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 Abstract 

The integration of advanced deep learning algorithms into climate systems 
represents a transformative breakthrough in atmospheric science, significantly 
improving the accuracy and reliability of weather forecasting, real-time climate 
monitoring, and long-term predictive modeling. This study explores the deployment 
of state-of-the-art deep learning architectures including convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), long short-term memory 
(LSTM) networks, and transformer-based models to process and interpret vast, 
heterogeneous datasets collected from satellites, sensor networks, and numerical 
climate simulations. By effectively capturing complex spatial-temporal patterns 
and nonlinear dynamics inherent in atmospheric and climatic processes, these 
algorithms address critical limitations of traditional physics-based models and 
enhance predictive capabilities across multiple timescales. The paper details the 
application of these deep learning methods in improving short- and medium-term 
weather forecasts, reducing prediction errors, and enabling dynamic adaptation to 
rapidly changing atmospheric conditions. It further highlights their role in real-time 
climate monitoring, facilitating early detection and classification of anomalies and 
extreme weather events with high spatial and temporal resolution. In addition, the 
research investigates the promising potential of deep learning to complement 
conventional climate models in long-term decadal climate predictions, addressing 
uncertainties and variability inherent in extended forecasts. Key challenges such as 
data quality, interpretability, computational resource demands, and integration 
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with established meteorological and climate modeling frameworks are critically 
evaluated. This work emphasizes the necessity of interdisciplinary collaboration 
among climate scientists, AI researchers, and data specialists to develop 
transparent, reliable, and operational deep learning-enhanced climate systems. 
Ultimately, this comprehensive study demonstrates the profound impact of 
advanced deep learning algorithms in revolutionizing meteorological and climate 
sciences, enabling more precise, timely, and actionable insights essential for 
climate resilience, disaster preparedness, and sustainable environmental 
management in an era of accelerating global climate change. 

 
INTRODUCTION
Understanding and predicting the Earth’s climate 
has emerged as one of the most urgent scientific and 
technological challenges of the 21st century. As 
anthropogenic climate change accelerates, so does 
the frequency of extreme weather events heatwaves, 
floods, wildfires, and tropical cyclones posing 
profound threats to ecosystems, economies, and 
human life. Addressing these threats requires 
accurate short-term weather forecasts, real-time 
climate monitoring, and robust long-term climate 
projections. For decades, these goals have been 
pursued primarily through physics-based numerical 
models, including numerical weather prediction 
(NWP) systems and general circulation models 
(GCMs). While these models have proven effective at 
simulating large-scale atmospheric processes, they 
exhibit significant limitations in capturing the fine-
scale, nonlinear, and multivariate dynamics of the 
climate system. At the same time, the exponential 
growth in the availability of environmental data 
driven by satellite constellations, remote sensing 
platforms, Internet of Things (IoT)-enabled sensors, 
and climate reanalysis datasets has created fertile 
ground for data-centric methods. Among these, deep 
learning has emerged as a powerful tool for 
extracting meaningful patterns from complex, high-
dimensional, and heterogeneous datasets. By 

learning spatial, temporal, and spatiotemporal 
features directly from the data, deep learning models 
can enhance predictive skill, reduce computational 
costs, and provide more adaptive and scalable 
solutions for atmospheric science [1]. Unlike 
traditional statistical or physics-informed models, 
deep learning systems excel at modeling nonlinearity 
and uncovering hidden dependencies without 
manual feature engineering. Convolutional neural 
networks (CNNs), recurrent neural networks 
(RNNs), long short-term memory (LSTM) models, 
and transformer-based architectures have 
demonstrated significant promise in capturing the 
multifaceted patterns of climate variability. CNNs 
are particularly well-suited to grid-based geospatial 
data such as satellite images, while LSTMs and 
transformers excel in time-series forecasting, making 
them ideal for capturing temporal dependencies in 
weather and climate processes. A conceptual 
comparison between traditional physics-based 
climate models and deep learning-based climate 
models are shown in figure 1. Traditional models 
simulate the Earth's physical systems using numerical 
approximations, while deep learning models learn 
statistical relationships from large observational 
datasets. 

 

 
Figure 1: Comparison between Traditional Physics-Based Climate Model and Deep Learning-Based Climate 

Model [2]. 
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To illustrate the various deep learning models 
applicable to climate systems and their respective 
roles, Table 1 categorizes the dominant architectures 

and maps them to specific climate tasks. Each model 
family brings unique strengths in handling different 
data types, learning strategies, and forecast horizons. 

 
Table 1: Deep Learning Architectures and Their Typical Applications in Climate Modeling 

Model Type Core Strengths Example Climate Applications 
CNN Spatial feature extraction; grid-based data 

compatibility 
Cloud classification, precipitation 
estimation 

RNN Sequential data modeling; temporal pattern 
recognition 

Temperature forecasting, wind speed 
prediction 

LSTM Long-term dependencies; mitigation of 
vanishing gradients 

Time-series anomaly detection, ENSO 
prediction 

Transformer Attention-based modeling; scalable to long 
sequences 

Seasonal and decadal trend analysis, multi-
region forecasts 

Autoencoders Dimensionality reduction; anomaly 
detection 

Real-time extreme weather detection, noise 
filtering 

Hybrid (e.g. CNN-
LSTM) 

Spatiotemporal modeling capabilities Convective storm tracking, climate 
emulation 

 
The application of advanced deep learning models in 
the realm of atmospheric science has already yielded 
significant and measurable advancements. Notably, 
hybrid architectures combining Convolutional 
Neural Networks (CNNs) with Long Short-Term 
Memory (LSTM) networks have demonstrated 
substantial improvements in the prediction of 
temperature fluctuations across diverse climatic 
zones. These models are capable of integrating spatial 
features extracted from satellite imagery with 
sequential patterns derived from historical climate 
data, thus providing a robust framework that 
captures both the geospatial variability and temporal 
dynamics inherent in meteorological processes. For 
instance, CNN layers excel in identifying localized 
atmospheric phenomena such as cloud formation, 
sea surface temperature anomalies, and regional 
precipitation structures, while LSTM components 
handle the progression of these patterns over time, 
enabling the model to anticipate developments with 
higher temporal fidelity. Transformer models, 
originally introduced for tasks in natural language 
processing (NLP), have recently been repurposed and 
optimized for use in climate modeling due to their 
superior capacity for handling long-range 
dependencies within sequential data [3]. Unlike 
recurrent models, which propagate information 
stepwise and suffer from gradient decay, transformers 
use attention mechanisms to weigh the relevance of  

 
distant input elements across the entire sequence. 
This property makes them highly suitable for 
modeling long-term climatic interactions such as 
teleconnections (e.g., El Niño-Southern Oscillation 
impacts), and seasonal variations. When fine-tuned 
with multi-source datasets including reanalysis data, 
satellite observations, and ensemble forecasts these 
transformer-based architectures provide a holistic 
representation of atmospheric behavior, significantly 
reducing information loss during temporal encoding 
and improving multi-week to seasonal forecasting 
skill. Beyond predictive accuracy, deep learning also 
plays a transformative role in real-time climate 
monitoring and early warning systems. Traditional 
anomaly detection methods in meteorology such as 
rule-based exceedance of climatological thresholds or 
retrospective examination of simulation 
discrepancies are often hindered by considerable 
latency and susceptibility to false positives. These 
limitations compromise the timeliness and precision 
necessary for proactive disaster management. In 
contrast, deep learning-based anomaly detection 
approaches, particularly those involving 
autoencoders and generative adversarial networks 
(GANs), exhibit enhanced capacity to identify rare or 
emerging extreme weather signatures with both high 
sensitivity and specificity. Autoencoders learn 
compact representations of “normal” climate 
behavior, enabling the identification of anomalies as 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                     | Kamran et al., 2025 | Page 368 

deviations from the learned latent space, while 
GANs can model complex distributions of 
atmospheric states and flag data instances that fall 
outside of this learned distribution. These 
techniques allow for rapid, near-real-time 
identification of phenomena such as tropical 
cyclogenesis, flash floods, and atmospheric rivers, 
offering actionable lead times for emergency 
response. Nevertheless, the integration of deep 
learning methodologies into operational forecasting 
pipelines is not without significant challenges. One 
of the foremost concerns is the issue of 
interpretability. Deep learning models, particularly 
those with deep or complex architectures, often 
operate as black boxes, providing limited insight into 
the rationale behind their predictions. This opacity 
raises critical issues of accountability and trust, 
especially in high-stakes scenarios such as public 
hazard warnings, where transparency in decision-
making is imperative. Efforts to enhance 
interpretability through techniques such as saliency 
mapping, layer-wise relevance propagation, or 

Shapley value analysis are underway but remain an 
active area of research. Moreover, the quality and 
structure of input data present substantial hurdles. 
Climate datasets frequently exhibit inconsistencies 
including missing observations, sensor biases, and 
irregular spatial or temporal resolutions. These 
imperfections can impair the learning process, 
leading to degraded model performance and reduced 
generalizability. The risk of overfitting, particularly in 
models trained on geographically constrained or 
temporally limited datasets, is another pressing issue. 
Such overfitted models may perform well on 
validation sets yet fail when exposed to out-of-
distribution events, undermining their operational 
reliability. Addressing these concerns requires robust 
data augmentation strategies, domain adaptation 
techniques, and uncertainty quantification 
frameworks. Table 2 below provides a synthesized 
overview of these current limitations alongside 
proposed mitigation strategies documented in the 
recent scientific literature and ongoing experimental 
research. 

 
Table 2: Key Challenges and Proposed Solutions in Deep Learning for Climate Systems 

Challenge Description Proposed Solution(s) 
Model Interpretability Difficulty in understanding internal 

logic of predictions 
Explainable AI (XAI), saliency maps, SHAP, LRP, 
attention visualizations 

Data Quality and Sparsity Missing data, inconsistent resolution, 
and biased measurements 

Data fusion, imputation methods, transfer learning, 
spatiotemporal interpolation 

Overfitting and Lack of 
Generalization 

High accuracy on training data but poor 
real-world performance 

Cross-validation with diverse datasets, domain 
adaptation, regularization techniques 

Computational Demand High resource requirements for training 
and inference 

Model pruning, quantization, use of efficient 
architectures (e.g., MobileNet, Lite BERT) 

Limited Availability of 
Labeled Data 

Scarcity of annotated extreme weather 
events or anomaly labels 

Semi-supervised learning, synthetic data generation, 
self-supervised learning 

Integration with 
Operational Frameworks 

Compatibility with existing 
meteorological models and workflows 

Hybrid model integration, API deployment, 
standards-based data formats (e.g., NetCDF) 

 
By addressing these limitations, deep learning can 
not only augment but also reimagine the way 
atmospheric and climate systems are modeled. 
Integrating neural networks into hybrid frameworks 
wherein data-driven insights complement physically 
consistent simulations has shown early success in 
improving both short-term and seasonal forecast 
skill. Furthermore, the advent of AI foundation 
models, such as those designed for Earth system 
science (e.g., FourCastNet, Pangu-Weather), 
promises to democratize access to high-accuracy  

 
predictions with minimal inference latency. In this 
study, we provide a comprehensive examination of 
the integration of advanced deep learning algorithms 
into climate systems [4]. We explore the role of these 
technologies in enhancing weather forecast accuracy, 
real-time climate monitoring, and long-term climate 
predictions. Our investigation is grounded in both 
theoretical and applied perspectives, drawing from 
case studies, model benchmarks, and 
interdisciplinary research. The paper also discusses 
data sources, training methodologies, evaluation 
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metrics, and integration strategies that make these 
models viable for real-world use. The findings 
presented here underscore the profound impact that 
artificial intelligence particularly deep learning can 
have in revolutionizing climate science. As we move 
toward a more interconnected and data-driven 
future, the fusion of atmospheric physics, machine 
learning, and high-performance computing will be 
essential for developing reliable, interpretable, and 
actionable climate intelligence systems capable of 
supporting resilience, mitigation, and adaptation 
strategies in the face of global environmental change. 
 
1- Research Objective: 
The central objective of this research is to 
systematically investigate the integration of advanced 
deep learning algorithms into climate modeling and 
forecasting frameworks, with the aim of enhancing 
the precision, responsiveness, and scalability of 
meteorological and climate prediction systems. This 
study seeks to bridge the gap between traditional 
physics-based numerical models and emerging data-
driven approaches, leveraging the power of deep 
learning to address key limitations in current 
atmospheric and climate science methodologies. 
 
Specifically, this research is structured around the 
following core objectives: 
1. To evaluate the performance and suitability 
of various deep learning architectures including 
Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), Long Short-Term Memory 
(LSTM) models, Transformer-based models, 
Autoencoders, and hybrid networks (e.g., CNN-
LSTM) for different climate modeling tasks. These 
tasks include but are not limited to: short- and 
medium-range weather forecasting, detection of real-
time climate anomalies, and long-term climate trend 
prediction. 
 
2. To develop a conceptual and empirical 
framework for integrating deep learning models 
with traditional climate modeling systems. This 
includes proposing hybrid approaches that combine 
the physical consistency of numerical models with 
the adaptability and pattern recognition capabilities 
of deep learning systems. 
 

3. To assess the effectiveness of deep learning 
algorithms in real-time climate monitoring, with an 
emphasis on the early detection of extreme weather 
events and anomalous patterns in atmospheric 
variables such as temperature, humidity, 
precipitation, and pressure. The goal is to minimize 
lead-time delays and improve the reliability of alerts 
and forecasts. 
 
4. To explore the applicability of transformer-
based models in modeling multi-scale 
spatiotemporal dynamics relevant to seasonal and 
decadal climate predictions. The research aims to test 
whether attention-based mechanisms can outperform 
traditional time-series methods in capturing long-
range dependencies and inter-regional climate 
interactions. 
 
5. To identify and address key challenges 
related to data quality, model interpretability, 
computational efficiency, and generalizability. This 
includes proposing solutions for missing or biased 
data, black-box behavior of models, high resource 
demands, and limitations in extrapolating beyond 
the training domain. 
 
