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 Abstract 

This document plans to improve database querying via natural language 
processing (NLP). Here NLP technique is a step of querying database using 
natural language (NLIDBQ). It is a solution to the problems, that users who are 
not technical persons face with the traditional methods like SQL because of the 
intricacy of big data, and also technological changes. The paper suggests three 
approaches that use hybrid NLP and deep learning, federated learning for 
privacy, AI which help to conduct the dynamic query optimization and the 
predictive analysis for the query formulation. The outcomes indicate the systems 
to be more usable with better user accessibility that makes them more user 
friendly for the general public across a larger range. This results in the emergence 
of equality data access with further activity in the area of specific adaptation, 
and realworld showings trial.  
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INTRODUCTION 
Intrusion Detection Systems (IDS) serve as a 
powerful tool that defends computer systems 
and networks against illicit user and hacker 
occurrences within the cybersecurity field. These 
security systems were designed to recognize 
several types of threats while taking measures for 
information system protection. The primary IDS 
classifications include Agreed network-based 
IDS (NIDS) as well as Host based IDS (HIDS). 
The article discusses the weaknesses of two 
preferred IDS solutions OSSEC and Snort 
despite their specific superior performance 

attributes. Surface detection success by skilled 
systems exists despite numerous erroneous 
positive results and limited adaptability when 
cybersecurity threats evolve. The application of 
machine learning constitutes an innovative 
solution to build more effective IDS systems 
that address current security problems.  
The study investigates traditional IDS 
vulnerabilities through machine learning 
algorithm application on NSL-KDD dataset 
information. Research in this domain leverages 
NSL-KDD dataset as an upgraded version of 
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KDDCup99 dataset because its expanded 
information base enables more equitable 
assessment. Our project builds an AI-driven 
intrusion detection system of the next 
generation with SVC and Naive Bayes and 
Decision Trees and Logistic Regression as our 
most recent machine learning models to achieve 
superior accuracy while lowering false positives 
and enhancing adaptability. 
 
2.  Need and significance 
The natural language interface represents the ideal 
way to connect users to databases through effective 
data retrieval functions without requiring IT 
expertise [5]. Organizations that want to remain 
competitive and innovative need to develop skills in 
deriving valuable insights from their rapidly growing 
databases.  
One of the most important technologies in today’s 
computing era is certainly the No SQL database [6]. 
Among other things the weakness of big data 
stimulated this type of innovative approach to 
databases management [7]. Like the traditional query 
language such as SQL the users with only technical 
backgrounds are required to use specialized training 
and expertise which narrows down the usage to a 
small group of users. Big data kept in enterprise 
databases is meaningless if you don’t have access to 
specialist tools for querying or finding data[8]. Thus, 
it is widely agreed that advance intuitive and 
inclusive models of database querying are needed 
which could be understandable and used by both 
technical and non-technical parties. 
This research matters because it has the potential to 
democratize data access and thereby create a space 
where people with different needs and experiences 
collaborate together to solve problems that are drawn 
from various fields of expertise. On the pursuance of 
the NLI-DBQ systems development, implementation, 
and impact study, this research aims at putting forth 
their transformative capabilities on productivity, 
decision-making and innovation within an 
organization. 
 
3.  Research Question 
• Objective: Analyze strategies and techniques 
to improve NLI-DBQ systems for enhanced 

accessibility in database querying, catering to both 
technical and nontechnical users. 
• Focus: Enhance responsiveness and 
interactivity of NLI-DBQ systems to fill the 
information needs of learners with different levels of 
technical expertise. 
• Research Scope: Covering NLI-DBQ tools, 
methods, and principles aimed at enhancing system 
quality, performance, and user-friendliness while 
ensuring excellent accessibility. 
• Approach: Explore NLI-DBQ tools, 
methods, and principles that can improve system 
quality, performance, and user-friendliness. 
Investigate strategies to enhance system 
responsiveness and interactivity for users with 
varying levels of technical passion. 
• Outcomes: Enhanced NLI-DBQ system 
quality, performance, and user experience, leading to 
increased accessibility and usability for a broader 
range of users. 
 
4. Previous Technologies and their Drawbacks 
4.1 Speech Recognition for Data Querying 
ASR,[9] which stands for Automatic Speech 
Recognition, is a technical solution meant to help 
process and interpret human speech into a machine-
readable format. The field of ASR actually deals with 
a number of problems related to speech recognition 
which are ASR accuracy as well as various methods 
for speech processing, extracting features and 
assessing performance.The use of universal speech 
recognition systems in voice command recognition 
tasks can lead to unnecessary searches in large 
databases [10]. It is possible that they lack the 
optimization for the embedded structure of SQL 
which can lead to errors when users recognize the 
structure of SQL queries. 
 
