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 Abstract 

An understanding of agricultural drought is critical in the management of 
agricultural lands especially in times of drought stress, which has adverse effects on 
agriculture. Management of drought, especially in its early stages, relies heavily on 
indices that are typically derived from onsite observations; thus coordination is 
often disadvantaged owing to the numerous factors that lead to drought. This 
study aims to improve the accuracy of monitoring drought conditions via deep 
learning techniques assisted by remote sensing data. A custom dataset of 544 JPG 
images (150x150 pixels) was compiled, consisting of 335 images representing 
drought conditions and 209 images without drought. Different deep learning 
architecture were executed employing varied layer and activation function 
configurations. It was observed that where models were developed employing 
multiple layers and using ReLU and Sigmoid activation functions, the accuracy 
obtained was as high as 97%. Emphasizing the gradual but progressive 
applicability of deep learning models for more efficient and forward-looking 
agricultural drought relying on satellite images. This mode of drought management 
is on the increase and enhances the overall effectiveness and viability of the 
agricultural drought monitoring systems. 
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INTRODUCTION
Agricultural drought is one of the most pressing 
problems globally since it hampers food production, 
disrupts economic development, and jeopardizes the 
environment. Because climate change keeps on 
exaggerating the consistency of weather patterns, it is 
imperative that effective observations and 
management of drought occurrences be integrated. 
Most of the conventional agricultural drought 
monitoring practices that are based on actual ground 
measurements and historical evidence tend to limit 
themselves in the geographical and temporal 
distribution of the drought incident, which is very 
common especially in large agro-rangelands [1]. 
ADOS and related technologies have been a boon in 
such conditions in assessing agricultural drought and 
other related impacts. For example, NASA’s 
Moderate Resolution Imaging Spectrum (MODIS) 

satellite missions and Sentinel-2 launched by the 
European Space Agency provide high-definition 
images that can be used to evaluate vegetation, soil 
moisture content, and other vitals stressed by 
drought. These technologies help in real-time 
monitoring of large extents of area which is essential 
for making timely decisions in agricultural 
management with relevant information [2]. Distant 
sensing with the integration of deep learning 
techniques has elevated the art of drought 
assessment and monitoring. Deep learning allows the 
features extraction from huge amounts of data to be 
performed in an automatic as well as very complex 
way, particularly by means of Convolutional Neural 
Networks, Long Short-Term Memory networks, and 
more recently, Transformer models [3]. For example, 
[2] showed that by using a model based on the 
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Transformer it was possible to improve drought 
prediction by involving many data sources and 
understanding the relationships between climatic 
fields and drought symptoms. These pursued are yet 
showing great efficiency utilizing deep learning. [3] 
adopted such an approach, obtaining better drought 
forecasts employing a hybrid LSTM-CNN which 
exploits time-series multispectral satellite images. 
Moreover, this ability to merge vital information 
from different data sources is considered a step 
forward than the normal methods which are effective 
on assessing impacts of droughts on agriculture [4]. 
However, quite a few obstacles remain such as data 
availability, model interpretability, and real-time 
processing requirements [5]. How such challenges are 
addressed will be vital in reaping maximum benefits 
from both deep learning as well as remote sensing 
technologies towards effective agricultural drought 
monitoring. Deep learning is a machine learning 
paradigm that has become popular in the last few 
years owing to its considerable transformation across 
many applications such as computer vision, natural 
language processing, and healthcare. Simply put, 
deep learning applies the use of Artificial Neural 
Networks as functions which model multiple 
processed feature vectors through many layers in 
large datasets. The ability of such structures to learn 
embedded images has helped them greatly, which in 
turn has made them most useful in tasks requiring 
high complexity in terms of power and data [6]. One 
such evolution of deep learning is Convolutional 
Neural Networks (CNN) model, where image 
processing capabilities have improved to immense 
possessor. CNNs efficiently recognize edges, shapes, 
and textures in an image, thus making them 
successful in tasks such as image classification [7]. 
The ImageNet competition, for example, has 
illustrated that CNNs can deliver better results 
compared to previous planar classifications, with 
impressive shot advances, and new standards for 
image retrieval have been laid. Yet one more notable 
progress in deep learning research has been the 
development of Transformer models, which have 
revolutionized the field of natural languages 
processing. This model is based on self-attentive 
mechanisms and is very useful for such applications 
as processes, translates, analyses sentiments and even 
generates text [8]. The emergence of the models such 