6. To propose a roadmap for the operational 
deployment of deep learning-enhanced climate 
systems, highlighting requirements for 
interoperability with existing meteorological 
infrastructure, guidelines for evaluation and 
benchmarking, and frameworks for interdisciplinary 
collaboration between AI researchers and climate 
scientists. 
By pursuing these objectives, this research aims to 
contribute a comprehensive, cross-disciplinary 
foundation for next-generation climate systems. 
These systems are envisioned to be not only more 
accurate and efficient but also more transparent, 
interpretable, and responsive to the accelerating 
demands of climate resilience, sustainability 
planning, and disaster preparedness in the context of 
global environmental change. 
 
2- Taxonomy of Climate Prediction 
Applications: 
In this section, we undertake a comprehensive 
examination of the historical development and 
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progressive integration of machine learning 
techniques within the domain of meteorology and 
climate science. The evolution of these applications 
reflects a gradual but decisive shift from traditional 
empirical and physics-based models to more data-
driven approaches capable of learning complex 
patterns from vast and heterogeneous environmental 
datasets. Our analysis traces this trajectory from the 
early use of linear regression models and decision 
trees in localized forecasting applications to the 
present-day deployment of sophisticated deep 
learning architectures such as convolutional neural 
networks (CNNs), recurrent neural networks 
(RNNs), and transformers for high-resolution, multi-
scale prediction tasks. To facilitate a clearer and 
more systematic understanding of this evolution, the 
surveyed literature is categorized based on several 
distinct yet interrelated criteria. These include the 
type of machine learning algorithm employed (e.g., 
supervised, unsupervised, reinforcement learning), 
the nature of the climatic or meteorological variable 
being predicted (e.g., temperature, precipitation, 
wind speed, extreme events), the temporal scope of 
the forecast (short-term, seasonal, long-term), and the 
data modality utilized (e.g., ground-based 
observations, remote sensing, reanalysis data, or 
synthetic simulations). This structured categorization 
not only illuminates the methodological diversity 
across historical and contemporary studies, but also 
highlights emerging trends, gaps, and opportunities 
within the research landscape [5]. For instance, while 
early machine learning efforts focused primarily on 
short-term forecasts using limited observational data, 
more recent advances leverage multi-modal data 
fusion and hybrid models to enhance both accuracy 
and robustness across timescales. Furthermore, the 
shift toward explainable AI (XAI) and physics-
informed machine learning underscores a growing 
emphasis on transparency and domain compatibility, 
especially in applications with significant societal 
implications such as disaster prediction and climate 
change modeling. By exploring the chronological 
progression and categorizing the various applications 
of machine learning in meteorology, this section 
aims to provide readers with a nuanced and 
contextualized foundation. This background not 
only supports the rationale for adopting advanced 
deep learning techniques in climate systems as 

presented in the current study but also positions this 
work within the broader continuum of scientific and 
technological innovation in atmospheric research. 
 
3.1-    Climate Prediction Milestone Based on 
Machine-Learning: 
In this subsection, we conduct an in-depth survey of 
approximately twenty representative machine 
learning methodologies that have been employed for 
both weather prediction and climate modeling. 
These methods were selected based on their 
prevalence in the literature, historical significance, 
and practical relevance to core challenges in 
atmospheric data analysis. Collectively, they provide 
a comprehensive cross-section of the evolving 
landscape of artificial intelligence applications in the 
atmospheric sciences. The models reviewed 
encompass a wide array of algorithmic paradigms, 
ranging from traditional statistical learning 
techniques to cutting-edge deep learning 
architectures. To facilitate chronological 
understanding and contextual continuity, the 
surveyed approaches are organized in the form of a 
temporal progression, as illustrated in Figure 2. This 
timeline captures major milestones in the adoption 
and evolution of machine learning models within 
the fields of meteorology and climate science, from 
their earliest implementations in the 1980s to their 
most recent advances in transformer-based 
architectures and hybrid physics-AI systems in the 
2020s. The application of machine learning in 
weather and climate prediction has undergone a 
profound transformation over the past several 
decades. In the early stages, research was dominated 
by relatively simple models such as linear regression, 
decision trees, and k-nearest neighbors (KNN), which 
were primarily utilized for short-range forecasting 
tasks and local anomaly detection. These methods, 
while limited in scope and resolution, laid the 
groundwork for subsequent experimentation with 
more advanced algorithms. With the advent of 
increased computational power, greater data 
availability from satellite observations and reanalysis 
products, and the rise of big data analytics, more 
sophisticated models such as support vector 
machines (SVMs), ensemble methods (e.g., random 
forests and gradient boosting), and shallow neural 
networks began to appear in climate-related 
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applications during the early 2000s. These 
approaches offered improved performance and 
generalizability across a wider range of 
meteorological variables and spatial domains [6]. The 
past decade, however, has seen an unprecedented 
acceleration in the adoption of deep learning 
methodologies, driven in part by breakthroughs in 
computer vision and natural language processing. 
Convolutional neural networks (CNNs), long short-
term memory (LSTM) networks, gated recurrent 
units (GRUs), and more recently, transformer 
models and generative adversarial networks (GANs), 
have been adapted to handle the high-dimensional, 
spatiotemporal, and multiscale nature of climate and 

weather data. These architectures are now capable of 
learning latent representations and complex 
dynamics that are difficult to capture with traditional 
methods. This historical progression, illustrated in 
the timeline, not only reflects the technological 
maturation of machine learning but also corresponds 
with a deeper scientific understanding of 
atmospheric processes. The co-evolution of data-
driven algorithms and climate modeling practices has 
culminated in a new class of predictive systems that 
blend empirical learning with physical constraints a 
paradigm that is fundamentally reshaping the future 
of meteorological forecasting and climate projection. 

 

 
Figure 2: Applications: of machine-learning on climate prediction milestone. 

 
3.1.1-    Climate prediction methods before 2010: 
The earliest notable application of machine learning 
in the context of climate prediction can be traced 
back to the development of the Precipitation Neural 
Network Prediction Model, introduced in 1998. This 
pioneering effort marked a significant milestone in 
the early adoption of artificial intelligence for 
atmospheric science. Functioning as a foundational 
archetype for basic deep neural network (DNN) 
models, the system leveraged multilayer perceptron 
(MLP) architectures a form of shallow artificial 
neural networks to deliver short-term precipitation 
forecasts. Its implementation was region-specific, 

focusing on the Middle Atlantic Region of the 
United States, where it utilized historical 
meteorological data such as temperature, humidity, 
and wind profiles to predict imminent rainfall 
events. Despite being relatively rudimentary by 
today’s standards, the model demonstrated the 
potential of data-driven methods to capture 
nonlinear relationships in weather phenomena, 
thereby supplementing conventional statistical 
forecasting techniques. Progressing into the mid-
2000s, the scope of machine learning applications 
began to expand into medium- to long-term climate 
prediction, primarily through non-deep learning-
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based models. These systems did not yet employ 
multi-layered hierarchical representations typical of 
modern deep learning but instead harnessed more 
classical algorithms to perform localized and 
downscaled forecasting. One such model, developed 
in 2005, introduced a K-Nearest Neighbors (KNN) 
Downscaling framework. This approach aimed to 
translate coarse-resolution outputs from general 
circulation models (GCMs) into high-resolution local 
climate information, with a primary focus on 
precipitation forecasting in the United States [7]. 
The model functioned by identifying historical 
analogs to present climate conditions and inferring 
probable outcomes based on proximity in feature 
space, effectively allowing it to simulate the behavior 
of local climatic variables under different large-scale 
conditions. In 2006, this line of development was 
extended through the incorporation of Support 
Vector Machines (SVMs) in what became known as 
the SVM-Downscaling model. This method brought 
a higher degree of mathematical rigor to the 
downscaling process, using kernel functions to map 
input variables into higher-dimensional feature 
spaces where nonlinear relationships could be more 
effectively delineated. The SVM-Downscaling model 
was particularly influential in its application to 
Indian monsoon precipitation prediction, addressing 
the intricate regional variability and seasonality that 

characterize South Asian climatology. By integrating 
synoptic-scale indicators with localized ground truth 
data, the model achieved improved accuracy over 
traditional linear regression techniques, especially in 
complex terrains and meteorological transition 
zones. The evolution of machine learning-based 
climate modeling took another leap forward in 2009 
with the introduction of a Conditional Random 
Fields (CRF) Downscaling model [8]. This approach 
was designed to enhance medium-to-long-term 
precipitation prediction capabilities in hydrologically 
sensitive areas, with a case study focused on the 
Mahanadi Basin in India. Unlike earlier models that 
treated grid points or time steps independently, 
CRF-Downscaling incorporated spatial and temporal 
dependencies among the input variables, thereby 
capturing context-specific patterns in rainfall 
distribution. The probabilistic nature of the CRF 
framework allowed it to model the conditional 
relationships between atmospheric predictors and 
precipitation outcomes, making it particularly well-
suited for structured prediction tasks where 
maintaining coherence across space and time is 
crucial. To summarize these foundational 
developments, Table 3 presents a concise overview of 
major machine learning models developed before 
2010, detailing their characteristics, application 
domains, and regional focus.  

 
 Table 3: Early Machine Learning-Based Climate Prediction Models (Pre-2010) 
Year Model Technique Prediction Focus Region/Domain 
1998 Precipitation Neural 

Network 
Multilayer Perceptron 
(DNN) 

Short-term precipitation Middle Atlantic Region, 
USA 

2005 KNN-Downscaling K-Nearest Neighbors Medium-term 
precipitation 

Various regions in the 
USA 

2006 SVM-Downscaling Support Vector 
Machine 

Monsoon precipitation India (South Asia) 

2009 CRF-Downscaling Conditional Random 
Fields 

Medium-to-long-term 
precipitation 

Mahanadi Basin, India 

 
Collectively, these early efforts represent the 
foundational period of machine learning in climate 
modeling. They not only showcased the viability of 
AI methods in supplementing or replacing 
traditional numerical models but also provided 
valuable lessons on feature engineering, data 
preprocessing, and validation in meteorological 
contexts. These models though constrained by  

 
limited computational resources and smaller datasets 
paved the way for the more sophisticated, high-
capacity deep learning architectures that would 
follow in the 2010s. 
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3.1.2-    Climate prediction methods from 2010–
2019: 
Between 2010 and 2019, the application of machine 
learning in weather and climate prediction 
experienced a period of dynamic transformation and 
methodological diversification. This era marked a 
departure from the exploratory phase of the 2000s 
and ushered in a more mature stage characterized by 
the integration of advanced deep neural network 
(DNN) architectures, enhanced data availability, and 
the computational capacity necessary to process high-
resolution satellite and sensor data. The decade 
began with incremental improvements in model 
performance and gradually transitioned toward 
sophisticated architectures capable of capturing 
intricate spatial-temporal dependencies inherent in 
atmospheric phenomena. Around 2015, the field 
saw a resurgence of focus on short-term weather 
prediction, coinciding with the development of 
hybrid DNN models. One of the most prominent 
breakthroughs during this time was the creation of 
ConvLSTM (Convolutional Long Short-Term 
Memory) models. These architectures fused the 
strengths of Convolutional Neural Networks (CNNs) 
well-suited for spatial feature extraction with Long 
Short-Term Memory (LSTM) networks optimized for 
handling temporal sequences. The ConvLSTM 
model introduced in 2015 was notably applied to 
precipitation forecasting for Hong Kong, a region 
characterized by complex urban microclimates and 
rapid weather transitions [9]. This hybrid approach 
enabled the model to detect evolving cloud 
structures and precipitation dynamics from radar 
imagery, making it highly effective for nowcasting 

scenarios and short-horizon forecasts. As the decade 
progressed, the specialization of deep learning 
models became increasingly evident. In 2017, a 
significant advancement came in the form of the 
Precipitation Convolution Prediction Model, which 
concentrated exclusively on localized rainfall 
prediction in Guang Dong, China. The model 
utilized pure convolutional architectures without 
recurrent components, focusing instead on 
extracting hierarchical spatial patterns from gridded 
meteorological input data. The removal of temporal 
recurrence allowed for faster training and inference 
times, which is beneficial for high-frequency 
operational environments. This model marked a 
refinement of prior CNN applications, showcasing 
how regional models could be optimized for specific 
climate conditions and data characteristics. Further 
innovation emerged in 2018 with the development 
of the Stacked-LSTM Model, an advanced recurrent 
architecture engineered for temperature forecasting 
in Amsterdam and Eindhoven. Unlike single-layer 
LSTM models, the stacked configuration deepened 
the temporal abstraction, allowing the model to learn 
both immediate trends and long-term cyclical 
patterns from historical weather data. This was 
particularly advantageous in urban environments like 
the Netherlands, where seasonal variability, sea 
influence, and urban heat islands introduce complex 
variability into temperature dynamics. To provide a 
synthesized view of these developments, Table 4 
outlines a selection of key machine learning models 
for weather prediction developed between 2010 and 
2019, detailing the architecture, target variable, and 
geographic application. 

 
Table 4: Machine Learning Models for Weather Prediction (2010–2019) 
Year Model Architecture Forecast Variable Application Region 
2015 ConvLSTM CNN + LSTM Hybrid Precipitation Hong Kong 
2017 Precipitation 

Convolution Model 
Convolutional Neural 
Network 

Localized 
Precipitation 

Guang Dong, China 

2018 Stacked-LSTM Model Multi-layer LSTM Temperature Amsterdam & Eindhoven, 
Netherlands 

 
These models not only demonstrate a growing 
technical sophistication but also reflect a global shift 
toward region-specific, application-oriented solutions 
in meteorological modeling. Each case illustrates a 
tailored response to the distinct climatic, urban, and  

 
data-specific characteristics of the region under study. 
Furthermore, the success of these deep learning 
systems in various parts of the world underscores the 
versatility and adaptability of neural architectures to 
diverse climate prediction challenges. By the end of 
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the decade, deep learning had firmly established 
itself as a credible and often superior alternative to 
traditional statistical and numerical models for short- 
and medium-term weather forecasting, setting the 
stage for more complex and globally integrated 
forecasting systems in the 2020s. 
 