4.2 Query Interfaces with Touch Interactions 
Touch-enabled query interfaces serve as user-
friendly interfaces which allow users to execute 
database queries through screen-based touch 
gestures on touch screens. The authors [11] 
investigate how touch screen technology enables 
users to build queries using field value 
alphabets. Users have three distinct interfaces to 
input data beyond set limits: QWERTY 
keyboards together with Alphabetic keyboards 
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and Reduced Input Data Entry (RIDE) 
interfaces serve as the selection methods. The 
increasing popularity of mobile phones has led 
to specific user interface problems requiring 
further investigation about device orientation 
fluctuations while using small interfaces 
combined with different user interactions such 
as tapping and flipping and pinching. Learning 
disability patients might experience discomfort 
because of this design [12]. Intelligent touch 
interfaces to query databases prove complex to 
develop because researchers must evaluate 
database structure and establish smooth usage 
while setting rules for user interaction. 
 
4.3 Conversational Assistants 
Virtual robots serve users to accomplish such a 
job like finding planes, booking restaurants and 
navigating user interfaces, by providing natural 
language interface to the web services and 
APIs.Rise of standard conversational interfaces, 
and ease of frameworks like Google Actions and 
Alexa create scope for every developer to 
support new services [13]. However, their 
algorithms which were meant for limited 
predefined knowledge base and databases are 
not able to query.These assistants need lots of 
personal data in order to understand user 
preferences and give user-specific responses, 
which is definitely a thing that might endanger 
privacy [14]. The probability of the disk storage 
being accessed by the third side cannot be 
excluded in such a cloudbased situation. 
They have high potential for optimization with 
sophisticated query as well as high demands for 
users with background information when 
processing reply results. 
 
5.  Research Solutions 
5.1.  Hybrid NLP Techniques with Deep 
Learning 
The vulnerability of SQL injection attacks for web  
Neural network models including recurrent neural 
networks and attention mechanisms now perform 
complicated tasks such as machine translation and 
syntactic parsing and summarizing tasks after 
integrating general neural network models. [15] 
Combining NLP traditional approaches with deep 

learning Transformer models including BERT [16] 
and GPT [17] improves the understanding of 
natural language queries. Users benefit from such 
models when domain-specific datasets help them 
understand queries in multiple contexts. 

Attention(Q,K,V ) = softmax  
Q represents the query terminology while K stands 
for keys terminology and V represents the value 
terminology in this context together with the key 
dimension designated as dk. 
 
5.2.  Federated Learning for Privacy-Respecting 
Model Improvement 
Federated learning is a technique of teaching model 
on multiple devices where the participant devices are 
all federated, distributed and decentralized. Device 
data is kept private by performing computations 
locally. Additionally, during testing a static version 
of the global model is used which is not updated 
with changes, however this might lead to 
expandability issues with large models[19].The 
federated learning concept is an advanced tool for 
privacy protection in machine learning. It is the 
central server that serves as the aggregator of 
multiple participants that incorporate parameters 
into a model, distribute the generated model to the 
client, and then converge to optimize the global 
model. The model obtained dealing with 
performance near centralized data training is trained 
in a situation where the leaving data is not involved 
locally [20]. These local improvements can be 
aggregated across many users without sharing raw 
data, maintaining privacy while enhancing the NLI-
DBQ system. 

 
Here, Θglobal is the updated global model 
parameters after aggregation. 
 
5.3.  Dynamic Query Optimization using AI 
AI can enhance database performance (AI4DB) 
through learning-based optimization techniques 
[22]. Use of AI to dynamically optimize queries 
based on real-time database load, query complexity, 
and historical performance data. This could lead to 
faster query execution times and a more efficient 
database system. 
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An important part of multi-database technique is 
query optimization. However, the objective of the 
optimizer is to know the minimum join order that 
would be useful to finish the query[23]. An Ant 
colony algorithm is a bionic algorithm which 
imitates the movement of ants. Within ant families, 
when ants have to find food, the pheromone sensing 
can help in finding the quickest route [24].In 
distributed database systems, it gets exploited during 
the join query optimisation process. 
 