as BERT and GPT has proven the effectiveness of 
the Transformers in understanding relationships 
between textual subjects therefore performing better 
on various tasks [9]. The application of deep learning 
has expanded from the area of image and language 
processing to other disciplines like health care, 
financial services, and agriculture. For instance, deep 
learning technologies are becoming more popular in 
diagnosing diseases, assessing the risks and in 
forecasting situations and events [10]. In the 
agricultural field, deep learning is utilized to assess 
the health status of plants, forecast their output and 
investigate their illnesses with the aid of remote 
sensing information incorporated into the decision-
making process [2]. Nonetheless, despite that success, 
deep learning still experiences several obstacles 
including the need of large amounts of labeled data, 
high computation cost, and issues on prospects of 
understanding models. These issues are being 
researched by the use of methods such as transfer 
learning, data augmentation and model pruning 
which the researchers seek to augment the 
accessibility and efficiency of deep learning 
techniques [11] 
 
Literature Review: 
Lessons learned and subsequent innovations have 
stimulated widespread global interest and the 
broadening of the scope of Remote Sensing research. 
Such information is usually obtained from space-
borne remote sensing satellites, whereby several 
programs such as MODIS of NASA and Sentinel of 
ESA have started to capture important vegetation, 
soil moisture, and climatic parameters. According to 
[12] normalized vegetation index NDVI, soil 
moisture index SMI derived from satellite images 
have some relevance in calculating drought impact 
and its potential risk to crop production. The 
application of deep learning has improved the 
process and quality of drought extraction from 
remote sensing images. Two types of Artificial Neural 
Networks (ANN)- Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) do 
well in high dimensional data. Research carried out 
by [13] used CNNs to classify drought conditions 
using MODIS images and accurately classified 
drought in different levels. Researchers have 
harnessed the use of deep learning models and 
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combined it with the remote sensing data for better 
and advanced drought monitoring systems. One 
such example is the one described in [14] which 
performed the task of agriculture drought forecasting 
in China utilizing a hybrid deep learning network 
comprising CNN and Long Short-Term Memory 
LSTM modules. This method was able to successfully 
detect both spatial and temporal structures 
improving the overall accuracy of predictions. Many 
case studies have shown the real-world applications 
of these methods in different regions of the world. 
For example, [15] attempted to study the use of deep 
learning methods for the assessment of droughts in 
the USA. They emphasized how the augmentation of 
Drought Assessment and Control systems can be 
improved with the integration of numerous satellite 
images using advanced machine learning techniques. 
While these advancements hold promise, the use of 
these technologies in practice remains a challenge. 
Some of the problems were pointed out by [16] like 
data quality, the explain ability of the model, and 
inadequate real-time monitoring systems of the 
weeds. The authors point out the need for standard 
procedures and the use of ground-truth data for 
better model performance. 
This study, on the contrary, timely observes agrarian 
drought using an appropriate framework on deep 
learnings and spatial data from South Asia. For the 
period of tropic events performed during the 2010 to 
2021, moisture content is assessed and assists in 
addressing crop production and water resource 
availability challenges. The use of remote sensing 
complements the conventional assessment of 
drought impacts and places emphasis on the need for 
incorporation of remotely sensed variables. It finally 
encourages use of cross sectoral approaches in 
enhancing the drought resilience capabilities of 
agricultural systems and improving drought 
management. (17 Water Management). Prolonged 
periods of little or no rainfall that occur during the 
growing season resulting in insufficient soil moisture 
resources are referred to as agricultural droughts and 
hinder proper management of food resources and 
water systems. Inability to monitor land phenomena 
by ground observation systems led to the increase of 
the use of remote sensing systems. Enhanced thermal 
and optical remote sensing techniques especially 
different vegetation indices enable more 