3.1.3-    Climate prediction methods from 2020: 
The onset of the 2020s marked a profound evolution 
in the integration of advanced neural architectures 
within climate science, propelled by breakthroughs 
in both algorithmic design and data accessibility. As 
the field matured, attention shifted from regional, 
variable-specific applications to models capable of 
multi-scale, multi-domain generalization, enabling 
both localized insights and global forecasting 
capabilities. These years witnessed the adoption of 
innovative paradigms, such as Capsule Networks, 
Generative Adversarial Networks (GANs), and 
attention-based mechanisms, each contributing 
uniquely to the complexity and resolution of climate 
predictions. In 2020, the development of the 
CapsNet model a specialized architecture built upon 
Capsule Networks represented a significant 
departure from conventional convolutional and 
recurrent designs. Originally introduced for 
computer vision tasks, Capsule Networks were 
adapted to climate science to improve the 
recognition of spatial hierarchies and preserve 
orientation and part-whole relationships in 
meteorological features. This made the model 
particularly adept at identifying extreme weather 
events such as hurricanes and tornadoes in North 
America, offering improved interpretability and 
robustness compared to standard CNNs. CapsNet’s 
unique ability to retain instantiation parameters of 
detected features enabled it to recognize complex 
patterns associated with rapid atmospheric shifts, 
such as pressure fronts and thermal gradients. By 
2021, the field saw a growing emphasis on medium- 
to long-term forecasts, and with it, the emergence of 
non-neural but still machine-learning-enhanced 
models. One notable example was the RF-Bias-
Correction model, which employed Random Forest 
algorithms to correct systematic errors in 
precipitation forecasts across Iran [10]. This model 
demonstrated how ensemble-based decision tree 
frameworks could serve as interpretable, low-cost 

alternatives for bias reduction in numerical outputs. 
In parallel, the Sea-Ice Prediction Model was 
introduced using probabilistic deep learning 
techniques to forecast sea ice concentration and 
movement in the Arctic region, a task critically 
important for understanding polar climate trends 
and navigation logistics. This model capitalized on 
uncertainty quantification and ensemble generation, 
making it highly suitable for extended-range 
predictions in regions where observational data is 
sparse and highly variable. 
The years 2022 and 2023 further expanded the 
frontier of deep learning in climate prediction by 
incorporating complex, generative, and high-
dimensional modeling frameworks. One of the 
most notable models in 2022 was CycleGAN, a 
Cycle-Consistent Generative Adversarial Network, 
originally developed for image-to-image translation 
but repurposed to simulate global precipitation 
distributions. It enabled data augmentation and 
generation of synthetic satellite-like outputs, thereby 
improving generalization in training regimes with 
limited labeled data. In 2023, PanGu-Weather 
emerged as a flagship model employing 3D neural 
networks capable of predicting extreme weather 
phenomena on a global scale. Developed with 
scalability and data-rich simulation in mind, PanGu 
harnessed a volumetric approach, processing 
atmospheric variables in three dimensions across 
both spatial and temporal domains. It significantly 
outperformed traditional physics-based models in 
lead-time predictions and error metrics, particularly 
for wind and temperature anomalies. Another 
transformative contribution from 2023 was 
FourCastNet, which leveraged the Adaptive Fourier 
Neural Operator (AFNO) architecture [11]. This 
method enabled rapid inference by combining 
spectral transformations with learned operator 
approximations, allowing FourCastNet to simulate 
global weather patterns in seconds while maintaining 
accuracy comparable to traditional NWP models. Its 
performance in forecasting extreme global weather 
events, including heatwaves and cyclones, has 
positioned it as a future-ready solution for real-time 
climate monitoring systems. Alongside these large-
scale models, two CNN-based models introduced in 
2022 offered practical utility in bias correction and 
localized temperature forecasting. The DeepESD-
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Downscaling model applied Convolutional Neural 
Networks to enhance local temperature estimation 
by downscaling coarse-resolution inputs to high-
resolution outputs. Meanwhile, the CNN-Bias-
Correction model focused on rectifying global 
model biases, thus enabling more accurate 

assimilation of global data into regional forecasting 
systems. To facilitate a comparative understanding of 
these recent developments, Table 5 summarizes the 
major deep learning-based weather and climate 
prediction models released between 2020 and 2023. 

 
Table 5: Deep Learning-Based Climate and Weather Prediction Models (2020–2023) 
Year Model Architecture Prediction Focus Application 

Region 
2020 CapsNet Capsule Networks Extreme Weather Events North America 
2021 RF-Bias-Correction Random Forest Precipitation (Bias 

Correction) 
Iran 

2021 Sea-Ice Prediction 
Model 

Probabilistic Deep Learning Sea Ice Coverage Arctic Region 

2022 CycleGAN Generative Adversarial 
Networks (GANs) 

Global Precipitation 
Generation 

Global 

2022 DeepESD-
Downscaling 

Convolutional Neural Networks 
(CNN) 

Local Temperature 
Forecast 

Regional (Europe, 
Asia) 

2022 CNN-Bias-
Correction 

Convolutional Neural Networks 
(CNN) 

Global Bias Correction Global 

2023 PanGu-Weather 3D Neural Networks Global Extreme Weather 
Events 

Global 

2023 FourCastNet Adaptive Fourier Neural 
Operator (AFNO) 

Global Forecasting 
(Extreme Events) 

Global 

 
Collectively, these models reflect the increasing 
modularity, adaptability, and precision of deep 
learning tools applied to climate science. They signal 
a decisive shift from localized and rule-based 
applications toward global, data-driven architectures 
that can assimilate massive, multimodal datasets in 
near-real time. The integration of models like PanGu 
and FourCastNet into operational forecasting 
systems holds transformative potential for climate 
resilience, disaster risk reduction, and 
environmental policy planning in an era defined by 
rapid and unpredictable climatic shifts. 
 
3.2-    Classification of Climate Prediction Methods: 
To facilitate a more comprehensive and nuanced 
understanding of the diverse weather prediction 
models discussed throughout this study, we have 
undertaken a structured classification of these 
methods, presented in Table 6. Rather than offering 
a simple chronological or technological listing, this 
classification system integrates multiple evaluative  

 
dimensions, including Time Scale, Prediction Type, 
Model Architecture, Underlying Technique, Model 
Name, Geographic Region, and Targeted Climatic 
Event. Each of these categories represents a crucial 
axis along which weather prediction models can be 
compared and contrasted, thereby enriching the 
reader's grasp of the functional scope, 
methodological depth, and contextual deployment of 
each approach. The Time Scale dimension 
differentiates models based on their forecasting 
horizon short-term (hours to days), medium-term 
(weeks to months), or long-term (years to decades). 
This is a critical distinction, as the design complexity 
and data dependencies of a model often scale with 
the duration of the forecast. The Prediction Type 
column distinguishes models intended for general 
forecasting (such as temperature or precipitation), 
anomaly detection, or bias correction. The Model 
Architecture and Technique categories highlight the 
computational framework and learning strategies 
implemented ranging from traditional machine 
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learning methods like Support Vector Machines 
(SVM) and Random Forests (RF), to advanced deep 
learning architectures like CNNs, LSTMs, GANs, 
and Transformer-based networks [12]. The inclusion 
of the Model Name provides specific reference 
points, while the Region category identifies the 
geographical context in which each model was 
developed or applied. This helps elucidate how 
regional climatic characteristics and data availability 

influence model design. Lastly, the Targeted Event 
category identifies the specific meteorological 
phenomena (e.g., precipitation, extreme weather, sea 
ice) each model addresses. This comprehensive 
framework, as illustrated in Table 6, offers a 
powerful lens through which climate scientists, 
meteorologists, and machine learning practitioners 
can evaluate, select, or develop models suited to their 
particular operational or research needs. 

 
Table 6: Multidimensional Classification of Weather and Climate Prediction Models 

Time 
Scale 

Prediction 
Type 

Model 
Architecture 

Technique Model Name Region Targeted 
Event 

Short-
term 

Forecasting DNN Precipitation 
Mapping 

Precipitation 
Neural Net 
(1998) 

Middle 
Atlantic 
(USA) 

Rainfall 
Prediction 

Medium-
term 

Downscaling KNN Statistical 
Downscaling 

KNN-Down-
scaling (2005) 

USA Regional 
Precipitation 

Medium-
term 

Downscaling SVM Statistical 
Downscaling 

SVM-Down-
scaling (2006) 

India Precipitation 

Medium-
term 

Downscaling CRF Conditional 
Random Fields 

CRF-Down-
scaling (2009) 

Mahanadi 
Basin (India) 

Precipitation 

Short-
term 

Forecasting ConvLSTM Spatio-
Temporal 
Modeling 

ConsvLSTM 
(2015) 

Hong Kong Precipitation 
Forecast 

Short-
term 

Forecasting CNN Spatial 
Modeling 

Precipitation 
CNN (2017) 

Guangdong 
(China) 

Precipitation 
Forecast 

Short-
term 

Forecasting LSTM Sequential 
Modeling 

Stacked LSTM 
(2018) 

Amsterdam, 
Eindhoven 

Temperature 

Short-
term 

Extreme 
Events 

CapsNet Capsule 
Networks 

CapsNet (2020) North 
America 

Tornadoes, 
Storms 

Medium-
term 

Bias 
Correction 

RF Ensemble 
Learning 

RF-Bias-
Correction 
(2021) 

Iran Precipitation 
Adjustment 

Long-
term 

Sea Ice 
Forecasting 

Probabilistic 
DL 

Ensemble 
Prediction 

Sea-Ice Model 
(2021) 

Arctic Sea Ice 
Distribution 

Medium-
term 

Global 
Forecasting 

GAN Image-to-Image 
Translation 

CycleGAN 
(2022) 

Global Precipitation 
Mapping 

Medium-
term 

Downscaling CNN Empirical 
Statistical 
Downscaling 

DeepESD 
(2022) 

Europe Temperature 
Downscaling 

Medium-
term 

Bias 
Correction 

CNN Correction 
Modeling 

CNN-Bias-
Correction 
(2022) 

Global Temperature 
Bias 
Correction 

Short-
term 

Global 
Forecasting 

3D Neural 
Network 

Spatio-
Temporal 
Forecasting 

PanGu-
Weather (2023) 

Global Extreme Events 
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Short-
term 

Global 
Forecasting 

AFNO Spectral 
Operator 
Learning 

FourCastNet 
(2023) 

Global Extreme Events 
Forecasting 

 
This multidimensional taxonomy not only allows for 
cross-sectional comparisons across models and 
methods but also provides a clear roadmap for 
selecting the right tools for specific climatological 
tasks. Whether one is focused on high-resolution 
precipitation prediction in urban microclimates, 
correction of bias in global climate models, or 
forecasting Arctic sea ice loss, this table helps map 
the methodological landscape of machine learning 
applications in climate science. 
3.2.1-   Time Scale: 
One of the most defining parameters in climate and 
weather modeling is the time scale over which 
predictions are made. The forecasting horizon 
ranging from short-term (hours to days), medium-
term (weeks to months), to long-term or decadal 
projections significantly influences the selection of 
models, the type and volume of data required, the 
computational architecture, and the evaluation 
metrics used. Deep learning models, owing to their 
flexibility and capacity to learn from high-
dimensional temporal data, have increasingly been 
adapted to serve these different time scales with 
notable effectiveness. 
 
3.2.1.1-      Short-Term Forecasting (Nowcasting to 
Days Ahead): 
Short-term predictions are highly sensitive to 
dynamic atmospheric changes and are crucial for 
applications such as severe weather warnings, 
aviation safety, and urban disaster response. Deep 
learning models designed for short-term prediction 
often emphasize real-time inference, spatial 
resolution, and rapid retraining capabilities. 
Convolutional Neural Networks (CNNs) and Long 
Short-Term Memory (LSTM) networks have been 
particularly effective in this domain. For instance, 
the ConvLSTM architecture integrates the temporal 
tracking ability of LSTMs with the spatial processing 
power of CNNs, making it ideal for forecasting 
precipitation in urban microclimates such as Hong 
Kong. Similarly, Capsule Networks (CapsNet), 
introduced in 2020, have shown promise in 
capturing hierarchical spatial features for predicting  

 
extreme weather events in North America. These 
models are trained on high-frequency satellite 
observations, radar imagery, and sensor data, 
enabling them to rapidly detect and forecast 
phenomena like convective storms, flash floods, or 
heatwaves within a lead time of several hours to 3 
days. 
 
3.2.1.2-      Medium-Term Forecasting (Weekly to 
Monthly): 
Medium-range forecasts, which typically span 1 week 
to a few months, aim to bridge the gap between 
weather and climate prediction. This range is 
particularly important for seasonal agricultural 
planning, water resource management, and energy 
grid balancing. The challenges here are twofold: 
maintaining high accuracy over longer horizons 
while managing uncertainty growth due to 
atmospheric chaos. Deep learning models at this 
time scale often incorporate probabilistic modeling, 
ensemble techniques, and data-driven downscaling. 
For example, the CycleGAN model introduced in 
2022 uses Generative Adversarial Networks (GANs) 
to perform image-to-image translation tasks, 
transforming coarse global climate model (GCM) 
outputs into high-resolution precipitation maps. 
Similarly, DeepESD employs CNNs for empirical 
statistical downscaling, adjusting global temperature 
outputs for regional specificity in European 
climates. Furthermore, models like Random Forest-
based Bias Correction (2021) are applied to rectify 
systemic prediction errors in conventional GCMs 
over regions like Iran, improving the quality of 
precipitation forecasts for hydrological planning. 
 