6) DETECTION AND DEFENSE OF SQL 
INJECTION ATTACK 
 
By exploiting a security weakness, attackers can gain 
access to confidential data and even control an 
entire system with just one malicious input: SQL 
injection. To safeguard against such breaches of  
 
 
Fig. 1. Analysis to improve database query 
accessibility and efficiency 
 
 
 
 
 
 
 
 
 
Fig. 2.  M and C evolution (Level 1) 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  M and C evolution (Level 2) 
Whereas the original ant colony-based query 
optimization approach, operates with fixed costs. 
The expected model uses variable prices and 
calculates the costs of execution plans as they are 
being generated. With this approach, the algorithm 

will try to find joining sequence in order to 
minimize total running time. [25]. 
τij(t +1) = (1 − ρ) · τij(t)+∆τij [26] 
In the above mentioned context τij represents the 
pheromone level on the path from point i to j, ρ is 
the rate of evaporation, and ∆τij is the amount of 
pheromone deposition, typically a function of the 
inverse of the path cost or length. 
Predictive Analysis can be used to access developed 
data set histories to make forecast about the effects of 
multiple scenarios. Both continuous and 
discontinuous changes enter our simulation model 
for prediction.[27] For example, the likelihood of 
one event or another event occurring before the 
other, or the probability of the event within the next 
K number of steps of the sequence is to be 
determined . These forward-looking questions find 
settings in diverse areas, including predictive when a 
sentence will end or when a user will switch between 
apps [28]. 
We frequently compute the likelihood of a specific 
event E taking place at time t given a sequence of 
previous occurrences S, which can be modelled using 
conditional probabilities. For the purpose of 
formulating predictive queries utilising forecasting 
techniques, we continually find the probability of a 
particular event E occurring at time t given the 
temporal sequence of past similar occurrences S. This 
being the basis of forecasts through conditional 
probabilities: 

 
This formula is fundamental given because it does 
the job of predicting the probability of specific events 
following a given sequence, using the history of 
events as expressed by S. 
 
6. Results 
6.1. Evolution of Coefficients m and c 
The key takeaways from Figure 1,Figure 2, and 
Figure 3 
are as follows: Qualitative Assessment: Knowing m’s 
and c’s evolution during training can tell us a lot 
about the learning process. Are there sudden jumps 
and oscillations that might point to an unstable 
learning curve? Do we observe such a regularity that 
it indicates gradual convergence? 
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Fig. 4.  M and C evolution (Level 3) 
Quantitative Aspects: Moreover, from the visual 
presentation of convergence we can calculate the 
metrics of convergence like the rate of change of 
coefficients or the variance of values. These metrics 
offer a clearer picture on how fast the model is 
converging and if adjustments are needed. 
Here the use of two graphs representing the 
changing of coefficients ’m’ and ’c’ provides an 
interesting and clear visualization of how the 
federated learning developments take place. They 
help us to understand that data updates of local 
manager without keeping individual person’s data 
secret. 
By presenting plots comparing the global model’s 
parameter alterations through time we touch on the 
distributed learning process and the collective insight 
of all the clients’ data. 
Implications: 
The conduct of federated learning within NLI-DBQ 
systems is such that privacy of information is 
enshrined in the learning procedure. This is most 
very significant in a period when the privacy of data 
hugely concerns people. 6.2. Best Path Cost Over 
Iterations 

 
Fig. 5. Level 1 

 
Fig. 6. Level 2 
Qualitative Assessment: Besides just noticing the cost 
curve heading downward, we can conduct the 
modeling on this whence it actually comes from, the 
particular trends, and the package of behavior that 
these contain. How often and where there are those 
drastic drops or might be some unusual dynamics 
during optimization process being? Are there 
occasions where the cost incurred is larger than the 
anticipated amount, point to an unexpected issue 
that may be with the optimization? 
 
Quantitative Aspects: As illustrated in Figure 4 and 
Figure 5 tracking the parameters such as the velocity 
of the value of cost or the convergence towards the 
minimum values is possible afterward. The metrics 
provide qualitative measure of the optimization 
efficiency, thus used in assessment of full-scale 
performance of the Ant Colony Optimizer. 
 
6.3. Query Embedding Visualization 

 
Fig. 7. Level 1 
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Fig. 8. Level 2 
Figure 6, Figure 7 displays the map of query 
embeddings traversing a 2d space using the t-SNE 
method.t-Distributed Stochastic Neighbor 
Embedding (t-SNE) for visualising multidimensional 
data has been one of the practical and used 
methods. Moreover, this approach helps generate 
successful applications in a variety of domains[30]. 
Qualitative Assessment: Clusters in the plot may 
indicate the queries that have the same meaning 
falling into the same semantic category that makes 
the model suitability for achieving semantic 
similarity. 
Quantitative Aspects: Even though a single plot 
can’t exhibit the quantitative standard of quality, it 
is actually the density and location of clusters that 
can be indicative/expressive. Clusters being etched 
on top of each other, this may hint at the necessity 
for a greater level of model modulation. 
For instance, the BERT model’s embeddings suggest 
that semantic relations affected by higher-level 
phenomena can be represented through t-SNE plots. 
Expansion and the cluster chart of queries help to 
quantitatively assess the model reflecting the fact 
that whether it can distinguish between different 
queries well or not. 
Implications: Human users, especially non-technical 
ones, are now able to use natural language (NL) 
interface with databases, which can understand their 
queries and improve the performance of the whole 
database systems. Therefore, more people even 
without technical expertise can get access to data. 
 

