on pseudo-
symmetrical matrix codes with one pulse per row, 
weight equivalent to four, and four users. The author 
demonstrated that loss of the suggested plan is less 
than temporal system misfortunes because the 
number of couplers is less; there is no side lobe in 
autocorrelation and the consistency of the coupler 
part is critical for a legitimate relationship; and a 
shorter piece time can be used for a given 
arrangement of laser beam width. 
In [13] proposes a class of codes known as 2D 
projection codes with balanced detection, and their 
performance is compared to that of 3D codes. This 
code's codeset is small in comparison to the codeset 
of 3D codes. It primarily uses balanced detection to 
eliminate the various access impedances. This code is 
created by predicting 2D sub-code words onto the 
1D wavelength hopping code. The number of users 
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for a particular codeset can be raised by relaxing 
correlation restrictions with a significant reduction 
in BER. 
The authors of [14, 15] introduced the wavelength 
hopping/time spreading approach with the prime 
code and studied the security against eavesdroppers 
in the optical network. The approach employs a 
WDM/TDM hybrid to boost network capacity. 
When there is no time shift, the autocorrelation is 
zero, and when there is a phase shift, the 
autocorrelation is maximum. The code's greatest 
potential cross-correlation is unity. MAI is lower 
when numerous users speak at the same time 
because cross-correlation is lower when compared to 
other codes. 
The authors in [16] propose a 2D wavelength/time 
code that uses the optimal Golomb ruler approach 
on the wavelength and time dimensions. The 
number of time slots is reduced, as is the number of 
concurrent users, although utilizing an optical hard 
limitation and guard time can enhance this. The 
codeset has grown in cardinality and ISD. For local 
area networks (LAN), the code employs a unipolar 
style with intensity and direct modulators as 
transceivers. 
In [17], the author employed 3D coding with a single 
pulse per plan for SAC-OCDMA with a deferential 
detecting system. The code construction employs a 
1D Golomb Ruler sequence, which has a higher 
cardinality and demonstrates improved BER 
performance. The cardinality of the codeset of a 
single pulse per plane is greater. For the elimination 
of the MAI, the deferential detection system is 
applied. The code has a cross-correlation of one and 
an out-of-phase autocorrelation of zero. The code 
employs bipolar assignment for each user, which 
implies that each user sends one for "high bit" and 
another for "low bit," resulting in a user count equal 
to half of the codeset sequences. 
 
Contribution  
Because of its asynchronous nature and 
simultaneous access to the channel for numerous 
users, the SAC-OCDMA system is expected to 
deliver the needed capacity. However, the 1D 
character of the SAC scheme restricts the lowering of 
MAI and the accompanying PIIN in systems with 
high cardinality. Furthermore, dividing available 

spectral windows restricts support for large 
cardinality in zero or fixed in phase cross-correlation 
systems. As a result, in order to support high 
transmission capacity and a large number of users 
across a long distance, a new dimension must be 
added to the existing 1D code.  
To add spatial encoding, currently utilized 2D SAC-
OCMDA systems use spectral/spatial coding 
techniques that need a significant number of optical 
fiber media between the transmission and reception 
modules. This severely lowers the practicality of 
implementing 2D OCDMA at the PON. As a result, 
spectral/temporal coding has been modified for low-
cost PON. To support a high number of users while 
keeping a low BER, a code for spectral/temporal 
scheme is required. 
Based on current 1D Multidiagonal (MD) and 
Enhanced Multi-Diagonal (EMD) codes, this work 
proposes a unique 2-D spectral/temporal coding 
method. We do a thorough mathematical study 
using BER, quality factor (Q-Factor), and eye 
diagram as performance metrics. 
 
Paper Organization 
The rest of the paper is organized as follows: First, we 
look at the fundamentals of code construction, 
delving into the programming languages, tools, and 
processes used. Following that, we go into the 
complexities of developing the 2D Empirical Mode 
Decomposition/Molecular Dynamics (EMD/MD) 
code, putting insight into the algorithms and 
computational approaches employed. We provide 
and analyze the results of experiments and 
simulations performed using the code in the Results 
& Discussions area, providing useful insights and 
conclusions. Finally, the article finishes with a 
References section, which catalogs all mentioned 
sources and background literature for reference and 
future research, as is common in academic writing. 
 
