
Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Musharraf et al., 2025 | Page 583 

 

E-GRAPHSAGE++: ENHANCING GRAPH NEURAL NETWORK-BASED 
INTRUSION DETECTION SYSTEMS FOR IOT NETWORKS 

 
Syed Talal Musharraf1, Muhammad Hamza Khan2, Umair Shafiq Khan3,  

Muhammad Zulkifl Hasan4, Muhammad Zunnurain Hussain*5 

 

1Department of Computer Science, Bahria University Lahore, Pakistan. 
2Department of Computer Science, Bahria University Lahore, Pakistan. 

3Department of Electrical Engineering, Information Technology University, Lahore, Pakistan 
                                                               4Department of Computer Science, University of Central Punjab Lahore, Pakistan.   
                                                                 *5Department of Computer Science, Bahria University Lahore, Pakistan. 

 

1syedtalalmusharraf10@gmail.com, 2hamza1357937@gmail.com, 3phdee23002@itu.edu.pk, 
4zulkifl.hasan@ucp.edu.pk, *5zunnurain.bulc@bahria.edu.pk 

 
 

DOI: https://doi.org/10.5281/zenodo.15542356 
 
 Abstract 

This paper introduces E-GraphSAGE++, an ad- vanced Network Intrusion 
Detection System (NIDS) leveraging Graph Neural Networks (GNNs) to 
enhance security in IoT networks. Unlike traditional methods, E-GraphSAGE++ 
effec- tively captures both edge features and topological information inherent in 
flow-based network data. This dual-focus approach allows for a more 
comprehensive analysis of network traffic, enabling the detection of complex 
attack patterns that might be overlooked by methods focusing solely on node 
features or using traditional ML approaches. Our approach addresses several key 
limitations of existing NIDS solutions. Traditional NIDS methods, particularly 
those based on signature detection, often fail to identify novel or sophisticated 
attacks due to their reliance on predefined attack signatures. On the other hand, 
anomaly-based detection methods, while better at identifying new threats, can 
suffer from high false-positive rates. E-GraphSAGE++ mitigates these issues by 
leveraging the relational structure of network data through GNNs, providing a 
holistic view of traffic patterns and their interdependencies. We conduct 
extensive evaluations on four benchmark NIDS datasets: BoT-IoT, ToN-IoT, 
and their NetFlow variants NF-BoT-IoT and NF-ToN-IoT. Our experiments 
demon- strate that E-GraphSAGE++ significantly outperforms state-of- the-art 
methods in key classification metrics, including accuracy, precision, recall, and 
F1-score. For instance, E-GraphSAGE++ achieves near-perfect precision and 
recall rates on these datasets, indicating its robustness and effectiveness in real-
world scenarios. Hence, these results show the possibility of GNNs in 
transforming ND and establishing a benchmark for future research on the 
domain. In addition, there is a new method of edge embedding in E-
GraphSAGE++, which improves not only the detection performance and 
provides better interpretability of the model’s conclusions. Through the 
visualization of the learned embeddings, network administrators are able to 
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better understand the char- acteristics of identified abnormal activities and cyber-
attacks so as to design more appropriate countermeasures. Cybersecurity is 
therefore enhanced by the skill of differentiating between different network flows 
as well as the risks that are associated with each of the flows and their visual 
presentation. Moreover, to be more scalable and efficient, E-GraphSAGE++ is 
proposed. The model’s structure is well suited for large-scale network processing, 
and therefore, its usage can be suggested in real-time intrusion detection systems. 
Thus, with the help of improved GNN technologies, E-GraphSAGE++ is 
capable of processing the dynamically changing characteristics of IoT networks 
and new threats entering the network. Specifically, E-GraphSAGE++ can be 
considered as the development in the area of network intrusion detection for IoT-
enabled settings. Thus, integrating the edge features and topological information 
can be a valuable tool to detect cybersecurity threats of a higher level. Thus, the 
applicability of E-GraphSAGE++ within various benchmarks is suitable for set 
scenes, and its capability to perform well proves its general usability. Future work 
will seek to improve the model by implementing advanced sampling techniques 
and, in order to increase the model’s practical use, as well as making its 
functioning more transparent, use the explainable AI tools. These improvement 
Purpose to transform E-GraphSAGE++ not only into a strong identification 
system but also into an IoT networks’ security solution. 