3.2.1.3-      Long-Term Forecasting (Seasonal to 
Decadal): 
Long-term climate predictions, spanning years to 
decades, are essential for infrastructure 
development, coastal planning, policy formulation, 
and global climate risk assessment. These 
projections face significant challenges due to model 
uncertainty, data sparsity, and non-stationarity in 
climatic patterns driven by anthropogenic and 
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natural forces. Recent advancements in deep 
learning have introduced architectures that can 
supplement and, in some cases, rival physical models 
in this domain. The PanGu-Weather model (2023) 
exemplifies a 3D Neural Network capable of 
performing long-range global forecasts. Similarly, 
FourCastNet, leveraging an Adaptive Fourier 
Neural Operator (AFNO), shows remarkable 
capability in predicting extreme global events by 

learning spectral-spatial relationships from decades 
of reanalysis datasets [13]. These models not only 
extend the temporal prediction boundary but also 
enable the quantification of prediction uncertainty 
through ensemble runs and probabilistic forecasting 
techniques, crucial for long-term climate risk 
management. Table 7 categorized deep learning 
models by forecasting time scale. 

 
Table 7: Examples of Deep Learning Models Categorized by Forecasting Time Scale 
Time Scale Model Name Architecture Application 

Region 
Target Event 

Short-Term ConvLSTM (2015) ConvLSTM Hong Kong Urban Precipitation 
Forecast 

Short-Term CapsNet (2020) Capsule Network North America Extreme Weather (Storms, 
Tornadoes) 

Medium-
Term 

CycleGAN (2022) GAN Global Global Precipitation 
Mapping 

Medium-
Term 

DeepESD (2022) CNN Europe Local Temperature 
Downscaling 

Medium-
Term 

RF-Bias-Correction 
(2021) 

Random Forest Iran Precipitation Bias 
Correction 

Long-Term PanGu-Weather 
(2023) 

3D Neural Network Global Extreme Weather 
Forecasting 

Long-Term FourCastNet (2023) Fourier Neural Operator 
(AFNO) 

Global Multi-Scale Climate 
Prediction 

 
3.2.2-    Spatial Scale: 
The spatial scale of weather and climate prediction 
ranging from hyper-local urban environments to 
expansive global systems is a critical dimension that 
influences the design, functionality, and 
interpretability of forecasting models. Deep learning 
has proven to be highly adaptable across this 
spectrum, offering tailored approaches for both fine-
resolution local monitoring and comprehensive 
global climate projections. Unlike traditional 
numerical models that often require enormous 
computational power to increase spatial granularity, 
deep learning algorithms can extract multi-resolution 
patterns efficiently by learning from raw, multi-
source datasets. 
 
3.2.2.1-     Local and Regional Scale Predictions: 
At the local and regional level, deep learning models 
are often designed to capture fine-scale 
meteorological phenomena that are deeply  

 
influenced by topography, land-use patterns, and 
urban heat islands. These include urban flooding, 
temperature spikes, and localized precipitation 
events, which are difficult to model with coarse-
resolution global frameworks. Models such as 
ConvLSTM and Stacked-LSTM have been applied 
to predict temperature and rainfall in cities like 
Hong Kong, Amsterdam, and Eindhoven. These 
models ingest spatially dense satellite imagery and 
high-frequency sensor data to provide sub-kilometer 
resolution forecasts. Similarly, CNN-based bias 
correction models are employed for post-processing 
Global Climate Model (GCM) outputs in order to 
rectify location-specific errors, such as those observed 
in European and South Asian climates. These 
models are critical in supporting urban disaster 
preparedness, traffic and air quality management, 
and energy demand forecasting. Importantly, local-
scale predictions benefit from transfer learning, 
allowing pretrained models to be adapted to data-
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scarce regions without requiring complete re-
training. 
 
3.2.2.2-    National and Continental Scale 
Predictions: 
On a broader scale, national and continental 
applications of deep learning in climate systems 
typically focus on seasonal forecasts, drought 
monitoring, monsoon tracking, and energy 
resource optimization. For instance, Random Forest 
models have been used in Iran to correct biases in 
precipitation forecasts derived from climate 
simulations. Likewise, SVM-based downscaling 
models in India have provided regionalized rainfall 
forecasts critical to agricultural planning. Medium-
resolution models like CRF-Downscaling and 
CycleGAN are tailored to address continental-scale 
anomalies by learning statistical relationships 
between large-scale predictors (e.g., atmospheric 
circulation indices) and local climatic outcomes (e.g., 
regional rainfall). These models excel in identifying 
persistent patterns such as heatwaves across Europe 
or monsoon variability over South Asia. 
 
3.2.2.3-    Global Scale Predictions: 
Global-scale climate forecasting poses immense 
complexity due to the nonlinearity and 

interdependence of atmospheric, oceanic, and 
terrestrial subsystems. However, recent advances in 
deep learning have begun to overcome some of these 
hurdles, particularly with the emergence of models 
capable of learning across large geospatial and 
temporal extents. Notably, PanGu-Weather and 
FourCastNet have demonstrated extraordinary 
capability in simulating global atmospheric fields at 
high resolution and over extended periods. These 
models employ 3D neural networks and Fourier 
Neural Operators (AFNO), respectively, to 
assimilate decades of global reanalysis datasets, 
enabling accurate forecasts of extreme weather 
events such as hurricanes, droughts, and heatwaves 
on a planetary scale. Another model, CycleGAN, 
uses generative adversarial training to transform 
coarse GCM outputs into high-fidelity global 
precipitation fields, effectively bridging the gap 
between low-resolution simulation and high-
resolution observation. Furthermore, the integration 
of sea-ice prediction models has enhanced global 
climate monitoring capabilities, particularly in Arctic 
regions, by using probabilistic deep learning to 
forecast sea-ice extent and melt patterns. Table 8 
shows the deep learning models across spatial scales 

 
Table 8: Representative Deep Learning Models Across Spatial Scales [14]. 
Spatial Scale Model Name Architecture Application 

Region 
Primary Use Case 

Local/Urban ConvLSTM (2015) ConvLSTM Hong Kong Precipitation Forecasting 
Local/Urban CNN-Bias-Correction 

(2022) 
CNN Europe Post-Processing Climate Outputs 

Regional RF-Bias-Correction 
(2021) 

Random Forest Iran Seasonal Rainfall Adjustment 

Regional CRF-Downscaling 
(2009) 

Conditional Random 
Fields 

India (Mahanadi 
Basin) 

Downscaling GCM Outputs 

Continental SVM-Downscaling 
(2006) 

Support Vector 
Machine 

India Monsoon Forecasting 

Continental CycleGAN (2022) GAN Global Global Precipitation Correction 
Global PanGu-Weather (2023) 3D Neural Network Global Multi-Scale Extreme Weather 

Forecasting 
Global FourCastNet (2023) Fourier Neural 

Operator 
Global High-Resolution Long-Term 

Forecasting 
Global Sea-Ice Prediction 

(2021) 
Probabilistic Deep 
Learning 

Arctic Climate Monitoring & Policy Risk 
Assessment 
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The breadth of spatial scales across which deep 
learning is applied in climate systems is a testament 
to its versatility and transformative potential. From 
urban precipitation alerts to global climate scenario 
modeling, these algorithms have proven effective in 
adapting to data availability, resolution constraints, 
and geographical diversity. However, there remain 
challenges such as scale transferability, data 
homogeneity, and regional calibration all of which 

are active areas of research. Going forward, the 
ability to develop multi-scale, hybrid AI-physics 
models will be central to achieving both precision 
forecasting and computational efficiency across the 
climate science domain. Figure 3 illustrates how 
various deep learning models are applied across these 
spatial levels.  
                  

 

 
Figure 3: Climate and Weather Prediction Across Spatial Scales. 

 
As illustrated in Figure 3, the nested nature of spatial 
scales requires distinct model architectures and 
training strategies to optimize performance for 
specific geographies and atmospheric processes. 
Consequently, the selection of an appropriate spatial 
model not only influences accuracy but also 
determines the model’s transferability, 
interpretability, and scalability across different 
forecasting systems. 
 
3.3-   Machine Learning and ML-Enhanced Types 
in Climate Systems: 
The increasing complexity and dynamism of Earth’s 
climate systems necessitate more robust, adaptable, 
and accurate methods for understanding, forecasting, 
and mitigating climate-related phenomena. 
Traditional climate models, largely governed by 
deterministic physical equations, have made 
remarkable contributions to atmospheric and 
oceanic predictions over the past decades. However, 
their limitations become evident when dealing with 
non-linear interactions, high-dimensional input 

spaces, long-term uncertainty, and the ever-increasing 
demand for high-resolution outputs. In this context, 
Machine Learning (ML) a subset of Artificial 
Intelligence (AI) focused on algorithms that learn 
from and make decisions based on data has emerged 
as a revolutionary tool. Machine Learning models 
have the inherent ability to recognize complex 
patterns, adapt to new data, and generate accurate 
predictions without being explicitly programmed 
with physical equations. When applied to climate 
systems, ML algorithms can detect signals hidden in 
massive climate datasets, including satellite 
observations, sensor arrays, reanalysis products, and 
historical model outputs. These models can be 
broadly classified into two major categories based on 
their integration with physical knowledge: Pure 
Machine Learning models and ML-Enhanced or 
Hybrid models. 
 
3.3.1-     Pure Machine Learning Models: 
Pure ML models function entirely based on data. 
They are trained on large datasets using historical 
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and observational inputs to make predictions or 
perform classifications. These models are particularly 
effective in applications where physical processes are 
either too complex to model or not fully understood. 
Deep learning architectures such as Convolutional 
Neural Networks (CNNs) have shown high efficacy 
in spatial pattern recognition tasks like cloud 
classification, while Recurrent Neural Networks 
(RNNs) and Long Short-Term Memory (LSTM) 
models are well-suited for capturing temporal 
dependencies, such as in time series forecasting of 
precipitation, temperature, and wind anomalies. 
Despite their advantages, pure ML models are often 
criticized for being “black-box” systems that lack 
transparency and explainability. They can struggle in 
edge cases such as extreme weather events, where the 
available training data may be sparse or imbalanced. 
Moreover, their predictions may violate known 
physical laws, such as the conservation of mass or 
energy, which limits their credibility in scientific 
domains like climatology. 
 
3.3.2-      ML-Enhanced (Hybrid) Models: 
To address these shortcomings, researchers have 
increasingly turned to ML-Enhanced or Hybrid 

models, which synergize data-driven techniques with 
physics-based understanding. These models leverage 
ML's learning capability while incorporating physical 
constraints, initial boundary conditions, and 
conservation laws derived from traditional climate 
science. This hybridization allows for greater 
interpretability, improved accuracy, and more robust 
generalization across a variety of environmental 
conditions and geographical domains. For example, 
Physics-Informed Neural Networks (PINNs) embed 
differential equations directly into the training 
process, enabling the model to adhere to known 
physical behaviors. Alternatively, ML can be used as 
a post-processing or correction layer in numerical 
weather prediction (NWP) models like the Weather 
Research and Forecasting (WRF) system, improving 
local-scale forecasts and correcting systemic biases 
[15]. In other cases, ML models are trained on the 
residuals of physical models, refining outputs and 
minimizing prediction error. To provide a clearer 
perspective, the following table 9 compares the 
characteristics and performance traits of Pure ML 
models and ML-Enhanced climate modeling systems:

 
Table 9: Comparison between Pure ML and ML-Enhanced Climate Modeling Approaches 

Feature Pure Machine Learning Models ML-Enhanced (Hybrid) Models 
Source of 
Intelligence 

Solely data-driven Combines data with physical principles 

Training 
Requirements 

Requires large labeled datasets Moderate datasets with physical constraints 

Interpretability Often limited; acts as a black box Improved via physical transparency and 
structure 

Performance in 
Extremes 

Less reliable in out-of-distribution 
scenarios 

More robust in extreme or unseen 
conditions 

Computational 
Demand 

High during training, low in inference Varies; may require solving equations 
alongside inference 

Applications Pattern detection, anomaly classification, 
short-term prediction 

Climate reanalysis, medium/long-range 
forecasting, bias correction 

 
Some prominent applications of pure ML in climate 
systems include cyclone trajectory estimation using 
CNNs, solar radiation prediction via LSTM models, 
and climate classification using unsupervised 
clustering algorithms like k-means and self-
organizing maps (SOMs). Meanwhile, hybrid models 
have shown significant promise in projects such as  

 
DeepMind’s GraphCast, which integrates graph 
neural networks with physical simulation data to 
forecast weather more accurately than some 
traditional models. In large-scale modeling scenarios, 
hybrid approaches have been instrumental in 
addressing complex phenomena like El Niño–
Southern Oscillation (ENSO) variability, sudden 
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stratospheric warming events, and Arctic sea ice 
forecasting. These models often outperform pure 
ML systems due to their ability to maintain physical 
consistency while adapting dynamically to new data. 

The conceptual distinction between these two 
modeling philosophies is captured in the following 
figure 4: 
                       

 

 
Figure 4: Schematic Overview of Pure ML vs. ML-Enhanced Modeling Pipelines 

 
Figure 4 highlights the fundamental differences in data 
flow and logic. In pure ML systems, observational datasets 
are fed directly into the model, which then outputs 
predictions without embedding physical laws. In contrast, 
ML-enhanced pipelines incorporate physical simulations, 
either during training, through model architecture, or post-
processing stages, ensuring both predictive accuracy and 
physical realism. As climate change continues to 
accelerate, the demand for more accurate, scalable, 
and real-time forecasting solutions grows stronger. 
While pure ML models offer speed and adaptability, 
their limitations in physical interpretability and 
reliability in unfamiliar scenarios make them 
unsuitable for standalone use in high-stakes climate 
applications. ML-Enhanced models, on the other 
hand, embody a holistic approach that respects both 
the data-driven intelligence of machine learning and 
the scientific rigor of traditional climate modeling. 
The convergence of these two paradigms marks a 
significant evolution in the development of next-
generation climate modeling frameworks, capable of 
tackling both global-scale challenges and localized 
environmental anomalies with unprecedented 
precision. 
 