Code Construcion 
The EMD/MD code may be derived from existing 
EMD and MD codes, with each code denoted by (N, 
ω, λc).  Where N represents code length, ω 
represents code weight, and λc represents phase 
cross-correlation of any two distinct sequences. 
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Multi Diagonal (MD) Code Construction 
MD code is created such that any code weight larger 
than two can be chosen at random. Where the code 
length is determined by the number of users and the 
code weight. Equation 1[18] is used to execute the 
MD code creation. 
𝐒𝐢,𝐣

= {
(𝐊𝐲 + 𝟏 − 𝐢), 𝐟𝐨𝐫 𝐣 = 𝐄𝐯𝐞𝐧 𝐧𝐮𝐦𝐛𝐞𝐫

𝐢, 𝐟𝐨𝐫 𝐣 = 𝐎𝐝𝐝 𝐧𝐮𝐦𝐛𝐞𝐫𝐬
}           (𝟏) 

The series of diagonal matrices S(i,j) is constructed as 
follows for the number of users Ky=4 and code 
weight Wy=2. Where i=1,2,...Ky and j=1,2,...Wy. 
 

Si,1 = [

1
2
3
4

] , Si,2 = [

4
3
2
1

] 

The diagonal matrices S(i,j) are then converted to get 
T(i,j), where each element of S(i,j) represents a "One" 
position. 

Ti,1 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] , Ti,2 = [

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

] 

All binary matrix combinations T(i,j) constitute the 
MD code for K_y×ω_y is the final code for K users 
and W code weight. Equation 2 [18] may be used to 
calculate code length N. 

                                                   𝐍
= 𝐊𝐲 × 𝛚𝐲                            (𝟐) 

                                                𝐌𝐃

= [𝐓𝐢,𝟏|𝐓𝐢,𝟐]                         (𝟑) 

𝐌𝐃 = [

𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏
𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏 𝟏 𝟎 𝟎 𝟎

]

𝐊×𝐍

 

MD coding has no cross-correlation and is capable of 
mitigating MAI. The code provides flexibility in 
terms of code weight, number of users, and system 
design simplicity. It has a greater user base than 
Modified Quadratic Congruence (MQC) and 
Random Code (RD). 
 
 
 
EMD Code Construction 
EMD code is divided into two segments: data and 
code.     D_(K_x )and C_(K_x ) signify the data 

matrix and code matrix, respectively. The EMD code 
is represented by (N,ω,λ_c ), the data matrix, is a 
square matrix of K_x× K_x. The cross-correlation 
between any two rows of the D_(K_x ) is zero, the 
matrix's code weight is one, and entries on the major 
diagonal are one [19]. 

                            𝐜 
= [𝐝𝐢,𝐣 = 𝟎 𝐟𝐨𝐫 𝐢

≠ 𝐣]                       (𝟒) 
Where i,j∈{1,2,…,K_x} 
For example, the data matrix is designed as per 
equation 4 for the code weight of one and four users 
as; 

𝐃𝟒 = [

𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

] 

The size of the code matrix C_(K_x ) is K_x× J, 
where K_x   indicates the active number of users and 
J is the length of the code. The code matrix's 
attributes are as follows. The cross-correlation 
between any two adjacent rows is always one, and the 
code matrix C_(K_x )  has a weight of two. The code 
matrix is provided for the four users as; 

𝐂𝟒 = [

𝟎 𝟎 𝟎 𝟏 𝟏
𝟎 𝟎 𝟏 𝟏 𝟎
𝟎 𝟏 𝟏 𝟎 𝟎
𝟏 𝟏 𝟎 𝟎 𝟎

 ] 

Equation (5) may be used to get the code matrix code 
length. 

                       𝐉 = 𝐊𝐱(𝛚 − 𝟐)
+ 𝟏                                 (𝟓) 

Combining both sections, the Data matrix and the 
Code Matrix yields the EMD code [19]. 