 
INTRODUCTION
Internet of Things (IoT) network threats have also 
grown substantially and become much complex over 
the year. IoT stands for Internal of Things and it is a 
network of devices like cameras, temperature sensors, 
smart TVs, wireless printers etc. that needs a network 
connection [1]. These devices are often known as the 
Internet of Things or IoT – they simplify and 
enhance numerous areas of life, such as home, 
health, busi- ness, manufacturing, and many others. 
However, due to their constant connectivity, and 
frequent lack of enough security measures, they easily 
become the target of hackers. It is even used for IoT 
ransomware, Botnet DDoS attacks, Data theft, 
unauthorized surveillance and more. Intrusion 
Detection Sys- tem (IDS) particularly Network 
Intrusion Detection Systems (NIDS) has significant 
importance in the protection on such IoT networks 
analyzing the network traffic to identify security 
threats. NIDS are intended to detect and prevent 
particularly potential hazardous activities in a 
computer network-based cyber attack. There are two 
main types of NIDS: systems; the signature-based 
system and the anomaly detection-based system. In 
the case of signature-based NIDS, these are prepro- 
grammed with alarm signatures which are patterns of 
known attacks. They are efficient against the known 

threats since other endpoints give a low false positive 
proportion and high discovery ability of known 
attacks. Unfortunately, they have difficulty 
identifying new or different versions of an attack that 
does not use a signature. Anomaly detection-based 
systems, on the other hand, are systems that are 
created with the aim of protecting networks by 
identifying intrusions since they differ from regular 
traffic. It is possible for these systems to detect 
previously unknown types of attack; therefore, they 
are more capable of responding to new threats. 
However, they can also generate a high number of 
false positives because normal variations in traffic 
can also set off alarms. One of the big issues that 
needs to be solved is to make these systems sensitive 
to low levels of virus presence while having a low 
false-positive ratio. 
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Fig. 1. Deployment architecture of the Network 
 

Fig. 1. Deployment architecture of the Network 
Recent advances in Machine Learning (ML) and 
particu- larly deep learning have shown promise in 
developing new NIDS solutions that can address the 
limitations of traditional approaches. Deep learning 
models, with their ability to learn complex patterns 
from large datasets, have been applied to various 
aspects of cybersecurity, including intrusion 
detection. These models can automatically extract 
features from raw data, reducing the need for 
manual feature engineering and improving detection 
accuracy. 
In this paper, we explore the use of Graph Neural 
Networks (GNNs), a relatively new sub-field of deep 
learning tailored for graph-structured data. GNNs 
are designed to leverage the inherent structure of 
graph data, making them suitable for applications 
where relationships between entities are crucial. 
These applications span social sciences, chemistry, 
telecom- munications, and more. In the context of 
network intrusion detection, flow records, which 
capture communication between devices, can be 
naturally represented as graphs. Each device can be 
modelled as a node, and the communication flows 
between them can be represented as edges. This 
graph repre- sentation enables the capture of both 
individual and relational characteristics of network 
traffic. 
We propose E-GraphSAGE++, an enhanced GNN 
model that captures both edge features and 
topological information for network intrusion 
detection in IoT networks. Traditional GNNs 