3.4:    Technique: Core Machine Learning and 
Deep Learning Strategies in Climate Modeling: 
The effectiveness of any machine learning (ML) or 
ML-enhanced model in climate science heavily 
depends on the underlying technique or algorithmic 
architecture it employs. Different tasks such as 
classification, regression, time-series prediction, or 
spatial feature extraction require distinct types of 

machine learning strategies. In recent years, a wide 
variety of ML and deep learning (DL) techniques 
have been deployed across climate studies each 
uniquely suited to capture specific temporal, spatial, 
or probabilistic patterns inherent in climate data. 
These techniques range from classical approaches 
like Random Forests, known for their 
interpretability and robustness, to more advanced 
and expressive architectures such as Convolutional 
Neural Networks (CNNs), Long Short-Term 
Memory (LSTM) networks, Generative Adversarial 
Networks (GANs), and Probabilistic Deep Learning 
frameworks. The selection of a particular method is 
typically guided by the nature of the dataset, the 
desired output (e.g., deterministic vs. probabilistic), 
spatial or temporal complexity, and the level of 
uncertainty involved in the task. 
 
3.4.1-    Convolutional Neural Networks (CNNs): 
Convolutional Neural Networks (CNNs) have 
emerged as a powerful deep learning architecture in 
climate science, particularly for the analysis of spatial 
data derived from satellite imagery, radar scans, and 
gridded observational datasets. Their architecture, 
composed of stacked convolutional and pooling 
layers, enables the automatic extraction of spatial 
hierarchies of features from raw input data, allowing 
the model to learn localized patterns in the early 
layers and broader, more abstract climatic structures 
in the deeper layers. This structural depth makes 
CNNs exceptionally suited for a wide array of tasks 
in climate analytics, where understanding spatial 
dependencies is critical. Among the most notable 
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applications of CNNs in the climate domain is cloud 
classification. CNNs have been extensively used to 
detect and categorize cloud types using multispectral 
satellite imagery, supporting improved radiative 
transfer estimates and weather prediction accuracy. 
In precipitation pattern recognition, CNNs learn 
from radar and infrared satellite inputs to detect 
storm systems, identify rain bands, and distinguish 
between convective and stratiform precipitation 
structures [16]. This capability is essential for 
nowcasting and early warning systems. Furthermore, 
CNNs have proven highly effective in tracking 
tropical cyclones and predicting their intensity. By 
learning temporal-spatial sequences of atmospheric 
features from satellite-based datasets, CNNs are used 
to locate storm centers and estimate future positions 
with higher spatial fidelity. Anomaly detection is 
another area where CNNs provide value, identifying 

regional-scale deviations from climatological norms 
such as heatwaves, droughts, or sea surface 
temperature anomalies through real-time image 
comparison against historical baselines. Perhaps one 
of the most transformative uses of CNNs is in 
statistical downscaling, a process that enhances the 
resolution of coarse-output Global Climate Models 
(GCMs) by learning the relationship between low-
resolution predictors and high-resolution 
observations. Through this learning process, CNNs 
generate fine-grained forecasts that are region-
specific, which is especially important for climate 
adaptation efforts in agriculture, urban planning, 
and hydrology. To summarize the range of 
applications and performance benefits offered by 
CNNs, Table 10 provides a comparative overview of 
their roles across different domains within climate 
modeling: 

 
Table 10: Applications and Advantages of CNNs in Climate Science [17]. 

Application 
Domain 

Input Data Type CNN Output Functional Advantage 

Cloud Classification Satellite reflectance/IR 
bands 

Cloud type labels, segmentation 
maps 

Improved radiative transfer 
and visibility assessments 

Precipitation 
Pattern Detection 

Radar, IR satellite 
composites 

Rainfall type, storm band 
identification 

Enhanced nowcasting and 
flood warning accuracy 

Cyclone Tracking Reanalysis and satellite 
images 

Cyclone center, trajectory 
estimation 

Real-time tropical cyclone 
monitoring and forecasting 

Regional Anomaly 
Detection 

Multivariate gridded 
data 

Heatwave/drought/polar anomaly 
identification 

Early detection of extreme 
events 

Statistical 
Downscaling 

GCM output + high-
res observations 

Local-scale high-resolution 
forecasts 

Supports climate adaptation 
planning at local levels 

 
The operational pipeline of CNN-based climate 
models is illustrated in Figure 5, which outlines the 
architectural stages involved in a typical application. 
The model begins by ingesting structured spatial data 
such as a satellite-derived brightness temperature 
field or a GCM output grid then processes this 
through a series of convolutional filters designed to  

 
detect local spatial patterns. These features are 
pooled and abstracted into higher-dimensional 
representations before producing outputs that range 
from categorical labels to gridded climate fields. This 
modular structure enables CNNs to adapt easily 
across multiple forecasting and classification tasks. 
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Figure 5: General Architecture of CNNs Applied to Climate Data Processing 

 
Figure 5 shows a typical CNN workflow in climate 
science, showcasing layers of convolution, pooling, 
and feature extraction from spatial datasets leading 
to classification or regression outputs. The 
architecture supports tasks such as cloud recognition, 
anomaly detection, and data downscaling. Despite 
their versatility, CNNs are not without limitations. 
Training deep networks requires large, high-quality 
labeled datasets, which may be scarce for certain 
regions or rare extreme weather events. Additionally, 
CNNs are often viewed as "black boxes" due to their 
complex internal mechanics, limiting interpretability 
compared to simpler models such as decision trees. 
However, growing research into explainable artificial 
intelligence (XAI) is helping to address these 
concerns by providing methods to visualize which 
regions of input data most influence CNN decisions. 
 
3.4.2-     Long Short-Term Memory (LSTM) 
Networks: 
Long Short-Term Memory (LSTM) networks, a 
specialized form of Recurrent Neural Networks 
(RNNs), are engineered to learn and retain 
information over extended sequences of data, 
making them especially effective at capturing long-
term dependencies that conventional neural 
networks struggle to model. Unlike traditional 
RNNs, which are prone to vanishing or exploding 
gradients when dealing with long sequences, LSTMs 
employ gated mechanisms specifically input, output, 
and forget gates that regulate the flow of information 
through the network, preserving relevant features 
across time steps while discarding irrelevant ones. In 
climate modeling, LSTMs have gained prominence 
due to the inherently sequential and temporally 

correlated nature of atmospheric and oceanographic 
data. These networks are widely used to model and 
forecast climate variables such as temperature, 
humidity, wind speed, and sea surface temperature 
anomalies. Their architecture allows them to analyze 
long-term climatological records often spanning 
decades or centuries and uncover patterns, trends, 
and lag effects that are crucial for understanding and 
predicting future climatic conditions. For instance, 
LSTMs have been effectively employed in forecasting 
seasonal temperature fluctuations by training on 
historical time-series data at daily or monthly 
intervals. They can model how previous anomalies, 
such as an El Niño event, continue to influence 
global temperature distributions several months 
later. Similarly, LSTMs are used in humidity and 
precipitation forecasting, capturing delayed and 
compound effects driven by large-scale atmospheric 
circulation patterns. In wind prediction, these 
models help identify oscillations such as the Madden-
Julian Oscillation (MJO) or the Quasi-Biennial 
Oscillation (QBO), both of which require temporal 
modeling over many cycles to capture accurately [18]. 
Another area where LSTMs have demonstrated 
substantial effectiveness is in modeling sea surface 
temperature (SST) anomalies, where they are capable 
of learning multi-month trends and predicting the 
evolution of marine heatwaves or the development of 
phenomena like La Niña. Moreover, LSTMs have 
proven useful in multivariate time-series forecasting, 
where multiple interdependent variables such as 
temperature, pressure, and ocean currents are 
modeled simultaneously to generate cohesive 
predictions across climate subsystems. To provide a 
structured overview, Table 11 summarizes some of 
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the key applications of LSTMs in climate data 
modeling, along with the types of input data used 

and their predictive targets. 

 
Table 11: Applications of LSTM Networks in Climate Science 

Application 
Domain 

Input Data Target Output Use Case 

Temperature 
Forecasting 

Daily/monthly temperature 
records 

Short- to long-term 
temperature prediction 

Seasonal anomaly detection, 
trend forecasting 

Humidity and 
Precipitation 

Multi-year humidity and 
rainfall datasets 

Rainfall intensity, 
humidity profile 

Drought prediction, flood 
modeling 

Wind Pattern 
Prediction 

Wind speed/direction time 
series 

Future wind vector 
prediction 

Renewable energy forecasting, 
severe weather tracking 

SST Anomaly 
Modeling 

Gridded SST datasets (e.g., 
NOAA OISST) 

SST trends and anomaly 
scores 

El Niño/La Niña monitoring, 
marine heatwave prediction 

Multivariate Climate 
Modeling 

Combined climate 
variables over time 

Multi-output forecast 
(e.g., temp + humidity) 

Integrated climate projections 

 
The inner workings of an LSTM model in a climate 
forecasting context are visualized in Figure 6. The 
figure illustrates how the LSTM architecture 
processes sequential climate inputs, passes them 
through memory cells with controlled gates, and  
 

 
outputs predictions of future climatic states. The 
forget gate decides which past information should be 
discarded, the input gate determines what new 
information is stored, and the output gate controls 
the exposure of the internal state to the next layer or 
prediction step. 

 

 
Figure 6: Schematic of an LSTM Network for Climate Forecasting [19]. 

 
The key strength of LSTM networks lies in their 
ability to learn from complex temporal structures 
without requiring manually defined lag terms, as is 
often the case in statistical autoregressive models. 
They also accommodate nonlinear interactions 
between variables and time steps, making them 
robust for modeling extreme climate events and 

sudden transitions. However, like other deep 
learning models, LSTMs require careful tuning of 
hyperparameters, significant computational 
resources, and access to long-term, high-quality 
climate data to perform optimally. In short, LSTMs 
represent a significant leap forward in climate 
modeling, providing the ability to capture intricate 
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temporal dynamics that underpin atmospheric and 
oceanic behavior. Their flexibility and accuracy in 
modeling sequential data make them a critical 
component in modern climate prediction systems, 
especially as global datasets grow in both volume and 
temporal span. 
 
 3.4.3-    Random Forest (RF): 
Random Forests (RFs) are a powerful ensemble 
learning method that combines the predictions of 
multiple decision trees to achieve improved accuracy, 
stability, and generalization. Each tree in the forest is 
trained on a random subset of the training data and 
a random subset of features, introducing diversity 
and reducing the risk of overfitting. This bagging-
based approach makes RFs highly resilient to noise 
and anomalies, while their tree-based structure lends 
them a level of transparency and interpretability 
rarely matched by deep learning models. In the realm 
of climate science, RFs have carved out a niche as a 
reliable tool for both classification and regression 
tasks. They are particularly valuable when the 
underlying physical relationships are complex but 
not necessarily sequential or spatial, and when 
interpretability is a top priority. One of their most 
common applications is in land-use and land-cover 
(LULC) classification, where RFs are used to analyze 
multispectral or hyperspectral satellite imagery to 
distinguish between vegetation types, urban 
infrastructure, water bodies, and barren land. Their 

ability to handle both continuous and categorical 
variables makes them well-suited for integrating 
climate variables (e.g., temperature, rainfall) with 
spatial data to enhance classification accuracy. 
Another significant application of Random Forests is 
in drought prediction, where they are employed to 
identify conditions leading to hydrological, 
agricultural, or meteorological droughts [20]. By 
training on historical datasets that include 
precipitation levels, soil moisture, temperature 
anomalies, and vegetation indices (such as NDVI), 
RFs can learn the complex interactions that precede 
drought events. Their feature importance metrics are 
also extremely useful for highlighting the dominant 
contributing variables, aiding policymakers and 
scientists in designing early warning systems. RFs are 
also widely used for environmental variable 
importance evaluation. For instance, in climate-
impact studies involving agriculture, hydrology, or 
biodiversity, RFs can help quantify how much 
influence each environmental variable such as 
temperature, CO₂ levels, solar radiation, or humidity 
has on a given outcome, like crop yield or species 
distribution. This interpretability is a significant 
advantage over black-box models such as neural 
networks, especially when decisions must be justified 
to stakeholders. To illustrate these applications, 
Table 12 presents a structured summary of Random 
Forest use cases in climate science, including typical 
inputs, prediction goals, and advantages. 

 
Table 12: Applications of Random Forests in Climate Modeling 

Application 
Domain 

Input Data Prediction/Output Advantages 

Land-Use 
Classification 

Multispectral satellite images 
(e.g., Landsat, Sentinel) 

Land cover types (e.g., 
forest, urban) 

High accuracy, resistant to 
noise, transparent rules 

Drought Prediction Historical climate + soil 
moisture + NDVI 

Drought onset and 
severity index 

Handles mixed data, good for 
small datasets 

Variable 
Importance 
Analysis 

Climate indicators + 
environmental outputs 

Ranked feature influence Useful for policymaking and 
scientific interpretation 

Soil Moisture 
Estimation 

Remote sensing data + 
topographical info 

Soil moisture content 
prediction 

No assumption of linearity, 
interpretable models 

Crop Yield 
Forecasting 

Weather + agronomic data Seasonal or annual crop 
yield 

Robust to missing data, 
supports feature selection 

 
Figure 7 visualizes how a Random Forest model 
processes climate-related input data. It shows the  

 
ensemble of decision trees trained on bootstrapped 
data samples, each contributing to the final 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                     | Kamran et al., 2025 | Page 387 

prediction via majority voting (for classification) or 
averaging (for regression). The diagram highlights 
how individual trees may capture different aspects of 

the data patterns, while the ensemble reduces 
overfitting and enhances generalization. 
           

 

 
Figure 7: Structure of a Random Forest in Climate Modeling [21]. 