                   𝐄𝐌𝐃

= [𝐃𝐊𝐱
|𝐂𝐊𝐱

]𝐊𝐱×𝐍                           (𝟔) 
         𝐄𝐌𝐃(𝟗, 𝟑, 𝟏)

=  [

𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

     

𝟎 𝟎 𝟎 𝟏 𝟏
𝟎 𝟎 𝟏 𝟏 𝟎
𝟎 𝟏 𝟏 𝟎 𝟎
𝟏 𝟏 𝟎 𝟎 𝟎

 ] 

 
Development Of 2d Emd/Md Code 
If we assume that the EMD code set and MD code 
set are represented with X and Y respectively. Then 
Xg and Yh are any code sequences from the EMD and 
MD code set and has the elements Xg=[xg (1),xg 
(2),…,xg (Nx )] and Yh=[yh(1),yh (2),…,yh (Ny )]. The Nx 
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and Ny are the code lengths of code sequence Xg and 
Yh respectively [17]. In EMD/MD code, Xg, 
represents the spectral components and MD code, 
Yh, represents the temporal components. 

                                      𝐀𝐠,𝐡

= 𝐘𝐡
𝐓𝐗𝐠                             (𝟕) 

A(g,h) represents the code word of each user such that 
the wavelength-hopping pattern along the Xg code 
and time-spreading pattern along the Yh code. The 
newly developed code can accommodate N number 
of users and can be found as [17]. 
                                          𝐍 = 𝐍𝐗 × 𝐍𝐘                     (𝟖) 

 
Table 1: EMD Code Set,X , 𝒇𝒐𝒓 𝝎𝒙 = 𝟐 & 𝑲𝒙 = 𝟒

𝐗𝟏 1 0 0 0 0 0 0 1 1 
𝐗𝟐 0 1 0 0 0 0 1 1 0 
𝐗𝟑 0 0 1 0 0 1 1 0 0 
𝐗𝟒 0 0 0 1 1 1 0 0 0 

 
Table 2: MD Codeset, 𝒀, 𝒇𝒐𝒓 𝝎𝒚 = 𝟐 & 𝑲𝒚 = 𝟒 

 
𝐘𝟏 1 0 0 0 0 0 0 1 
𝐘𝟐 0 1 0 0 0 0 1 0 
𝐘𝟑 0 0 1 0 0 1 0 0 
𝐘𝟒 0 0 0 1 1 0 0 0 
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For the four number of users K=4, in 1D EMD code, 
X and the MD code, Y, the above                    code 
set can be generated. Any two arbitrary code 
sequences Xg and Yh can be selected each from one 
code set to obtain the 2D EMD/MD code. An 
example of the 2D EMD/MD code set A(g,h) is shown 
below where code sequence Xg from EMD and Yh 
from the MD code is used. 
The cardinality of Xg code is Cx and the cardinality of 
Yh code is Cy, so the cardinality of the new 2D code 
will be [20] 
 
                  C = CX × CY                                             (9) 

 
Cross Correlation Properties of the 2D code 
To obtain the cross correlation of the newly 
developed 2D code, the following characteristics 
matrices are defined [21]. 
 

                    Ag,h
1

= Yh
TXg                                              (10) 

                    Ag,h
2

= Yh
T Xg

̅̅ ̅                                              (11) 
 The characteristics matrices are denoted with Ad

(g,h) 
such that d∈{1,2} for code word A(g,h) and (Xg) ̅ is  the 
complementary sequences of the X_g. The cross 
correlation of any two random code sequences is 
found using the following equation [22]. 

Rm,n
d (g, h) = ∑ ∑ am,n

d (i, j)ag,h(i, j)

NY

j=1

NX

i=1

              (12) 

Where ad
(m,n) shows Nx   × Ny  matrix of the 

characteristic matrices Ad
(m,n) and a(g,h) is the Nx       xNy 

matrix belongs to A(g,h). The cross correlation of any 
two random code word A(g,h) and A(m,n) can be 
calculated as presented in the table below. 