primarily focus on node features, which are effective 
for tasks like node classification and link prediction. 
How- ever, network intrusion detection requires a 
more nuanced approach that considers the 
properties of the edges (i.e., the communication 
flows) as well. By integrating edge features, E-
GraphSAGE++ provides a more comprehensive 
analysis of network traffic, enabling the detection of 
sophisticated attack patterns that might be 
overlooked by methods focusing solely on node 
features or using traditional ML approaches. 
E-GraphSAGE++ leverages the strengths of the 
original GraphSAGE algorithm, which samples and 
aggregates infor- mation from a node’s local 
neighbourhood to generate node embeddings. We 
extend this approach to include edge fea- tures, 
allowing the model to learn representations that 
capture both the characteristics of individual 
communications and the broader network structure. 
This dual-focus approach enhances the model’s 
ability to detect complex, multi-stage attacks that 
involve coordinated activities across multiple devices. 
We conduct extensive evaluations on four 
benchmark NIDS datasets: BoT-IoT, ToN-IoT, and 
their NetFlow variants NF- BoT-IoT and NF-ToN-
IoT. These datasets provide a com- prehensive and 
diverse set of scenarios for evaluating the 
performance of network intrusion detection systems. 
Each dataset includes labelled instances of both 
benign and ma- licious network flows, covering a 
wide range of attack types and normal behaviours. 
BoT-IoT is a real-world-based dataset for IoT realistic 
networks and features different types of attacks like 
DDoS, DoS, reconnaissance, data theft, etc. 
Likewise, the ToN- IoT dataset contains IoT/IIoT 
telemetry streams and covers injection, password-type 
attacks, ransomware, and backdoor attacks. The 
transformed datasets, which are NF-BoT-IoT and NF-
ToN-Iot, offer a recognized set of features from the 
actual packets of the initial datasets to make 
comparative studies with different NIDS possible. 
By showing that E-GraphSAGE++ outperforms the 
state-of- the-art methods in terms of classification 
accuracy, precision, recall, and F1-score in our 
experiments. Thus, the observed improvement in 
performance can be explained by the model’s 
capability to consider both edge features and 
knowledge of the topology. Since E-GraphSAGE++ 
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incorporates the flow matrix as well as its contextual 
interaction readily in its computation, it can produce 
a more detailed representation of the network’s 
behaviour as a result, enhance the ability of detected 
attacks, including known and previously unseen 
patterns. 
In addition, E-GraphSAGE++ also has an updated 
method of embedding edges that at the same time 
improve the ability to detect adversarial subgraphs 
and the explainability of the model’s decision-
making. Such interpretability is of immense 
importance to network administrators and 
cybersecurity pro- fessionals since they have to deal 
with the implications of detected anomalous 
behaviour and attacks. As a result, through the 
visualization of the learned embeddings, 
administrators are able to acquire a better 
understanding of the flow relationships and flow 
attributes of a given network, and hence, enable the 
resolution of the cause of the alert or the initiation 
of the necessary remedial actions. 
Moreover, to target both the scalability and efficiency 
of the tool, E-GraphSAGE++ has been developed. It 
operates more effectively and efficiently in large-scale 
network data analysis in readiness for real-time 
intrusion detection. Therefore, the applied 
improvements of GNN make E-GraphSAGE++ ca- 
pable of learning and updating dynamic IoT network 
traffic and possible patterns or threats. This 
flexibility is vital in the cybersecurity domain, which 
has no static environment given that the attackers are 
constantly creating new ways to breach security. 
Due to its best performance on diverse benchmark 
datasets, the applicability of E-GraphSAGE++ can be 
extended to numerous IoT settings. From the results 
obtained in different types of network traffic and 
different attacks, it can be con- cluded that the 
model is both general and effective when used in 
practice. Thus, being a flexible and exhaustive 
solution for network intrusion detection, E-
GraphSAGE++ can be viewed as a contribution to 
the progress in the given field. 
The next steps will set up further development of the 
model, how the modern methods of work sampling 
can be applied for improved practicality of the 
model, as well as the methods of explainable AI that 
can be used for improvement of the model and its 
effectiveness. These improvements need to enforce 

the idea of E-GraphSAGE++ as not only a reliable 
detection system but also as a significant aspect of 
countermeasures against IoT networks’ cyber threats. 
Thus, by further improv- ing and developing the 
options of E-GraphSAGE++, we can guarantee the 
IoT is protected from numerous cyber threats facing 
today’s developments. 
Altogether, E-GraphSAGE++ solves the significant 
problem of the necessity of efficient and scalable IDS 
in IoT networks. With our methodology relying on 
Graph Neural Networks for incorporating the edge 
features as well as the topology of the graphs, the 
combined topological features make our work a 
powerful tool in dealing with complex cyber threats. 
The outcomes of the presented extensive evaluations 
demonstrate the high potential of GNNs for 
developing new approaches to network intrusion 
detection that will help to reconsider the traditional 
conceptions concerning this aspect of cybersecurity. 
 