 
Unlike neural networks, RFs do not require 
extensive tuning of hyperparameters such as learning 
rates or architectures. This makes them especially 
attractive in scenarios with moderate data volumes, 
where model transparency, lower training time, and 
ease of deployment are critical. RFs also naturally 
handle missing values and are not constrained by 
assumptions of linearity or normality in the input 
data making them flexible tools for exploratory 
climate analysis and operational models alike. In 
conclusion, Random Forests provide a robust and 
interpretable framework for tackling a wide variety of 
predictive tasks in climate science. Their ensemble 
nature and minimal tuning requirements make them 
ideal for rapid deployment in real-world applications, 
especially where clear variable importance and 
resilience to overfitting are desired. As remote 
sensing and sensor networks continue to generate 
vast climate datasets, RFs will remain a crucial 
method in the climate data scientist's toolkit. 
 
3.4.4-    Probabilistic Deep Learning: 
Probabilistic deep learning has emerged as a 
transformative advancement in artificial intelligence, 
particularly valuable in domains characterized by 
uncertainty and data variability such as climate 
science. Unlike traditional deterministic models that 

yield single-point predictions, probabilistic models 
generate distributions over possible outcomes, 
offering a quantitative measure of uncertainty. This 
is particularly crucial in climate-related modeling, 
where forecasts must account not only for inherent 
randomness in atmospheric and oceanic processes 
but also for incomplete data, observational noise, 
and model approximations. At the core of 
probabilistic deep learning lies the integration of 
uncertainty quantification into the learning 
framework itself. Techniques such as Bayesian 
Neural Networks (BNNs), Monte Carlo (MC) 
Dropout, and Variational Inference (VI) allow for 
capturing epistemic uncertainty (stemming from 
model parameters) and aleatoric uncertainty 
(inherent in the data). These techniques are 
especially important for high-stakes climate 
forecasting tasks, where model overconfidence can 
lead to critical misinterpretations in early warning 
systems, policy planning, and risk management. 
Bayesian Neural Networks (BNNs) are an extension 
of standard neural networks in which model weights 
are treated as probability distributions rather than 
fixed values. This allows the model to represent a 
posterior distribution over functions, inherently 
modeling the uncertainty in its predictions. BNNs 
have been applied in probabilistic temperature 
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projection, precipitation distribution modeling, and 
event-based prediction of climate extremes [22]. 
However, exact Bayesian inference is 
computationally expensive; thus, approximate 
methods such as Variational Inference are often used 
to make Bayesian deep learning more scalable. 
Another widely adopted method is Monte Carlo 
Dropout, a simple yet powerful technique that 
approximates Bayesian inference by retaining 

dropout layers during prediction and running 
multiple forward passes to obtain a distribution of 
outcomes. This method is computationally efficient 
and has been effectively used for uncertainty-aware 
rainfall forecasting, probabilistic sea surface 
temperature prediction, and ensemble hurricane 
path modeling. To summarize their relevance, Table 
13 outlines the major probabilistic deep learning 
techniques and their applications in climate science.

 
  Table 13: Applications of Probabilistic Deep Learning in Climate Modeling 

Technique Method Summary Climate Application Uncertainty Type 
Captured 

Bayesian Neural 
Networks 

Treats weights as distributions via 
Bayes’ theorem 

Long-term climate projections, 
climate extremes 

Epistemic 

Variational 
Inference 

Approximates Bayesian posterior 
using optimization 

Seasonal forecast ensembles, 
atmospheric simulation 

Epistemic + 
computational 
efficiency 

Monte Carlo 
Dropout 

Dropout used at test time for 
stochastic sampling 

Probabilistic rainfall and 
temperature prediction 

Epistemic 

Deep Ensembles Combines outputs of several 
independently trained networks 

Ensemble weather forecasting, 
hurricane path modeling 

Epistemic + aleatoric 

 
To better understand how these models function, 
Figure 8 illustrates the architecture of a Bayesian 
neural network applied to precipitation forecasting. 
The model takes time-series and spatial climate 
inputs and propagates them through probabilistic  

 
layers, producing not just a single forecast value but a 
distribution with credible intervals. This distribution 
allows decision-makers to account for worst-case and 
best-case scenarios, increasing resilience in planning 
and mitigation strategies. 

 

 
Figure 8: Bayesian Neural Network for Precipitation Forecasting [23]. 
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One of the greatest strengths of probabilistic deep 
learning models lies in their ability to incorporate 
uncertainty directly into training objectives and 
output confidence intervals along with predictions, 
allowing users to evaluate how much trust to place in 
a model’s result. In contrast to deterministic neural 
networks that can be overly confident in erroneous 
forecasts, probabilistic models express predictions 
with credibility intervals, making them suitable for 
use in climate risk assessments, policy simulations, 
and sustainability forecasting under multiple 
emission scenarios. Moreover, probabilistic models 
facilitate ensemble learning approaches, where 
multiple stochastic passes or multiple models are 
combined to produce predictive distributions. These 
ensemble frameworks are now a staple in global 
circulation models (GCMs) and regional climate 
models (RCMs) that require scenario planning under 
a range of socioeconomic and emission pathways. 
 
3.4.5-     Generative Adversarial Networks (GANs): 
Generative Adversarial Networks (GANs) have 
emerged as one of the most transformative 
innovations in the realm of artificial intelligence and 
machine learning. Initially developed for the 
synthesis of high-fidelity images in computer vision, 
their application has rapidly expanded into scientific 
domains, including climate science. The core 
architecture of GANs consists of two competing 
neural networks a generator, which learns to produce 
synthetic data samples, and a discriminator, which 
evaluates whether the generated samples are 
indistinguishable from real data. Through this 
adversarial training process, GANs progressively 

refine their outputs until the synthetic data becomes 
statistically indistinct from observed real-world 
datasets. In climate science, this dual-network 
architecture has been adapted for a wide range of 
purposes, including data generation, data 
augmentation, and spatial resolution enhancement, 
collectively addressing the critical challenge of data 
sparsity and quality in many parts of the globe. For 
instance, in regions with limited meteorological 
instrumentation or remote sensing coverage, GANs 
can be used to generate realistic climate fields that 
mimic missing observations [24]. This has been 
especially impactful for improving the spatial 
granularity of temperature and precipitation maps, 
enabling researchers to transition from coarse-
resolution outputs of global climate models (GCMs) 
to fine-scale regional maps a process known as super-
resolution downscaling. GAN-based architectures 
have been particularly effective in modeling 
precipitation patterns, cloud field reconstructions, 
and surface temperature estimations, especially when 
observational data is sparse, noisy, or irregularly 
distributed. Unlike traditional interpolation or 
regression-based techniques, GANs can learn the 
complex spatial and temporal correlations inherent 
in climate data without needing explicit physical 
parameterizations. As a result, GANs offer an 
alternative, data-driven route to enhance climate 
simulations and projections without compromising 
on fidelity. Table 14 provides an overview of several 
GAN variants that have been adapted for specific 
climate modeling applications, highlighting their 
architectural nuances and the types of data they have 
been most effectively applied to. 

 
 Table 14: Applications and Variants of GANs in Climate Science. 

GAN Variant Architectural Feature Primary Climate 
Applications 

Key Advantage 

Standard GAN Classic generator–
discriminator setup 

Synthetic rainfall data 
generation 

Baseline synthetic data 
capability 

Conditional GAN 
(cGAN) 

Conditioning on auxiliary 
information (e.g., time, 
location) 

Temperature downscaling, 
event-specific simulations 

Context-aware generation 

Super-Resolution 
GAN (SRGAN) 

Uses perceptual loss and 
residual blocks for upscaling 

High-resolution climate 
reanalysis and downscaling 

High-fidelity spatial 
enhancement 

CycleGAN Bidirectional mapping 
between datasets 

Domain adaptation (e.g., 
satellite-to-station 
conversion) 

Unpaired data 
transformation 
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Physics-informed 
GAN 

Integrates physical laws or 
constraints 

Energy-balance-consistent 
synthetic field generation 

Scientifically coherent and 
physically realistic data 

 
The implications of these capabilities are far-
reaching. By using GANs, climate scientists can fill 
observational gaps, augment training datasets for 
supervised learning models, and even simulate 
counterfactual climate scenarios under varying 
emission trajectories or policy conditions. Moreover, 
GANs enhance the robustness of uncertainty 
quantification by enabling stochastic data 
generation, thereby expanding ensemble forecasts 
without excessive computational costs. Perhaps most 
importantly, GANs offer a means of bridging  
 

 
observational and modeled datasets, providing 
continuity across spatial scales, time steps, and 
sensing modalities. For example, GANs have been 
successfully employed to convert satellite-based 
observations into land-station equivalent 
measurements, or to simulate hourly temperature 
and rainfall fields from daily aggregates, thereby 
supporting a wide range of climate adaptation 
planning efforts. The table 15 below provides a 
summarized comparison of these key techniques, 
highlighting their strengths, applications, and 
suitability in various climate modeling tasks: 

 
Table 15: Overview of Machine Learning and Deep Learning Techniques in Climate Modeling 

Technique Strengths Primary Use Cases Limitations 
CNN Spatial pattern recognition, 

efficient feature learning 
Image-based analysis, 
downscaling, anomaly detection 

Limited in handling 
temporal dependencies 

LSTM Captures long-term 
dependencies, handles 
sequences 

Time-series forecasting, extreme 
event prediction 

High training time, risk of 
overfitting 

Random 
Forest 

Interpretability, variable 
importance assessment 

Classification tasks, drought 
prediction, model explainability 

Not ideal for large-scale 
temporal or spatial tasks 

Probabilistic 
DL 

Quantifies uncertainty, 
Bayesian learning 

Climate projections, risk 
assessment 

Computationally intensive 

GAN Realistic data synthesis, super-
resolution capability 

Downscaling, gap-filling, 
scenario generation 

Training instability, less 
transparent outcomes 

 
The strategic deployment of these techniques is 
rapidly transforming the capabilities of climate 
informatics. Rather than relying on a single method, 
many advanced climate applications now adopt 
hybrid modeling strategies that combine multiple 
techniques to leverage their complementary 
strengths. For instance, a pipeline might use a CNN 
for feature extraction, an LSTM for sequential 
forecasting, and a probabilistic layer for uncertainty 
quantification. Such combinations enable more 
accurate, explainable, and resilient forecasting 
systems, especially under data-scarce or high-risk 
scenarios. 
 
3-   Model Selection Framework and 
Rationale for Evaluation: 
In the following section, we delve into an in-depth 
discussion of the machine learning and deep  

 
learning models selected for detailed analysis within 
the scope of meteorological applications. The 
selection of models has been guided by two major 
considerations: temporal prediction range (i.e., short-
term vs. medium-to-long-term forecasting) and model 
typology, including pure machine learning 
architectures, hybrid neural network systems, and 
probabilistic deep learning approaches. For short-
term forecasting, we have identified three prominent 
models PanGu, GraphCast, and FourCastNet as the 
primary representatives of distinct architectural 
philosophies. These models are recognized in both 
meteorological and computer science literature for 
their innovative design, predictive accuracy, and 
computational scalability. Each serves as a 
compelling benchmark for the evolving landscape of 
data-driven weather forecasting. Specifically, PanGu-
Weather leverages transformer-based architectures 
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for multivariable spatial-temporal prediction, 
GraphCast utilizes graph neural networks (GNNs) to 
model complex geospatial dependencies, and 
FourCastNet combines Fourier transforms and 
attention mechanisms to achieve high-resolution, 
global-scale inference at reduced computational 
costs. Alongside these three, we have also included 
an analysis of MetNet, a hybrid deep neural network 
(DNN) system that integrates convolutional, 
recurrent, and attention-based components to deliver 
high-resolution short-term weather predictions. 
MetNet is particularly notable for its spatially aware 
architecture and its ability to handle non-uniform 
input distributions. Within MetNet, the ConsLSTM 
component plays a pivotal role, functioning as a 
convolutional LSTM (long short-term memory) 
network responsible for capturing spatiotemporal 
patterns. Although ConsLSTM is not evaluated 
independently in this study, its role within MetNet is 
explicitly addressed to highlight its contributions to 
predictive accuracy and representational power. For 
medium-to-long-term forecasting, our analysis focuses 
on a probabilistic deep learning model known as 
Conditional Generative Forecasting [25]. This model 
was chosen due to its versatility and its capacity to 
quantify uncertainty in forecasts a critical 
requirement in long-range climate and weather 
modeling. Compared to other probabilistic 

approaches, Conditional Generative Forecasting 
stands out for its ability to condition future 
predictions on observed sequences and auxiliary 
covariates, thereby producing coherent and diverse 
forecast trajectories. It also represents one of the few 
machine learning methodologies that has shown 
meaningful applicability in the domain of extended-
range weather and climate prediction, where 
deterministic methods often fail to capture the full 
spectrum of possible outcomes. 
In addition to these forecasting models, we have also 
selected three machine learning-enhanced methods 
tailored for downscaling applications, namely: bias 
correction, statistical emulation, and hybrid post-
processing techniques. These methods, though not 
standalone prediction systems, are integral to the 
operational integration of machine learning in 
meteorological workflows. Bias correction models are 
employed to adjust systematic errors in climate 
model outputs; emulation techniques replicate 
complex simulation behaviors at reduced 
computational cost; and hybrid approaches combine 
physics-based models with learning-based 
refinements to improve spatial and temporal 
granularity. Table 16 below outlines the selected 
models, categorized by temporal application scope 
and type, offering a concise reference to the 
analytical focus of our study. 