sophisticated evaluation of plant spectral 
Liechtenstein and evaluate vegetation Extension and 
drought stress. (Arthur et al 20 2021). To assess 
agricultural drought across three phonological stages 
in this study, a Deep Feed Forward Neural Network 
(DFNN) was used along with other soil vegetation 
and precipitation data. This model was more 
effective than other traditional models like Random 
Forest and Support Vector Machine. Even within 
regional differences, the DFNN consistently revealed 
a strong prediction capability and stability of drought 
indices. To enhance the resilience of agrarian systems 
to drought and understand its complex nature the 
study suggests the amalgamation of deep learning 
with the remote sensing data to carry out drought 
assessment more successfully [18]. Most of the 
research work regarding droughts in Pakistan during 
the years 2020 to 2022 was undertaken by Southeast 
Asian countries, whose economies are severely 
affected by these natural calamities like the current 
study. He emphasizes the importance of using 
remote sensing for the assessment of drought 
indicators, such as soil moisture and vegetation 
condition, and spatial data science strategies for 
improving decision making and hence resource 
governance. The purpose of this research work is the 
enhancement of the knowledge on drought behavior 
and the improvement of resilience on water-related 
issues in a changing world through the application of 
multi-sensor data and the formulation of drought 
indices. [19]. Most of them evaluate particularly 
vegetation indices from multispectral optical remote 
sensing and this study advocates that the main data 
sources for drought monitoring are over such 
literature. However, the application of multi-sensor 
products and machine learning for big data 
measurements remains a challenge despite the 
increasing interest in drought studies. More efforts 
in the future towards reducing the impacts of 
drought in Southeast Asia will have to adapt policies 
focusing on the normalizing practices that integrate 
EO and socio-economic aspects and enhance data 
sharing in order to enhance resilience and 
adaptation strategies [20]. This study implements 
composite drought indices for Shandong Province 
North China using remote sensing data sourced 
from multivariable linear regression during the years 
2013 to 2017. It emphasizes how efficiently the 
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Membrane Capacitive Dilution Index (MCDI) based 
upon the Standardized Precipitation 
Evapotranspiration Index (SPEI) correlates with 
meteorological droughts. Regarding the successful 
management of drought use, the authors 
cumulatively emphasize the need for incorporating 
satellite and field studies towards providing relevant 
information to the stakeholders and policymakers 
[21]. This study describes drought and climate 
change as very complicated relations and reveals the 
great impact which drought has on social and 
ecological sectors. To measure and analyze those 
characteristics of drought, it introduces the system of 
standard indices and including such indices as the 
Standardized Precipitation Index and the 
Standardized Terrestrial Water Storage Index. Also, 
with the intention of evaluating the efficacy of these 
indices the research uses the history of decade-long 
changes of vegetation and precipitation variability 
[22]. 
 
Methodology: 
In this methodology, it is described how the 
architecture and the deployment of the 
Convolutional Neural Network (CNN) is done for 
the purpose of predicting various drought conditions 
with the use of multiple data inputs which includes 
soil meteorology and satellite images. In order to 
enable different formats like, CSV and GeoTIFF to 
be made use of, it requires starts with the process of 

data collecting. Data preprocessing includes 
normalization imputation for missing values, 
diversity enhancement through satellite image 
augmentation and labeling datasets according to the 
drought severity. The architecture of CNN is in such 
a way that there is ReLU activation to incorporate 
non linearity convolutional layers with different sized 
filters + several layers of inputs to accommodate 
different data types. Structural complexity is reduced 
using max pooling layers while the final layer can 
either be designed for regression or classification 
tasks. The learning process incorporates 
backpropagation while the model parameters were 
mainly optimized using grid or random search 
techniques. Using several performance metrics 
including accuracy, precision, and root mean square 
error, the developed model was then assessed using 
the test data set. The cloud based applications are 
launched after the training of the model for the 
application so that stakeholders can interact with the 
easy to use application. What is correct may highlight 
that, in order to ensure that the model learns and 
useful for the management of the agriculture and 
water resources in the long term, it is periodically 
updated through monitoring and retraining. It may 
also be the case that future improvements will be 
targeted at improving the explain ability of the 
models or incorporating additional data sources to 
enhance the prediction of the models. 