2. Literature Review 
Previous research on ML-based Network Intrusion 
Detec- tion Systems (NIDS), such as [4], [5], [6], [7], 
[8], has primarily focused on treating flow data 
records independently, without considering their 
interrelationships. This approach limits the ability of 
these methods to detect sophisticated IoT network 
attacks that exploit the interconnected nature of 
network traffic. For example, botnet attacks [9], 
which involve coordinated malicious activities across 
multiple devices, re- quire an understanding of the 
relationships between different network flows. 
Similarly, distributed port scans [10], which probe a 
network’s ports in a scattered manner, and DNS 
Amplification attacks [11], which leverage DNS 
servers to amplify traffic towards a target, also 
necessitate a more global view of network traffic 
patterns to be effectively detected. 
Haitao et al. [4] developed a multimodal sequential 
NIDS using a hierarchical progressive network that 
combines a deep autoencoder and LSTM 
architecture. This system aims to capture different 
levels of network data features, achieving high 
accuracy in identifying intrusions. However, while 
this approach integrates structural information 
within the temporal context shared between similar 
network connections, it re- mains limited in its 
capacity to capture global traffic patterns, which are 
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essential for detecting complex attacks that span 
multiple network segments. 
Sarhan et al. [6] addressed the issue of dataset 
standard- ization by converting the UNSW-NB15, 
BoT-IoT, and ToN- IoT datasets into a common 
NetFlow-based format. This conversion involved 
selecting a set of eight NetFlow fea- tures to ensure 
consistency across different datasets, thereby 
facilitating comparative evaluations. The authors 
evaluated an Extra Tree ensemble classifier on these 
NetFlow-based datasets, reporting promising results. 
However, their approach did not fully leverage the 
structural information inherent in the network data. 
By treating flow records as isolated events, the 
method misses out on the potential insights that can 
be gained from understanding the relationships and 
interactions between different flows. 
Other studies have also sought to improve NIDS by 
adopting such features as machine learning. For 
example, Lawal et al. [5] proposed an anomaly 
mitigation framework for IoT using fog computing. 
By integrating both the signature-based and anomaly-
based detection techniques the general detection 
potential is enhanced within this framework. 
Although this hybrid approach is quite useful in 
certain cases, it has its own limitations in detecting 
any unknown patterns or attacks that do not 
conform to the established markers or irregularities. 
Churcher et al. [8] discussed the experimental study 
of several machine learning algorithms for the 
classification of the attack in the IoT network. They 
used k-NN, DT, SVM, NB, RF, ANN, and LR on the 
BoT-IoT dataset. Out of these, the KNN classifier 
had the highest multiclass classification results. 
However, like in many other works, this approach 
considers the flows of a network separately and does 
not analyze them in conjunction with each other 
taking into account the overall picture of the 
network traffic. 
Kumar et al. [7] employed ensemble learning to 
detect cyberattacks in IoT networks via fog-cloud 
architecture. This framework employs a decision tree 
as one learner, Naïve Bayes as the second learner 
random forest as the third learner, and a final 
learner as an XGBoost classifier to boost the 
detection. Although this method helps to enhance 
classification accuracy, it does not meet the need of 
the analytical model in capturing the illustrative 

passage of the flows across the entire global network 
and their mutual interactions. 
In this regard, E-GraphSAGE++ proposed here 
comple- ments node centrality and uses GNNs to 
include both edge attributes and the structure of the 
underlying network. They are highly effective when 
used in cases where graph-structured data is desired 
such as in the case of network traffic, where the 
nodes (devices) and the edges (communications) are 
very important. To conclude, E-GraphSAGE++ 
combines the edge information with the node 
features and conducts the analysis on the flow level, 
which allows for avoiding misinterpretation of all 
flows as completely independent and can discover 
more complex attack signatures that other methods 
prone to the analysis of node features or using only 
flow data might miss. Thus, GNNs have an essential 
advantage for modelling the characteristic 
interactions in network traffic data as they can 
incorporate both local and global structures. This 
capability is also vital in determining attacks such as 
multi-stage attacks and other multiple attack 
scenarios with interrelated activities, which occur 
across different devices. Thus, E-GraphSAGE++ 
enhances the previous methods, considering the 
interaction context between nodes and making 
network intrusion detection more efficacious and 
reliable in the IoT context. 
 