Table 3: Cross Correlation of 2D EMD/MD code 
 Rm,n

1 (g, h) Rm,n
2 (g, h) 

g = m = 1, h = n = 1 ωXωY 0 
g = m = 1, h = n ≠ 1 ωY (ωX − 1)ωY 

 
Where ωX and ωY are the code weight of the code X 
and Y respectively. Using the following cross 
correlation property, the MAI can be cancelled [11].  

Rm,n
1 (g, h) −

1

ωY − 1
Rm,n

2 (g, h) 

= {
ωXωY for g = m = 1, h = n = 1           (13)

0 Otherwise
 

 

Structure of Encoder and Decoder  
A code word from A(g,h) codeset is assigned to each 
user, where the number of supported user in the 
system is NX  NY. The transmitter encode the data as 
per the code word A(g,h) assigned and transmit the 
data to all the receivers. The receiver recover the data 
by correlating with the assigned code word A(g,h). 

 
Figure 1: Structure of Encoder for EMD/MD code 
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A transmitter corresponding to A(g,h) consist of a 
broadband light source, a data modulator, 1×ωX 
optical splitter,  ωX optical Basel filters, ωX ×1 optical 
combiner, and ωY time delay units. At the 
transmitter, the broadband light is modulated with 
data stream using ON-OFF keying such that optical 
pulse is transmitted if the data bit is high only. This 
modulated broadband light is split into ωx spectral 
tuples. Spectral tuple is transmitted according to the 
code sequence Xg by using optical Basel filter. 
Optical Basel filter only allows specific spectral 
components and block the reset of the light 

spectrum and the allowed ωX spectral components 
are combined using 1× ωX optical combiner.  
The encoded light containing ωX spectral tuple is 
then passed through time delay unit for temporal 
encoding. A, 1×ωY optical splitter split the spectral 
encoded light into ωY and each tuple is delayed by iτ 
according to temporal dimension Yh of the code 
word A(g,h). The delay of each line is proportional to 
the position of the bit in the sequence Yh. After 
introducing the delay, the tuples are combined using 
ωY×1 optical combiner and finally the output of the 
encoder is encoded by wavelength and time 
according to the code word A(g,h) [23]. 

 

 
Figure 2: Structure of Decoder for 2D EMD/MD code 

 
We used MATLAB R2019b to train and test our 
suggested ANN model. To train the system, the 
Levenberg-Marquardt training algorithm employs a 
three-layer feedforward backpropagation neural 
network, with input, hidden, and output layers 
serving as the essential layers. Several neuron counts 
in the hidden layer were investigated during the 
training phase, and 35 neurons yielded the best 
results. The output layer only has one neuron for 
load prediction output. The input-output links are 
built using learning algorithms from the data itself, 
with weights changing at each iteration based on 
error reduction [22]. 
 
 

Results and Discussion 
Simulation Setup for Transmitter 
For each user, the transmitter consists of broadband 
light starting from 1490 nm Light Emitted Diode 
(LED) driven by a DC source. The broadband light 
of LED is split into ωX tuples using optical splitter. 
The ωX×1 WDM Mux uses Basel filter of second 
order with each tuple spectral width of 0.4 nm. The 
selection of tuples are based on the Xg sequence for 
each user A_(g,h). The spectrally encoded signal is 
then modulated with data using Mach-Zehnher 
Modulator (MZM). A random data is generated form 
Pseudo Random Bit Sequences (PRBS) generator 
and then converted to electrical pulses using Non-
Return to Zero (NRZ) pulses generator. The MZM 
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modulator modulates optical signal with this data 
pulses using On-Off Keying. 
Back-propagation learning involved transmitting 
inputs from one layer to the next until calculated 
outcomes were created and compared to real output 
to compute the error. The weights and biases were 
changed layer by layer by propagating mistakes back 
into the input. The fundamental backpropagation 
learning algorithm is the steepest descent algorithm 
that can minimize the sum of squares of mistakes. 
This approach, however, converges slowly and is not 
numerically efficient. Momentum and learning rate 
are two factors that can accelerate the algorithm 
process. The learning rate is defined as the 
proportion of the error gradient that controls the 
weights. Fast convergence happens at higher levels, 
although oscillations become more intense. The 
momentum defines the proportion of earlier weight 
changes that are taken into account when computing 
new weights [22]. 
 