7. Theoretical Prospects 
The theoretical framework of machine learning 
model application in NLI-DBQ has been shown as a 
valid option by the observations. This outcome 
shows not only the feasibility, but the feasibility of 
the methods used also. The ease with which the 
models can be fine-tuned to be trained on domain 
specific datasets becomes even more crucial as it 
further indicates that the system can be tailored for 
specific industries or data sets based on the nature of 
the problem. 
The practice of translating theory into deeds may 
bridge the gap between the technical and non-
technical stakeholders, thus creating data democracy 
at large. 
 
8. Conclusion  
The study ends around the successful integration of 
the latest Natural Language Processing (NLP) 
algorithms and machine learning methods with 
Natural Language Interface to Database Querying 
(NLI-DBQ) systems. 
Through the research the systems of NLI-DBQ that 
are more easy to use and accessible have been 
developed. It is important as it enables people with 
varying levels of technical ability to communicate 
with complicated databases by using natural 
language. The improved usability is specially useful 
for non-technical users who might find it challenging 
to do SQL, which is a traditional query language. 
The incorporation of the complex computational 
algorithms has not only increased the effectiveness of 
the systems but also highly enhanced the accuracy 
and efficiency of database querying. This implies that 
the systems can work out more efficiently. They can 
execute complex inquiries, optimize query 
processing, and provide more precise and relevant 
outcomes. 
The research has innovatively integrated a variety of 
modern NLP methods including deep learning and 
hybrid NLP techniques, as well as machine learning 
methods of the federated learning type. The addition 
of this feature to NLI-DBQ systems has given them 
the ability to perceive and comprehend user queries 
to a larger extent and with better precision. 
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9. Theoretical Aspects 
The basis for this study in theory is the use of 
machine learning models, especially deep learning 
and federated learning, so as to improve NLI-DBQ 
system. Its proved validity has been attested by the 
practical results from the case, which contains not 
only the feasibility but also the practicality to 
different industry-specific applications. Research 
creates such a connection that all people are able to 
use technical data which results in a new data 
democracy. 
 
10. Results match up with the research goals 
The findings have proven that NLI-DBQ has made 
things much more accessible and easier to use for 
different kinds of people. This is exactly in line with 
the target of database querying systems amelioration 
with integrated NLP and machine leaning 
technologies. Mind mixed NLP techniques and 
federated learning for privacy, dynamic query 
optimization and predictive analysis for query 
formulation all will be a step forward to this goal. 
 
11. Evidences 
The research question was formulated with two main 
aims: to increase the availability and ease of use of 
NLIDBQ systems for technical as well as non-
technical users. All the simulations and methods 
[like the use of Transformers], the adoption of 
[federated learning] and AI- based query optimization 
are the clear answers to this question as they 
demonstrate superior output and usability of the 
NLIDBQ techniques. 
 
12. Assessment of Study’s Benefits 
The study of improvement usability and query 
processing efficiency with maintaining user privacy as 
a criterion of the evaluation can be rated based on its 
results. This study can be considered a success 
because the results and methodologies meet the set 
criteria, showing that the research has been 
conducted well. 
 
13. Recommendations 
• Further Integration of AI and ML: Continue 
exploring the integration of advanced AI and ML 
techniques to further enhance the NLI-DBQ systems. 

• User-Centric Design: Emphasize a user-centric 
design approach to make the system more intuitive 
for non-technical users. 
• Privacy and Security: Maintain a strong focus on 
privacy and security, especially when dealing with 
sensitive user data. 
 
14. Future Work 
• Domain-Specific Customization:  Study the 
feasibility of dedicated NLI-DBQ systems for limited 
domain use that would raise their apply area. 
• Real-World Implementation: Test the applicability 
of these systems in real-life situations in various 
fields; such test involves studying their practical 
effectiveness. 
• Enhancing User Interaction: The intelligent 
system research aims at improving human computer 
interaction, making the system more responsive and 
personable to users inquiry. 
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