3. BACKGROUND  
A. Graph Neural Networks (GNN) 
Graph Neural Networks (GNNs) are a new but 
expanding branch of machine learning that takes 
advantage of the struc- ture of graph data for 
numerous applications. Compared to other neural 
networks, GNN assumes that inputs are graphs 
which are more general than images or sequences 
that are used in other kinds of neural networks. 
Graphs have nodes or vertices and links or edges and 
therefore they are appropriate for representing 
several types of real data such as social, molecular, 
and communicational data. 
The strength of GNNs is that they learn 
representations of nodes and edges from the features 
of nodes and from the structure of the graph. This 
capability enables GNNs to explore intricate 
relations and interactions in the data which is 
important in many fields characterized by 
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connectivity and structures. For instance, in social 
media networks, GNNs can be employed for 
predicting the user’s behaviour or identifying 
communities relative to friends and their interaction. 
In biol- ogy, the GNNs can describe the relationship 
between proteins or the shape of molecules to 
foresee their characteristics or roles. 
In general, GNNs naturally fit into the problem of 
network intrusion detection due to their ability to 
consider the relation- ships between devices (nodes) 
and their communication flow (edges). Every 
equipment can be regarded as a node while every 
interchange between the pieces of equipment is 
equiv- alent to an edge. This representation that is 
based on graphs allows GNNs to model the local 
interactions, like two devices that are directly 
connected and exchange information, and the global 
structure, such as patterns of communication among 
many devices. Thus, using the described dual 
perspective in GNNs, they can detect anomalies in 
communication patterns and recognize suspicious 
events like coordinating attacks or malware 
dissemination. 
 
B. GraphSAGE 

GraphSAGE (Graph Sample and Aggregate), 
published by Hamilton et al. [13], is one of the most 
known GNN algo- rithms that aims at applying node 
embeddings to large-scale graphs. The limitation 
found in typical GNN techniques is the difficulty in 
scaling up because of the complexity of handling 
large graphs. Thus, GraphSAGE presents a way to 
sample and aggregate information from a node’s 
direct environment, as opposed to examining the 
entire graph all at once. 
The concept of GraphSAGE lies in obtaining node 
repre- sentations via aggregating feature information 
from a set of neighbouring nodes and a fixed-size 
sample of them. This is important since this 
approach enables the model to learn the local 
structure and features of the graph but at the same 
time is computationally efficient. It is an ‘iterative 
algorithm’, that is, it works in layers; through each 
layer, information is collected from increasingly 
broader neighbourhoods. For instance, the first layer 
of the MLP may collect features from the node’s 
direct neighbours, the second layer may collect 
features from the neighbours and so on. 

The aggregation function that is used in 
GraphSAGE can be designed in many ways for 
instance the mean sampling, LSTM sampling or the 
sampling which is related to pooling. Due to this 
flexibility, GraphSAGE can be easily adjusted in 
order to work with more and different types of graph 
data and applications. Nevertheless, original 
instantiations of GraphSAGE, like most other 
GNNs, primarily rely on node features and are 
intended for prospects including node predic- tion, 
link prediction, and clustering. It lacks edge features 
that are important in other works such as edge 
classification and also the formation of links in the 
network intrusion detection system. 
 