 
Figure 1:   Process model for drought detection Description: 

 
The first step involves collecting a relevant dataset 
that includes various drought characteristics such as 
soil moisture, precipitation and vegetative index in 
the proposed architecture wtih the illustration of 
figure 1. The dataset will then proceed to data 
preprocessing in order to prepare the dataset amnd 
quite ready for a Conv2D network. Contrary to 
classical CNNs, the architecture will comprise of a 
lot of layers, which are – several physically 
unconnected inputs related to different types of 

input data, which is followed by hidden layers which 
perform convolution operations in order to 
understand the spatial patterns and their features. To 
break the linearity of these hidden layers, activation 
functions such as ReLE will be employed. The 
network will finally end with one or more output 
layers, which according to the overall concept are 
meant for the prediction of weather conditions with 
regards to drought based on the processed data 
provided through the input layer. The model will be 
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trained through the method of backpropagation 
where weights will be adjusted through training with 
a dataset that is labeled and shows levels of drought. 
Hyper-parameters such as the learning rate and batch 
size will also be played around to improve 
performance. The CNN will then be assessed on its 

predictive ability using a validation dataset, which 
was completely separate from the training data. 
Finally, it is possible to use the trained model for 
forecasting future droughts, which would come in 
handy in planning agricultural and water resources. 

 
Figure 2. Architecture of a Convolutional Neural Network (CNN) for Image Classification. 

 
Figure 2 shows architecture model which consists of 
three convolutional-pooling blocks with increasing 
filter sizes (32, 32, 64, 64), followed by a fully 
connected (FC) layer leading to the output. "C" 
denotes convolution, "O" denotes operation 
(activation), and "N" denotes normalization. The 
model's input layer corresponds to the point where 
the data is entered especially image data called array 
of picture pixels. Data is then sent into the first three 
convolutional layers which employ first learnable 
filters or kernels that are depicted in the image and 
are swept over via element-wise multiplication and 
the summing of all the images to fashion certain 
maps that can encapsulate edges, environments, and 
regular patterns. The number of filters determines 
the depth of particular feature map; for instance, in 
the first layer because there were 32 filters, 32 
distinct feature maps were produced. Every 
convolution layer is followed by the inclusion of a 
Rectified Linear Unit (ReLU) ann activation so as to 
import non-linearity in which each negative valued 
pixel is set to 0 and the positive valued ones reserved 
to assist in the learning of intricate interactions from 
the data. Right after ReLU activation, the following 
max pooling layers serve to take the spatial size of the 
feature maps down but preserving important content 
by taking out the maxima in the separated segments. 
It is through this hierarchy of convolutional layers 
followed by releu activations and max pooling that 
allows the model to learn progressive manner 
features where the first features captured low levels 
and the last layers captured high levels supreme 
features. In the end, the feature maps after being 

flattened are directed to one or more fully connected 
layer(s) where the model perf 
 
TensorFlow:  
TensorFlow’s strength lies in the interaction between 
the programming instruments of very high-level 
dataflow programming and low-level parameter 
server-based systems in that it allows to express the 
state and computations of an algorithm as a single 
dataflow graph. The graph vertices in TensorFlow are 
capable of representing computations with operands 
that have variable states which is not the case with 
other dataflow approach. Its network is limited but 
able to span barriers using tensors that are arrays of 
arbitrary dimensionality that move across the 
network’s nodes via edges connecting them[24]. This 
is because both computations and state management 
are integrated in a single entity and under such 
circumstances, it is possible for the programmer to 
try different ways of decomposing problems in 
parallel such as offloading computations to servers 
that manage shared states thereby reducing the 
network overhead. [23] 
 
Rectified linear units (ReLU).  
The application of neural network architectures is 
enhanced by replacing the standard hyperbolic 
tangent activation function with ReLU (Rectified 
Linear Unit) whose origins stem from biological 
processes as well. Values defined by (f(x) = max (0 x)) 
are sharpened point where f (x) is equal to or less 
than 0 and linear relief or input is called zero. The 
ReLU is the activation function for hidden layers 
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while the softmax is the activation function for the 
output. In spite of that Softmax is frequently 
employed for classification in this investigation the 
softmax cross-entropy function shall be employed for 
regulating the network’s weight parameters called 
theta whereas ReLU is taken over as predictive unit. 
Repetition of the above “No Go” explaining as 
objective during testing. To revise these parameters, 
the section of the gradient computed by the ReLU 
classifier is transferred backwards. [24]. 
 
Data augmentation for improving the model: 
The given validation error and the given training 
error will always decrease in order to make useful 
Deep Learning models. If you want to achieve this, it 
is often the case that data augmentation is used for 
this purpose. Since the modified data will be able to 

cover a wider range, the dichotomy of the training 
and validation set and any subsequent testing set will 
be lower. 
 