DATA-Set Selection 
We obtained raw hourly load data from the ISO 
New England Pool region from January 1st, 2017 to 
June 30, 2021. After that, the yearly load data is put 

into a single data set of 39,408 data points. The data 
collection includes the date, hour, dry-bulb (ᵒF), dew-
point (ᵒF), and system electrical load (MW). We 
selected 24 data points since we used hourly load 
data and there are 24 hours in a day. MATLAB 
software is used to import datasets, generate ANN 
models with specified inputs, and finally forecast and 
show the tested results to determine how well the 
intended model performs. Another set of holiday 
data from 2017 to 2021 is utilized as input in our 
dataset. 
 
Load Analysis 
The ANN model is system-dependent, and as a key 
step forward in developing ANN for momentary load 
prediction, the necessary framework attributes 
should be investigated. The initial step in building 
any load predictor is to examine historical load 
records to extract load features such as periodicity 
and trends. 
Following preprocessing, the dataset was carefully 
examined to observe the variation in load versus 
different hours of the day. The table below shows the 
real monthly peak load numbers from 2017 through 
June 2021, along with the day and hour of the day. 

 
Table 1. Monthly basis Peak Load  

Year/Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 
Day/ Hour 
2017 

9/18 9/19 15/20 6/18 18/8 13/17 19/18 22/17 27/17 9/19 28/18 28/18 

2017 Load (MW) 19592 18165 17502 15843 20250 23968 23579 22769 20999 17255 17079 20524 
Day/ Hour 
2018 

5/18 7/18 7/19 3/20 29/18 18/17 5/18 29/17 6/16 10/19 15/18 18/18 

2018 
Load (MW) 

20662 18308 16943 15778 17518 21076 24512 26024 24475 17479 17590 18466 

Day/ Hour 
2019 

21/18 1/19 6/19 9/20 20/18 28/18 30/18 19/16 23/17 2/15 13/18 19/18 

2019 
Load (MW) 

20773 18585 17876 15034 15748 19913 24361 23365 19162 16138 17548 19065 

Day/ Hour 
2020 

20/18 14/19 1/19 27/18 29/18 23/18 27/18 11/18 10/18 30/19 18/18 17/18 

2020 
Load (MW) 

18097 16991 15888 14254 16593 21519 25121 24335 19260 15616 17157 18922 

Day/ Hour 
2021 

29/18 1/18 2/19 16/12 26/18 29/16 --------- -------- -------- -------- -------- -------- 

2021 Load (MW) 18839 18185 17738 14649 18846 25726 --------- -------- -------- -------- -------- -------- 
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According to the statistics, the greatest load value is 
26024 MW for all the years, which happened in the 
seventeenth hour on 29th August 2018. Seventeenth, 
Eighteenth, and Nineteenth hours of the day have 
the highest peak load. Load increases throughout the 

summer months (June-September), whereas it 
decreases during the winter months (October-May). 
The MATLAB annual load graphs shown below will 
assist you in interpreting lines in the preceding: 

 

 
Fig. 2. Yearly Actual load data 

 

 
Fig. 3. 2021 forecast actual load data. 

 
In the Figure 3, demonstrates intermittent power 
surges and unexpected load drops throughout the 

year, particularly in the summer. However, overall 
load changes are essentially the same over time.  
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Data Analysis 
When examining load trends over the course of a 
year, it is critical to account for critical factors such as 
weather conditions and public holidays. Previous 
study has shown that temperature and humidity have 
a significant impact on the dynamic variations in 
electrical load behaviour. While wind speed, air 

pressure, weather patterns, geographical location, 
public interruptions, and lockdowns can all have an 
effect on load behaviour, they were not particularly 
explored in this study. Table 2 depicts the actual load 
fluctuations for each hour on June 30, 2021, 
illuminating the link with dew point and dry bulb 
readings. 