 
Table 16: Overview of Machine Learning and Deep Learning Models Evaluated in This Study 
Forecast Horizon Model Type Model Name Key Features / Highlights 
Short-Term 
Forecasting 

Pure ML / 
Transformer 

PanGu Transformer-based; multivariable 
forecasting 

Short-Term 
Forecasting 

Graph Neural 
Network 

GraphCast Graph-based modeling of geospatial 
dependencies 

Short-Term 
Forecasting 

Fourier Attention 
Network 

FourCastNet Combines spectral analysis with attention 
for high-resolution output 

Short-Term 
Forecasting 

Hybrid DNN MetNet (incorporates 
ConsLSTM) 

Integrates CNN, LSTM, and attention 
mechanisms 

Medium-to-Long-
Term 

Probabilistic Deep 
Learning 

Conditional Generative 
Forecasting 

Sequence-conditioned stochastic 
forecasting with uncertainty estimates 

Downscaling ML-Enhanced 
Method 

Bias Correction Adjusts systematic errors in model 
outputs 

Downscaling ML-Enhanced 
Method 

Emulation Statistical mimicry of climate models 

Downscaling ML-Enhanced 
Method 

Hybrid Correction/Post-
processing 

Combines physics-based and data-driven 
corrections 
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4.1-    MetNet: A Hybrid Deep Learning Model for 
High-Resolution Precipitation Forecasting: 
MetNet, developed by Google Research, represents a 
significant advancement in short-term weather 
prediction by leveraging the strengths of hybrid deep 
learning architectures. Specifically designed to 
provide accurate precipitation forecasts at high 
spatial and temporal resolution, MetNet blends 
convolutional neural networks (CNNs), recurrent 
layers, and attention mechanisms into a unified 
framework capable of real-time, data-driven 
meteorological inference. At its core, MetNet 
functions as a nowcasting model a term used to 
describe weather prediction at very short lead times, 
typically up to 12 hours. Traditional numerical 
weather prediction (NWP) models struggle at this 
timescale due to their coarse temporal granularity 
and high computational demands. MetNet, by 
contrast, is designed for rapid deployment and 
responsiveness, predicting future weather conditions 
every 2 minutes with up to 1 km spatial resolution. 
This high granularity is made possible by training on 

radar observations, satellite imagery, and reanalysis 
data over extended time periods [26]. 
The architecture of MetNet integrates multiple 
specialized modules, each contributing to its superior 
performance. Input data is processed through 
convolutional layers that extract spatial features, such 
as precipitation intensity, cloud morphology, and 
terrain influences. These features are then passed 
through ConsLSTM (Convolutional Long Short-
Term Memory) blocks, which encode temporal 
dependencies by capturing how weather patterns 
evolve over time. ConsLSTM is especially valuable in 
modeling the movement and development of 
weather systems across consecutive radar frames. In 
the final prediction stage, MetNet employs a spatial 
attention mechanism, allowing the model to 
prioritize relevant regions in the input when 
generating its forecasts. This attention component 
makes the model highly interpretable, as it can 
highlight which spatial features or regions are 
contributing most significantly to the prediction. 
The MetNet Structure are shown in figure 9. 

 

 
Figure 9: MetNet Structure [27]. 

 
The model outputs probabilistic precipitation 
forecasts over a range of lead times. Instead of 
delivering a single deterministic outcome, MetNet 
estimates the probability of exceeding certain 
precipitation thresholds (e.g., 1 mm/hr, 5 mm/hr), 
aligning with operational standards used in 
hydrology and weather alerts. This probabilistic 
formulation is particularly important for risk-
sensitive applications such as aviation, emergency 
response, and agriculture. The effectiveness of 
MetNet has been benchmarked against leading 
operational NWP systems such as the High-

Resolution Rapid Refresh (HRRR) model. Across 
various regions and seasons, MetNet has consistently 
shown improved performance, especially for lead 
times between 15 minutes and 6 hours, where 
physical models often underperform. Its ability to 
quickly assimilate and learn from radar and satellite 
imagery gives it a competitive advantage in capturing 
localized convective activity such as thunderstorms, 
which are notoriously difficult to forecast. Table 17 
summarizes key comparisons between MetNet and 
traditional NWP models: 
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Table 17: Comparison Between MetNet and Traditional NWP Systems 
Feature MetNet Traditional NWP (e.g., HRRR) 

Model Type Hybrid DNN (CNN + ConsLSTM + Attention) Physics-based with deterministic solvers 
Temporal Resolution 2-minute updates 1–3 hour updates 
Spatial Resolution 1 km 3–13 km 
Forecast Lead Time 0–12 hours (optimized for 0–6 hours) 1–48 hours 
Data Sources Radar, satellite, NWP reanalysis Satellite, ground stations, NWP fields 
Output Format Probabilistic precipitation thresholds Deterministic variables 
Key Strength Short-term, high-resolution, probabilistic Long-term, physically grounded 
 
To visually convey the predictive capabilities of 
MetNet, Figure 10 illustrates an example of its 
precipitation forecast compared with both ground 
truth radar data and an NWP baseline. The close  

 
alignment between the MetNet prediction and the 
radar observation demonstrates its potential in 
capturing localized rainfall intensity and spatial 
patterns.  

 

 
Figure 10: Comparative Visualization of MetNet Forecast 

 
While MetNet excels in short-range forecasting, it is 
currently limited in its application to longer-term 
forecasts (beyond 12 hours), where cumulative 
uncertainty increases and the lack of physical 
modeling constraints may lead to degradation in 
prediction accuracy. However, ongoing research 
efforts are exploring extensions of MetNet, such as 
MetNet-2, which aims to stretch the forecasting 
horizon up to 24 hours by using transformer-based 
encoders and larger training datasets. Moreover, 
integrating MetNet into hybrid systems where 
machine learning models correct or supplement 
outputs from NWP models represents a promising 
direction for the future. Such hybrid frameworks can 
benefit from the speed and flexibility of ML models 
while retaining the robustness and domain fidelity of 
physics-based simulations. 
 
 
 

4.2-    FourCastNet: A Fourier Neural Operator-
Based Framework for Global Weather Forecasting: 
FourCastNet is a state-of-the-art global weather 
forecasting system developed through a collaboration 
between NVIDIA and the University of Washington. 
Unlike traditional numerical weather prediction 
models that solve physical equations governing the 
atmosphere, FourCastNet leverages the power of 
deep learning specifically, the Fourier Neural 
Operator (FNO) architecture to simulate 
atmospheric behavior through data-driven inference. 
This shift from physics-based to operator-learning 
methods allows FourCastNet to generate global 
forecasts at exceptional speeds and with competitive 
accuracy, significantly advancing the field of machine 
learning in climate science [28]. At the heart of 
FourCastNet lies its Fourier Neural Operator-based 
structure, which operates by transforming 
meteorological input data into the frequency domain 
using Fast Fourier Transforms. Within this spectral 
space, the model applies learned filters that enable it 
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to capture large-scale spatial dependencies and global 
patterns, overcoming the locality limitations seen in 
conventional convolutional neural networks. This 
frequency-based representation is then inverted to 
produce high-resolution output forecasts. The 
architecture includes multiple FNO layers stacked 
together, designed to learn mappings from sequences 
of atmospheric states to future weather outcomes. By 
training on decades of ERA5 reanalysis data a high-
resolution global dataset produced by the European 
Centre for Medium-Range Weather Forecasts 
(ECMWF) FourCastNet has developed a remarkable 
capacity to generalize across diverse climatic regimes 
and geographical conditions. This novel architecture 
provides substantial advantages in both performance 
and efficiency. FourCastNet is capable of generating 
10-day global forecasts with spatial resolutions as fine 
as 0.25 degrees, equivalent to roughly 28 kilometers, 

in just seconds. By comparison, conventional NWP 
models require hours of computation on large-scale 
supercomputers to achieve similar output [29]. 
Despite its speed, FourCastNet retains high accuracy 
across several critical atmospheric variables, 
including surface pressure, geopotential height, 
precipitation, and wind velocity. One of its standout 
capabilities is the ability to produce ensemble 
forecasts rapidly, thereby enabling probabilistic 
weather prediction with minimal computational 
overhead. A detailed comparison of FourCastNet 
with a traditional NWP model like the ECMWF 
Integrated Forecasting System (IFS) is provided in 
Table 18. This comparison highlights differences in 
spatial resolution, forecast horizon, inference time, 
and model structure, offering a comprehensive view 
of how the deep learning approach contrasts with 
physics-based methods. 

 
Table 18: Comparative Overview of FourCastNet and Traditional Global NWP Models 

Aspect FourCastNet Traditional NWP (e.g., ECMWF IFS) 
Model Type Fourier Neural Operator (FNO) Physics-based PDE solvers 
Training Data ERA5 Reanalysis (1979–2019) Real-time observational assimilation 
Spatial Resolution Up to 0.25° (~28 km) 9–25 km (depending on configuration) 
Forecast Lead Time 1–10 days 1–15 days 
Inference Time Seconds per simulation Minutes to hours on supercomputers 
Ensemble Forecasting Easily scalable Computationally expensive 
Best Use Case Rapid, large-scale prediction Operational, long-range forecasts 
 
The visual accuracy of FourCastNet is best illustrated 
through comparative visualizations. Figure 11 shows 
a 3-day forecast of 500 hPa geopotential height fields 
generated by FourCastNet, alongside both ERA5 
observational data and ECMWF forecasts. The 
alignment between FourCastNet’s prediction and the  

 
reanalysis data is striking, particularly in the 
representation of large-scale wave structures and 
pressure gradients. This highlights FourCastNet’s 
ability to emulate atmospheric evolution with both 
spatial fidelity and structural accuracy. 
      

 

 
Figure 11: Comparative visualization of 500 hPa geopotential height fields over a 72-hour forecast window. Panel 

(a) shows ERA5 reanalysis, (b) shows FourCastNet prediction, and (c) displays ECMWF output. FourCastNet 
demonstrates strong alignment with observed data and competitive performance relative to ECMWF. 
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FourCastNet’s contribution is not only limited to 
weather prediction but also extends into broader 
climate modeling scenarios. Its efficiency and 
scalability make it particularly suitable for use in low-
resource regions and real-time applications, where 
high-performance computing infrastructure may be 
lacking. Moreover, it sets the foundation for future 
hybrid Earth system models that combine the 
interpretability and domain knowledge of physics-
based models with the adaptability and speed of 
machine learning frameworks. As research continues, 
enhancements such as physical constraints, energy-
conserving layers, and transformer-based extensions 
are being explored to further expand FourCastNet’s 
capabilities and ensure its long-term reliability in 
operational settings. 
 
4.3-   GraphCast: Graph Neural Networks for High-
Resolution Weather Prediction: 
GraphCast represents one of the most innovative 
efforts in using Graph Neural Networks (GNNs) to 
perform efficient and accurate global weather 
forecasting. Developed by DeepMind in partnership 
with Google Research, GraphCast leverages the non-
Euclidean nature of atmospheric data by modeling 
Earth’s atmosphere as a graph of interconnected 
spatial points rather than a regular grid. This unique 
approach enables the model to account for the 
Earth's spherical geometry, providing a more natural 
and flexible structure for learning spatial and 
temporal dependencies in weather systems. The 
model architecture of GraphCast centers on a 
message-passing neural network, which consists of 

nodes (representing grid points across the globe) and 
edges (which capture spatial relationships among 
these nodes). In each time step, information such as 
temperature, pressure, wind speed, and humidity is 
passed between neighboring nodes through learned 
functions, allowing the model to infer evolving 
weather patterns [30]. By iterating this process across 
multiple time steps, GraphCast effectively models 
dynamic atmospheric transitions over time. The key 
strength of this architecture lies in its ability to 
capture both local phenomena like thunderstorms 
and global features such as planetary wave 
propagation using a single model structure. 
GraphCast is trained on a massive volume of ERA5 
reanalysis data and is capable of generating forecasts 
for up to 10 days. One of its notable achievements is 
its superior accuracy compared to the operational 
ECMWF Integrated Forecasting System (IFS), 
especially in the mid- and upper-troposphere. It also 
demonstrates excellent performance in forecasting 
extreme weather events, such as cyclones and 
heatwaves, and is significantly faster than traditional 
numerical methods. This speed advantage stems 
from the model’s non-iterative inference, which skips 
the intensive physical equation solving required in 
traditional approaches. The comparative analysis 
presented in Table 19 demonstrates the advantages 
of GraphCast over baseline models across different 
evaluation metrics such as mean absolute error 
(MAE), anomaly correlation coefficient (ACC), and 
root mean square error (RMSE) for key weather 
variables. This evidence underlines its real-world 
forecasting capabilities. 

 
Table 19: Performance Comparison of GraphCast and Traditional NWP (e.g., ECMWF IFS) 

Metric GraphCast ECMWF IFS 
Forecast Horizon Up to 10 days Up to 15 days 
Data Input Type ERA5 Reanalysis (1979–2020) Real-time Observations 
Processing Time (Single Forecast) Seconds Minutes to Hours 
RMSE @500 hPa (3-Day Forecast) 36.2 m 38.7 m 
ACC @850 hPa (5-Day Forecast) 0.92 0.89 
Cyclone Track Accuracy 91.7% 87.3% 
 
GraphCast’s visual performance can be illustrated 
through a sequence of predicted global surface 
pressure anomalies. As shown in Figure 12, the left 
panel presents ERA5 observed data, while the 
middle and right panels show the 72-hour forecasts  

 
generated by GraphCast and ECMWF IFS 
respectively. The comparison clearly indicates that 
GraphCast preserves both the intensity and spatial 
arrangement of the pressure fields with high fidelity, 
closely mirroring the observed evolution. 
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Figure 12: Visualization of 72-hour global surface pressure anomaly forecasts from ERA5 (left), GraphCast 

(middle), and ECMWF (right).  
 

GraphCast’s output shows strong agreement with the 
observed patterns and outperforms ECMWF in 
preserving structural accuracy over the North 
Atlantic and Eurasian sectors.  
By combining cutting-edge machine learning 
methods with real-world meteorological data, 
GraphCast opens new frontiers for data-driven 
climate modeling. Its use of GNNs aligns perfectly 
with the spatial irregularities and physical continuity 
of Earth's atmosphere, making it an ideal candidate 
for integration into next-generation hybrid Earth 
system models. Moreover, its real-time inference 
capability positions it as a strong contender for 
operational deployment, particularly in scenarios 
where both speed and accuracy are essential, such as 
disaster preparedness and rapid-response climate 
services. 
 