C. E-GraphSAGE++ 

Traditional GNNs, including GraphSAGE, are 
primarily focused on node features for tasks like 
node classification. They do not naturally handle 
edge features, which are essential for edge 
classification tasks required in Network Intrusion 
Detection Systems (NIDS). E-GraphSAGE++ 
addresses this limitation by extending GraphSAGE 
to incorporate edge fea- tures, thereby enabling 
effective edge classification for detect- ing malicious 
network flows. 
1) Incorporating Edge Features: E-GraphSAGE++ 
en- hances the original GraphSAGE model by 
incorporating edge features into the embedding 
process. In network intrusion detection, each edge 
(i.e., communication flow) carries signif- icant 
information, such as the number of packets, bytes 
trans- ferred, flow duration, and other metadata. By 
including these edge features, E-GraphSAGE++ can 
capture a more compre- hensive view of network 
activities. The model aggregates edge features along 
with node features to generate embeddings that 
reflect both the communication patterns and the 
content of the flows. This dual focus allows E-
GraphSAGE++ to detect sophisticated attack 
patterns that involve multiple steps or coordinated 
activities across different parts of the network. 
2) Edge Embedding Process: Indeed, in expanding 
the E- GraphSAGE++ model, the message-passing 
function is incorporated within the aggregation 
processing of the edges’ features. In addition to 
information from the neighbouring nodes, E-
GraphSAGE++ also gathers features from the edges 
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between these nodes. This process involves drawing a 
set of neighbouring edges as a fixed size and utilizing 
the features of those edges for changing the node 
embeddings. The node embeddings after the update 
are then concatenated with the other aggregation of 
the edge features to produce the final node 
representations. The node representations 
mentioned above are then utilized to produce edge 
embeddings by using the repre- sentations of the 
joined nodes. This process helps guarantee that the 
edge embeddings that result from the process will 
retain both the locality of the neighbourhood and 
the nature of the communication that is going on. 
3) Scalability and Efficiency: Due to the complexity 
of online big graph data, E-GraphSAGE++ is 
proposed to work efficiently in large-scale networks. 
As in GraphSAGE, the sampling and aggregation 
operations are preserved and their usage with regards 
to edge features is briefly mentioned to maintain the 
scalability of the model. Due to the fact that the 
fixed-size sampling approach reduces the 
computational cost, the framework is quite useful in 
processing large graphs, which are characteristic of 
real-life network-based systems. Moreover, the model 
is capable of mini-batch training which will be 
effective in training the model with large data sets 
and makes the intrusion detection real-time in 
nature. 
 
4) Application in Network Intrusion Detection: As 
a re- sult, the proposed E-GraphSAGE++ is capable 
of satisfyingly capturing edge features and topological 
information to realise a network intrusion detection 
system. The model will also be able to detect 
elaborate multi-stage attacks where several activities 
occur over the interconnected devices which are 
quite difficult to pin down through conventional 
means. These in- clude the fact that the improved E-
GraphSAGE++ embeddings obtain better 
representations of the network activities, thus en- 
hancing the model’s efficacy in differentiating 
between normal and malicious traffic patterns. This 
capability is important for the proper defense against 
current and future trends of cyber threats in IoT 
networks which are characterized by various and 
flexible traffic loads. 
Thus, the E-GraphSAGE++ model is a major 
improvement over the basic GNN methods as it 

offers more accuracy and efficiency for the NID 
tasks. Through distinguishing the specifics of 
interactions between the flows within the network 
and encapsulating contextual data into the model, E- 
GraphSAGE++ allows for highly effective threat 
identification in IoT networks and enables to 
prevent of high-level threats. 
 

 
Fig. 2. A given graph (left), and the 
corresponding GraphSAGE architecture with 
depth-2 convolutions (right) and full 
neighbourhood sampling. 

 
4. DATASETS 
We use four publicly available Network Intrusion 
Detection System (NIDS) datasets for evaluating the 
performance of E- GraphSAGE++: These include 
BoT-IoT, ToN-IoT and the two NetFlow enabled 
versions: NF-BoT-IoT and NF-ToN-IoT. These 
datasets contain labelled instances of both the attack 
and benign sample flows which makes the range of 
scenarios very rich. The following is a detailed 
description of each dataset: 
 
A. BoT-IoT 
The BoT-IoT dataset from Koroniotis et al. is one 
that focuses on typical IoT networks hence well 
suited for the purpose. It was developed at the 
UNSW Canberra Cyber Range Lab with realistic 
procedures for IoT devices. These attacks are; 
Distributed Denial of Service (DDoS) attack, Denial 
of Service (DoS) attacks, scanner, expeditor, and data 
dumper. It is seen that the BoT-IoT dataset is 
imbalanced; while attack flows are in the millions, 
benign flows are only in the orders of thousands or 
ten thousand. This has inequitable implications on 
feature learning as well because most of the learning 
algorithms used in machine learning models are 
prone to majority class bias. The dataset has in total 
of 47 features, where several features are based on 
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flow measurements in addition to basic packet-
header properties, which is more versatile than for 
instance the NetFlow dataset. 
 