 
Table 2: Dew-Point, Dry-Bulb, & Actual Load Data 
Hour / Weather Information 
June 30, 2021 

 
Dry Bulb 
(ᵒF) 

 
Dew Point 
(ᵒF) 

 
Actual Load 
(MW) 

1 78 71 17,517 
2 77 71 16,549 
3 77 70 15,881 
4 77 71 15,459 
5 76 70 15,416 
6 75 70 15,830 
7 75 69 17,095 
8 78 70 18,756 
9 80 70 20,143 
10 83 70 21,233 
11 86 70 22,299 
12 89 70 23,246 
13 91 70 24,087 
14 92 70 24,879 
15 93 69 25,333 
16 94 68 25,420 
17 94 69 25,436 
18 91 69 25,153 
19 86 69 24,020 
20 78 70 22,980 
21 75 70 21,888 
22 75 70 20,481 
23 74 70 18,854 
24 73 70 17,249 

 
As shown in Table 2, on the load there is a little dew 
point effect, with the dry bulb temperature (oF) 
appearing as an important component trendy load 
variation. There is a direct association seen; as the 
dry bulb value increases, so does the load, and vice  

 
versa, as the dry bulb value decreases, so does the 
load. Figure 4 depicts graphs covering the whole 
dataset of dew point, dry bulb, and real load demand 
to present a holistic perspective, encouraging deeper 
examination for more insights into their interplay. 
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Fig. 4. Load Analysis, Dew-point, and Dry-bulb 

 
Datasets Distribution 
Datasets were divided into two broad categories: 
Testing Data and Training Data. In 80% of 
situations, data was picked for training and 20% for 
testing. To get the necessary weights for the ANN 
model, the Levenberg-Marquardt back-propagation 
technique was utilised. Finally, the dataset was put 
through its paces. After multiple trial-and-error tries 
with varied numbers of neurons, the precise timely 
network stayed chosen based on the least MAPE 
criteria. Hidden-layer sigmoid-transfer functions were 
used to evaluate the models on 20-40 neurons. 1-5 
hidden layers were utilised in a trial-and-error 
fashion, with 35 neurons, one hidden layer, and one 
output layer producing the best results. 
For testing purposes the month of June 2021 was 
picked in the second stage of the STLF forecasting 
procedure, then the outstanding whole previous 
dataset data was estimated during model exercise. 
During the last week of June 2021, the expected load 
values were tested in the third phase. The 30th of 

June 2021 was chosen as the last day of the fourth 
phase of power load forecasting. In the last stage, we 
forecasted the last hour of June 30th, 2021. 
In this study, we concentrated on weekly and daily 
load data as the inputs and goal data were same 
throughout all stages, resulting in nearly identical 
outcomes. 
 
Simulation Results 
Before developing Artificial Neural Networks (ANN), 
a preliminary analysis was carried out with the 
Multiple Linear Regression (MLR) approach to 
determine the predicted load values for all 39,408 
data points in the dataset. A comparison of the 
actual electrical demands (MW) and the 
corresponding projections produced by the MLR 
technique is shown in Figure 5. Notably, other 
inputs were not included in the study when the MLR 
technique was evaluated; only regular load data was 
taken into account. 
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Fig. 5. Predicted & actual load 

When it is zoomed its results are shown more clearly as: 

 
Fig. 6. Clear Plot of MLR 

 
Findings indicates the real and expected load 
statistics differ significantly. Only a few deviations 
occur along the linear variable line, with the majority 
occurring under peak loads. As an outcome, the 
approach is ineffective for adjustable loads then 
effective for linearly changing loads. 
The MATLAB R2019b Deep Learning Toolbox was 
used to simulate the FITNET Artificial Neural 