Dataset: 
543 images were collected through a search on 
Google.com where 335 images are in drought 
conditions while 209 images are not. All images are 
in JPG format and of the size 150 x 150 pixels. The 
images present equal proportions of the drought 
affected and non-affected regions and hence a model 
for predicting drought would be easy to build, train, 
and test with this dataset. Some set of images 
showing the condition of drought and no drought is 
shown is provided in table-1.  The same procedures 
have been adopted here as then so the same file 
formats and size will be used in future analysis. 

 
Table 1: Set of images for Drought and without Drought condition  

S.no Drought No-Drought Format 
01 

  

JPG 

02 

  

JPG 

03 

  

JPG 

04 

  

JPG 

05 

  

JPG 

06 

  

JPG 

07 

  

JPG 
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08 

  

JPG 

09 

  

JPG 

10 
 
 

  

JPG 

 
Results and Discussion: 
The evaluation of the CNN architecture for the 
prediction of droughts through the experiments 
showed different levels of success that were affected 
by the different configurations of layer types and 
activation functions presented in table-2 and figure 
3. The first experiment implemented a simple 
architecture composed of one convolution layer (32 
filters) and one max pooling layer and one fully 
connected layer with 64 neurons and ReLU 
activation. The structure was sufficient to produce an 
accuracy of 97%, proving that indeed the main 
aspects of drought conditions were captured shown 
in figure 4. The second experiment maintained this 
structure but included one more convolution layer 
and kept accuracy at the rate of 97%, showing that 
more features were being extracted but the model 
was still generalizing. On the other hand, in the 3rd 
experiment, the inclusion of the third convolution 
layer with 64 filters brought it down to about 85%, 

suggesting that the features were redundant in that 
the network started to pick signals from the noise. 
The sever shift to SELU and Tanh activations in the 
fourth experiment also resulted in a drop of accuracy 
to 83%. The effects of activation selection on 
performance were evidenced by this study. In the 5th 
experiment, SELU was applied across all the layers of 
the network and the accuracy rate dropped even 
lower to 72%, revealing that the activation function 
used was not suitable for the dataset. This trend 
followed and experiment 6 had an accuracy rate drop 
to 40% suggesting potential convergence problems 
perhaps due to wrong selection of activations. 
Conclusively, we observed that the experiment 
number 7, equally employed exceptions of Tanh 
across the convolutional layers returning modest 
improvement of 85% suggesting that there is growing 
importance of deep architectures using tanh but does 
not guarantee superiority to the deep architectures 
using Relu. 

 
Table 2: Comprehensive results of all experiments conducted 

Experiment No No. of Epochs Batch Size Layers Activation Functions Accuracy 
Experiment 1 100 64 2 relu, sigmoid 97% 
Experiment 2 100 64 3 relu, relu, sigmoid 97% 
Experiment 3 100 64 4 relu, relu, relu, sigmoid 85% 
Experiment 4 100 64 4 relu, selu, tanh, sigmoid 83% 
Experiment 5 100 64 4 selu, selu, tanh, sigmoid 72% 
Experiment 6 100 64 4 selu, selu, selu, sigmoid 40% 
Experiment 7 100 64 4 tanh, tanh, tanh, sigmoid 85% 
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Figure 3. Graphical representations of experiments 

 

 
Figure 4: Model accuracy of train and validation of experiment 

 
Conclusions 
This paper focuses on drought assessment using 
Convolutional Neural Networks (CNN) and deep 
learning methods. The paper demonstrates that 
CNN models, which are based on custom datasets, 
can forecast drought conditions following image 
classification. This accuracy underwent several 
rounds of experiments where the first experiment 
was remarkably able to get 97 % accuracy and 
subsequent experiments ranged between 40% and 
85%. These results demonstrate how far CNNs can 
go in learning and classification of drought situations 
while also emphasizing the importance of optimizing 
the multiple regularization strategies, activation 
functions, and models used to improve the validity 
of the predictions and also avoid overfitting. Finally, 
the next task would be improving the CNN 
architecture, trying new augmentations, and adding 
other parameters like temperature or soil moisture. 
There is also a need to evaluate the CNN models 

and the eventual application of the models in field 
settings to enhance such understanding across 
regions increasing the probability drought 
pronouncements would be reliable. 
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