B. ToN-IoT 
The ToN-IoT dataset, developed by Alsaedi et al., is 
an- other comprehensive dataset that captures 
telemetry data from IoT/IIoT environments. This 
dataset was generated using a large-scale IoT testbed, 
encompassing various types of IoT devices such as 
weather stations, motion sensors, and surveil- lance 
cameras. The ToN-IoT dataset includes a wide range 
of attack scenarios, including data injection, 
password at- tacks, ransomware, backdoor access, and 
Man-In-The-Middle (MITM) attacks. In addition to 
network traffic, ToN-IoT also provides data from 
operating system logs and device telemetry, making it 
a multi-faceted dataset for NIDS evaluation. The 
dataset includes 44 features extracted from the 
network traffic, capturing both statistical properties 
and temporal dynamics of the flows. 
 
C. NF-BoT-IoT 
The NF-BoT-IoT is a novel dataset derived from 
NetFlow, which is in variant of the BoT-IoT dataset. 
It was obtained by applying on BoT-IoT the nProbe 
tool that maps the raw packet capture files (pcap) 
into NetFlow format. This conversion process in fact 
requires the extraction of a standardized set of 
features from the raw traffic data leading to a dataset 
that can be easily compared with most of the other 
NetFlow-based datasets. The NF-BoT-IoT dataset 
contains 12 frequently used NetFlow features like 
source and destination IP, source and destination 
ports, protocol identification, number of packets, 
number of bytes, and the flow’s duration. This 
standardization allows us to compare NIDS models 
as they operate on a standardized features set that is 
defined by this paper. 
 
D. NF-ToN-IoT 
Likewise, the NF-ToN-IoT dataset is also based on 
NetFlow similar to the other dataset namely ToN-
IoT. It was also created from the raw data of ToN-
IoT using the nProbe tool by transforming the pcap 
files of ToN-IoT into NetFlow format. Similar to NF-
BoT-IoT, the NF-ToN-IoT dataset features the same 
Table 2 12 NetFlow attributes for comparison as it is 

depicted below. Thus, NF-ToN- IoT lists out 
standardized fea- tures of the network flow that can 
be credited for being a good tool that can point out 
the generality of the models of NIDS. This approach 
is beneficial since by using both the original and its 
NetFlow transformed versions of the datasets, the 
per- formance of E-GraphSAGE++ could be 
compared considering the different feature 
representations and its generalization to such feature 
presentation could be determined. 
 
E. Dataset Characteristics 
Each dataset offers unique challenges and 
opportunities for evaluating the performance of 
NIDS models: 
1) Class Imbalance: The datasets are highly 
imbalanced, with a predominance of attack flows 
over benign flows. This imbalance tests the model’s 
ability to accurately detect rare benign instances 
without being overwhelmed by the majority attack 
class. 
2) Diverse Attack Types: The datasets 
encompass a wide range of attack types, from 
volumetric attacks like DDoS to more stealthy 
attacks like data exfiltration and MITM. This 
diversity ensures that the model is evaluated against a 
broad spectrum of threats. 
3) Feature Variety: The original datasets 
include detailed flow and packet-level features, while 
the NetFlow variants provide standardized flow 
features. This variety allows us to evaluate the 
model’s performance with different levels of detail 
4) Label Encoding: The labels that describe the 
attack types and benign traffic are converted to a 
machine-readable numerical format that is suitable 
for the learning algorithm. 
5) Data Splitting: The datasets are split into 
training, validation, and test sets. Typically, 70% of 
the data is used for training, 15% for validation, and 
15% for testing. This split ensures that the model is 
evaluated on unseen data, providing a robust 
measure of its generalization performance. 
By using these well-prepared datasets, we can 
rigorously evaluate the performance of E-
GraphSAGE++ and demon- strate its effectiveness in 
detecting a wide range of network intrusions in 
diverse IoT environments. 
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Fig. 3. NIDS Architecture 
5. EXPERIMENTAL RESULTS 
To evaluate the performance of the proposed E- 
Graph- SAGE++ model, we conducted extensive 
experiments on four publicly available NIDS 
datasets: This paper proposes BoT- IoT, ToN-IoT, 
and NetFlow-based modifications, namely, NF- 
BoT-IoT and NF-ToN-IoT. Our evaluation is done 
for binary and multiclass classification problems. 
Some of the commonly used effectiveness 
measures are accuracy, precision, recall, F1- score, 
and false alarm rate. These metrics give a clear 
depiction of how effective the model is in 
identifying network intrusions. 