Network (ANN) models. Several data sets were 
simulated in a feedforward network using the same 
dataset, and the results were methodically recorded 
for various neuron pairings and repetitions. In 
addition to applying the Levenberg-Marquardt (L-M) 
training procedure, the networks were also examined 
for Bayesian Regularisation (BR). Nevertheless, the 
BR approach performed noticeably worse than L-M, 
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which resulted in its removal from the report and the 
conclusions drawn from it not being taken into 
account in the end. 
Arithmetical features of the hourly, weekly, and 
monthly load data are shown in Figure 7, which also 
shows the load changes that may be observed, such 
as weekend decreases, month-to-month variations, 
and hourly variations. Since these unique load 
behaviour patterns are determined by network 
parameters, they must be examined in order to be 
considered when creating an appropriate Artificial 
Neural Network (ANN) model [23]. 
During the training phase, all other parameters 
(training procedures, transfer functions, hidden 

layers, and performance functions) were held 
constant, but the number of neurons was regularly 
changed between 20 and 40. The results of this 
variation—which concentrate on the hourly load 
projections—are shown in the table. A detailed visual 
comparison of the actual load and the accompanying 
forecasts throughout a 24-hour period is shown in 
Figure 7. It is noteworthy that the trough occurred 
between 3 and 4 hours, while the highest load was 
recorded between 17 and 18 hours. This research 
provides insights into the temporal dynamics of load 
forecasts and illuminates how sensitive the model is 
to variations in the number of neurons. 

 

 
Fig. 7. 24 hours forecast & actual load 

 
The graph showing the real and expected load shows 
that there are very little fluctuations throughout peak 
and midday hours. The graph's stability highlights 
how well our Artificial Neural Network (ANN) 
model design predicts similar load data. The model's 

aptitude for precise load forecasts is confirmed by the 
consistency in performance across peak and noon 
situations, which demonstrate the model's resilience 
and dependability in capturing the underlying 
patterns and trends in the load data. 
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Fig. 8. Number of EPPCH’s Against Mean Squared Error 

 
Using the Levenberg-Marquardt back-propagation 
technique produced convergence after 115 iterations 
and 109 epochs. The results show stability post-
convergence, with no appreciable increase, as seen in 
Figure 8. Refinement is evident in the output, which 
is characterised by a decrease in data loss and an 
increase in accuracy. There isn't any divergence in 
mistakes when looking at the convergence charts for 
the training set. 
 

In Figures 10 and 11, the regression plot depicting 
the target values against the predicted load data, and 
the comprehensive regression plots encompassing 
training, validation, testing, and overall datasets. The 
assessment of targeted and projected errors employs 
a regression measure, with Figure 12 illustrating the 
histogram of fit-set errors. Figure 13 provides a visual 
representation of both the distribution of absolute 
errors and the distribution of absolute percent 
errors, allowing for a thorough comparison of 
performance. 

 
Fig. 9. Neural Network Training Curve of Performance 
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Fig. 10. ANN Complete Regression Plot 

 
Fig. 11. Histogram Error 
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Fig. 12. Distribution Error 

 
Table 3 depicts the projected 24-hour load data for June 30th, 2021 for each example used to estimate 
effectiveness by varying the number of neurons. 
 
Table 3. Actual and Predicted Loads of 24-Hours 
 
Hr’s 

PL 
For 
n = 40 

PL 
 For 
n = 35 

PL 
For 
n = 30 

PL 
For 
n = 25 

PL 
For  
n = 20 

AL 
(MW) 

1st Hr. 17226 17108 16853 17000 17014.5 17,517 
2nd Hr. 16393 16407 16054 16379 16301 16,549 
3rd Hr. 15970 15935 15591 16026 15892.75 15,881 
4th Hr. 15915 15764 15448 15902 15821 15,459 
5th Hr. 15772 15525 15316 15678 15573 15,416 
6th Hr. 16041 15822 15705 15950 15765.5 15,830 
7th Hr. 16883 16787 16908 16977 16780.6 17,095 
8th Hr. 18640 18730 18942 18534 18765.5 18,756 
9th Hr. 19779 20071 20108 19793 19848 20,143 
10th Hr. 20865 21182 21129 20994 20916.7 21,233 
11th Hr. 22011 22207 22108 22261 22013 22,299 
12th Hr. 23305 23328 23180 23481 23095 23,246 
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13th Hr. 24468 24322 24168 24294 23938.6 24,087 
14th Hr. 25342 24964 24948 24741 24580 24,879 
15th Hr. 25986 25261 25417 25028 25113 25,333 
16th Hr. 26505 25442 25623 25365 25547.9 25,420 
17th Hr. 26808 25626 25759 25825 25871 25,436 
18th Hr. 26089 25368 25393 25460 25576 25,153 
19th Hr. 24669 24623 24579 24166 24791 24,020 
20th Hr. 22464 22837 22993 22026 22881 22,980 
21st Hr. 21121 21483 21850 20841 21465 21,888 
22nd Hr. 20213 20581 20893 20069 20551.8 20,481 
23rd Hr. 18752 18972 19280 18879 18891 18,854 
24th Hr. 16808 17104 17418 17291 16924.6 17,249 
 