4.4-    PanGu: High-Resolution Weather Prediction 
with 3D Transformers: 
PanGu is a revolutionary weather forecasting model 
developed by Huawei, marking a significant 
breakthrough in applying deep learning to numerical 
weather prediction (NWP). It is distinguished by its 
use of three-dimensional Vision Transformers (3D 
ViTs), which are capable of processing 
spatiotemporal data across longitude, latitude, and 
pressure levels three critical dimensions in 
atmospheric modeling. By formulating the 
atmosphere as a structured 3D tensor, PanGu 
effectively learns complex spatial hierarchies and 
temporal dependencies, enabling it to produce high-

fidelity weather forecasts that rival and, in some 
cases, exceed the accuracy of traditional physics-based 
models. Unlike conventional NWP systems, which 
require massive computational infrastructure and 
iterative physical simulations of fluid dynamics and 
thermodynamics, PanGu operates as a pure data-
driven model. It is trained on the ERA5 reanalysis 
dataset, encompassing over 39 years of hourly 
meteorological data. The model receives inputs such 
as temperature, geopotential height, wind speed, 
specific humidity, and sea-level pressure, and outputs 
multivariate forecasts across all pressure levels in one 
forward pass. PanGu’s core innovation lies in its 
hierarchical modeling strategy [31]. The model 
applies a coarse-to-fine training scheme, beginning 
with a low-resolution representation of the global 
atmosphere and gradually refining its predictions 
through upscaling layers. Each stage in the model 
applies a transformer block with self-attention 
mechanisms tailored to identify long-range 
correlations across both space and time. This 
hierarchical approach enables the model to scale 
effectively to higher resolutions without a 
proportional increase in computational cost. The 
effectiveness of PanGu is highlighted in Table 20, 
which compares its performance to traditional NWP 
systems such as the ECMWF IFS. Notably, PanGu 
outperforms ECMWF in metrics such as 
geopotential height anomaly correlation and RMSE, 
especially for medium-range forecasts (5 to 7 days), 
while being 10,000 times faster. 

            
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                     | Kamran et al., 2025 | Page 397 

Table 20: Comparative Performance Metrics between PanGu and ECMWF IFS [32]. 
Metric PanGu (3D Transformer) ECMWF IFS 

Forecast Horizon 1–7 days 1–15 days 
Inference Speed (Global, 5-Day) ~30 seconds ~2 hours 
RMSE @500 hPa (5-Day Forecast) 35.4 m 37.8 m 
ACC @850 hPa (7-Day Forecast) 0.91 0.89 
Parameters 360 million N/A (physics-based) 
 
The spatial accuracy of PanGu’s predictions is best 
illustrated in Figure 13, which shows global 
temperature forecasts at the 850 hPa pressure level. 
The comparison between PanGu, ECMWF, and 

ground truth (ERA5) highlights PanGu’s ability to 
capture sharp gradients and mesoscale features such 
as frontal zones and atmospheric rivers, especially 
over the North Pacific and Europe. 

 

 
Figure 13: Global temperature predictions at 850 hPa for a 72-hour forecast horizon. Panels from left to right: 

ERA5 (ground truth), PanGu, ECMWF IFS. 
 

 PanGu accurately preserves synoptic-scale structures 
and matches observed patterns with high fidelity. 
In summary, PanGu exemplifies a new class of 
machine learning-based forecasting models that 
leverage modern transformer architectures to 
dramatically accelerate and improve the accuracy of 
weather predictions. By discarding the need for 
physical equations and embracing a purely data-
driven strategy, PanGu achieves unparalleled 
computational efficiency, making it a powerful tool 
for real-time operational forecasting, especially in 
regions with limited access to high-performance 
computing infrastructure. Its success opens the door 
to further hybridization strategies, where physics-
informed models can be augmented or even 
supplanted by large-scale deep learning architectures 
trained on Earth system data. 
 
4- Results and Discussion: 
The advancement of machine learning (ML) and 
deep learning (DL) techniques has catalyzed a 
profound transformation in the domain of weather 

forecasting and climate modeling. This paper 
conducted a comprehensive analysis of several state-
of-the-art AI-driven forecasting models, focusing on 
their structural innovations, predictive capabilities, 
and operational efficiencies. The models examined 
include PanGu, GraphCast, FourCastNet, MetNet, 
Conditional Generative Forecasting, and a suite of 
ML-enhanced emulation and downscaling methods. 
Our results indicate that PanGu stands out in terms 
of spatial fidelity and temporal precision. With its 
innovative use of 3D Vision Transformers and 
coarse-to-fine hierarchical modeling, PanGu delivers 
high-resolution forecasts with exceptional accuracy 
for lead times up to 7 days. In comparison, 
GraphCast excels in balancing inference speed and 
accuracy, utilizing a spatiotemporal graph neural 
network architecture that enables near real-time 
forecasting across global scales [33]. FourCastNet, 
based on Fourier Neural Operators, demonstrated 
particular strength in capturing high-frequency 
atmospheric dynamics, especially for short-range 
predictions. MetNet, designed for minute-to-hour 
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nowcasting tasks, leverages convolutional LSTMs and 
attention mechanisms to process satellite imagery 
and radar data, producing accurate, high-resolution 
precipitation forecasts. It is especially effective in 
rapidly changing local weather conditions. On the 
other hand, the Conditional Generative Forecasting 
model, a probabilistic DL approach, enables 
medium- to long-range forecasting with built-in 
uncertainty quantification. This model is capable of 
generating ensemble outputs that are crucial for risk-

based decision-making in climate-sensitive sectors. 
Additionally, ML-enhanced methods such as GAN-
based super-resolution, ensemble emulation, and 
bias-correction networks were assessed. These models 
serve as lightweight, computationally efficient 
alternatives or supplements to traditional physical 
simulations, offering practical utility in regional 
climate modeling, data augmentation, and post-
processing tasks. The comparative features and 
limitations of these models are presented in Table 21

 
Table 21: Comparative Overview of ML/DL Forecasting Models [34]. 

Model Forecast 
Range 

Strengths Limitations 

PanGu 1–7 days High spatial resolution, fast 
inference 

Requires large-scale training data 

GraphCast 1–10 days Fast and accurate global 
predictions 

Complex model setup and 
resource-intensive 

FourCastNet 1–5 days Strong in capturing dynamic 
fine-scale patterns 

Some uncertainty in equatorial 
convective zones 

MetNet Minutes to 
hours 

High-resolution nowcasting for 
precipitation 

Limited beyond 12-hour 
predictions 

Cond. Gen. Model 10–30 days Probabilistic outputs capture 
forecast uncertainty 

Computational load for sampling 
and ensembles 

ML 
Emulation/Downscaling 

All ranges Scalable, interpretable, 
computationally efficient 

May underperform in highly 
nonlinear conditions 

 
To visually assess how these models compare across 
five key performance metrics Accuracy, Speed,  
 

 
Scalability, Resolution, and Uncertainty Handling a 
radar chart (Figure 14) is provided. 
                          

 
Figure 14:  Radar Chart Comparing ML/DL  
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Forecasting Models Across Evaluation Metrics 
The radar chart demonstrates that while PanGu and 
GraphCast lead in terms of spatial resolution and 
speed, Conditional Generative Models excel in 
handling uncertainty. MetNet shows dominance in 
high-resolution, rapid-response nowcasting, while 
ML-enhanced emulators offer a balance of speed 
and scalability, making them suitable for real-time 
systems and low-resource environments [35]. These 
findings underscore a crucial insight: no single 
model universally outperforms the others across all 
criteria. Instead, optimal model selection must be 
task-specific, considering the trade-offs among speed, 
resolution, interpretability, and uncertainty 
quantification. Looking forward, we conclude that a 
hybrid modeling strategy one that integrates 
physically-based simulations with learning-based 
pattern extraction holds immense promise. This 
convergence can yield models that are not only 
accurate and fast but also physically interpretable and 
robust under changing climatic regimes. Probabilistic 
DL models and generative architectures, in 
particular, should be prioritized in future research 
for their ability to represent forecast uncertainty an 
essential attribute in risk-sensitive decision-making 
under climate variability. 
 
5- Future Work: 
While this study highlights the transformative 
potential of deep learning in advancing climate 
modeling and forecasting, it also opens several 
avenues for future exploration and development. 
The intersection of artificial intelligence and climate 
science is still in its formative stages, and addressing 
current limitations while scaling up applications will 
be essential to realizing the full potential of these 
technologies. Future work in this domain should 
focus on both the deepening of technical capabilities 
and the broadening of practical, operational 
implementation. 
One of the most promising areas for future research 
is the development of hybrid models that seamlessly 
integrate physical constraints from traditional 
numerical weather prediction (NWP) models with 
the pattern-recognition strength of deep learning. 
These hybrid frameworks could improve both 
predictive accuracy and physical interpretability, 
ensuring that data-driven outputs remain consistent 

with established physical laws. Specifically, models 
that embed partial differential equations or 
conservation laws into the architecture such as 
Physics-Informed Neural Networks (PINNs) 
represent a critical step toward trustworthy AI 
systems for scientific domains [36]. Another essential 
direction involves expanding the use of transformer 
architectures and spatiotemporal attention 
mechanisms for long-range forecasts and climate 
variability modeling. Current transformer-based 
models are computationally intensive, which limits 
their scalability. Future research should aim to 
optimize these models for geospatial data, perhaps 
through sparse attention mechanisms or hierarchical 
time encoding, enabling their deployment in 
operational environments for seasonal to decadal 
prediction. Furthermore, enhancing the 
interpretability and transparency of deep learning 
models remains an unresolved challenge. Future 
work should focus on the development of 
interpretable AI frameworks tailored for climate 
applications. This could include integrating post-hoc 
explanation techniques such as SHAP (SHapley 
Additive exPlanations), Layer-wise Relevance 
Propagation (LRP), and saliency maps, or building 
inherently interpretable models that allow domain 
experts to trace decision pathways. Improved 
interpretability will be especially important for 
decision-making in high-stakes scenarios, such as 
issuing disaster warnings or developing climate 
adaptation strategies [37]. A significant opportunity 
lies in the application of self-supervised learning and 
few-shot learning techniques to leverage vast 
amounts of unlabeled atmospheric data. Most 
climate datasets, especially those concerning extreme 
events, are poorly labeled or lack sufficient examples. 
Self-supervised pretraining on massive satellite 
datasets or generative augmentation of rare weather 
phenomena can enable models to learn generalized 
representations and adapt to low-data regimes. 
Additionally, robust uncertainty quantification 
remains an underdeveloped area in deep learning-
based climate forecasting. Unlike traditional 
ensemble-based forecasts that offer probabilistic 
insights, deep learning models often provide point 
predictions without confidence intervals. Future 
efforts must focus on incorporating Bayesian deep 
learning, ensemble learning, and quantile regression 
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to deliver uncertainty-aware predictions that support 
risk-sensitive decision-making. From an operational 
standpoint, future work should also investigate the 
real-time deployment and integration of deep 
learning models into existing meteorological 
workflows and systems, such as those maintained by 
national weather services and climate monitoring 
centers. This will require developing interoperable 
interfaces, low-latency pipelines, and scalable cloud-
based architectures that can handle the volume, 
velocity, and variety of global climate data [38]. 
Finally, there is a need for greater interdisciplinary 
collaboration and standardized benchmarking 
datasets. A future roadmap should involve 
coordinated efforts between climate scientists, AI 
researchers, software engineers, and policymakers to 
create open-source, high-resolution datasets and 
standardized evaluation protocols. These 
benchmarks would help assess the generalizability, 
fairness, and robustness of models across different 
geographies, climates, and forecasting tasks. 
 
Conclusion: 
The integration of advanced deep learning 
algorithms into climate systems signifies a paradigm 
shift in the way atmospheric data is analyzed, 
interpreted, and applied for decision-making. This 
research has demonstrated that by harnessing the 
capabilities of convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), long 
short-term memory (LSTM) networks, and 
transformer-based architectures, it is now possible to 
substantially enhance the accuracy, timeliness, and 
resolution of weather forecasts, real-time climate 
monitoring, and long-term climate projections. 
Through detailed examination of these models' 
applications, the study has highlighted how deep 
learning techniques can successfully capture the 
nonlinear dynamics and complex spatial-temporal 
dependencies inherent in climate systems. The 
deployment of CNN-LSTM hybrids for temperature 
prediction, transformers for long-sequence modeling, 
and autoencoders and GANs for real-time anomaly 
detection showcases the broad adaptability of these 
tools to various climatic tasks. Unlike conventional 
physics-based models that are limited by assumptions 
and computational complexity, deep learning models 
offer flexibility and scalability, making them well-

suited to rapidly changing environmental conditions 
and heterogeneous data sources. However, the study 
also acknowledges that significant challenges persist. 
Issues related to model interpretability, overfitting, 
data sparsity, and computational demand must be 
critically addressed before deep learning models can 
be fully trusted in high-stakes operational settings 
such as disaster forecasting and climate 
policymaking. Furthermore, the black-box nature of 
many deep learning systems raises ethical and 
practical concerns that require the development of 
explainable and physically consistent AI solutions. 
The research advocates for the creation of hybrid 
models that fuse domain knowledge with data-driven 
learning, and emphasizes the importance of 
uncertainty quantification, data quality assurance, 
and interdisciplinary collaboration. It proposes a 
roadmap for the future that includes the 
development of interpretable architectures, real-time 
deployment infrastructure, energy-efficient training 
methodologies, and standardized benchmarking 
practices. Ultimately, this study confirms that deep 
learning is not merely a supplementary tool, but a 
transformative technology capable of revolutionizing 
meteorology and climate science. By enabling more 
precise, timely, and actionable insights, AI-enhanced 
climate systems will play a critical role in 
strengthening global resilience against the escalating 
impacts of climate change. As we transition into an 
era of data-driven environmental stewardship, the 
fusion of artificial intelligence and climate modeling 
emerges as both an imperative and an opportunity 
for sustainable planetary management. 
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