Table 4: Predicted Load Performance  
 n = 40 n = 35 n = 30 n = 25 n = 20 
Number of Iterations 53 115 164 425 281 
Regression  0.99222 0.9986 0.99788 0.99458 0.99510 
EPOCH  47 109 158 419 274 
Performance  1.1826e+05 1.1005e+05 1.1219e+05 1.2761e+05 1.1814e+05 
 
In Table 4, the findings of a huge dataset including 
39,385 training data points compared to a simple 24 
data points during a 24-hour testing period, using 
hourly data received from June 30, 2021. The neural 
network model was rigorously tested under a variety 
of scenarios, each corresponding to a different 
number of neurons chosen, with the ultimate 
objective of determining the best data aggregation. 
When 35 neurons are used, the MAPE error is 0.73 
percent, and it rises to 0.93 percent when 40 
neurons are used. During the neural network 
training with 35 neurons, the peak performance 
curve reached 0.9986. As a consequence, when 
confronted with 24-hour test data, the best load 
forecasting outcomes were obtained by deploying 35 

neurons within a single hidden layer, as 
demonstrated by the acquired findings. 
The use of 30 neurons resulted in optimal weekly 
load analysis findings with notable accuracy. Notably, 
the training regression value is 0.99213, R=0.99215 
summarises the total response, whereas the testing 
regression score is 0.99211 and the validation 
regression score is 0.99229. The best fit peaks at 220 
epochs and 226 iterations with a strong regression 
value of R=0.99856, excellent performance shown by 
P=1.1171e+05, and a low MAPE of 1.40 percent. 
Figure 13 depicts the graphical display of error 
statistics for both weekly and hourly load data, 
emphasising the rigorous comparison between actual 
and expected loads during the final week of June 
2021. 
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Fig. 13. Actual and Forecast Load & Actual Data (June2021) 

 

 
Fig. 14. Time & Electric Load Correlation 

 
Figure 14 highlights diverse load ranges by 
illustrating load distribution over various hours and 
days of the week. Notably, Sundays have the lowest 
load levels during the week, indicating a trough in 
the load pattern. Fridays, on the other hand, have 
the greatest load levels, forming the apex of the 
weekly load distribution. This graphic depiction 

captures the variations in load intensity across 
different days and hours, providing insights into the 
load profile's dynamic character throughout the 
week.The expected hourly load curves follow the 
same pattern as the weekly load curves. There are 
tiny oscillations at the load peaks, and no aberrations 
in the load lines change linearly. To decrease these 
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slight changes, the model will need to be fine-tuned 
by modifying the weights/biases and other 
parameters that were kept constant during our 
network training. 
 
Conclusions 
A Novel Feedforward (FITNET) Neural Network 
implementation for short-term load prediction 
(STLF) was simulated in MATLAB software, and the 
technique indicates that ANN models may be 
prepared for training by employing numerous types 
and sequences of real-time inputs. The data was 
collected over a four-and-a-half-year period in the 
ISO New-England NE-Pool region and organised 
into a single data collection. Time and climatic 
factors (time, dew point, dry bulb), as well as 
weekdays, were employed as primary inputs (output 
data).  For different orders of neurons, the ANN 
model was trained using the Levenberg-Marquardt 
backpropagation method. To achieve the best results, 
the model was tested numerous times for weekly and 
daily load forecast approaches. The ANN model's 
network efficiency was enhanced by attaining 0.73% 
MAPE error for hourly load prediction and 1.40% 
MAPE error for weekly load forecasting, which are 
both highly acceptable.   
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