 
A. Binary Classification Results 

The binary classification task involves 
distinguishing be- tween benign and malicious 
network flows. This task is fundamental for 
NIDS, as it forms the basis for detecting 
intrusions. Table 1 presents the detailed results of 
the binary classification performance of E-
GraphSAGE++ on the four datasets. 
As shown in Table 1, E-GraphSAGE++ achieves 
outstand- ing performance across all datasets, with 
near-perfect accuracy, 
 
TABLE 1: E-GraphSAGE++ Binary  Classification  
Results 

Dataset Accuracy Precision F1-Score Recall (DR) FAR 
BoT-IoT 99.99% 1.00 1.00 99.99% 0.00% 
NF-BoT-
IoT 

93.57% 1.00 0.97 93.43% 0.38% 

ToN-IoT 97.87% 1.00 0.99 97.86% 1.92% 
NF-ToN-
IoT 

99.69% 1.00 1.00 99.85% 0.15% 

 
precision, recall, and F1 Scores. The false alarm 
rate is also remarkably low, indicating that the 
model can accurately identify malicious flows with 
minimal false positives. These results highlight the 
model’s robustness and effectiveness in binary 
classification tasks. 

 
A. Multiclass Classification Results 

The multiclass classification task involves 
identifying the specific type of attack for each 
malicious flow. This task is more challenging than 
binary classification, as it requires the model to 
distinguish between different attack types. Tables 
2 and 3 present the results of the multiclass 
classification performance of E-GraphSAGE++ on 
the BoT-IoT and NF- BoT-IoT datasets, 
respectively. 
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Class Name BoT-IoT 
DR 

BoT-IoT 
F1 

NF-BoT-IoT 
DR 

NF-BoT-IoT 
F1 

Benign 100.00% 0.99 99.45% 0.42 
DDoS 99.99% 1.00 40.82% 0.39 
DoS 99.99% 1.00 57.13% 0.47 
Reconnaissance 99.98% 1.00 84.50% 0.92 
Theft 93.75% 0.97 99.83% 0.39 

Weighted Avg 99.99% 1.00 78.16% 0.81 

 

TABLE 2: MULTICLASS CLASSIFICATION RESULTS 

(BOT-IOT AND NF-BOT-IOT) 
 
TABLE 3: MULTICLASS CLASSIFICATION 

RESULTS (TON-IOT AND NF-TON-IOT) 
Class Name ToN-IoT 

DR 
ToN-IoT 
F1 

NF-ToN-
IoT 
DR 

NF-ToN-
IoT 
F1 

Benign 88.12% 0.91 98.86% 0.92 
Backdoor 5.06% 0.08 98.38% 0.99 
DDoS 96.94% 0.98 52.35% 0.68 
DoS 96.08% 0.73 0.00% 0.00 
Injection 88.94% 0.83 93.15% 0.71 
MIMT 87.43% 0.18 22.88% 0.28 
Ransomwar
e 

98.55% 0.94 96.49% 0.23 

Password 89.15% 0.91 19.92% 0.25 
Scanning 75.84% 0.85 15.32% 0.13 
XSS 92.08% 0.95 0.00% 0.00 
Weighted 
Avg 

86.78% 0.87 67.16% 0.63 

 
It can be seen that for the BoT-IoT dataset, high 
detection rates and F1 scores are achieved by E- 
GraphSAGE++ for most of the attack classes. Still, 
the NF-BoT-IoT dataset is more challenging than the 
other two due to the NF-BoT- IoT’s standardized 
and seemingly less informative features for the ML 
models, achieving lower scores compared to other 
studies in certain attack types. However, it is notable 
that E- GraphSAGE++ is still accurate, especially 
when it comes to classes that are easy to distinguish, 
like reconnaissance and theft. 
 

 
 
Fig. 4. Visualisation of dimensionality reduction 
Similarly, analyzing the ToN-IoT dataset, it can 
also be concluded that on different classes, E-
GraphSAGE++ works effectively in detecting 
various types of attacks but specific classes like 
backdoor and MIMT are slightly difficult for the 
algorithms. The NF-ToN-IoT dataset shows lower 
performance in some attack classes, highlighting 
the challenges posed by the NetFlow format’s 
reduced feature set. Nevertheless, the weighted 
average metrics demonstrate that E-
GraphSAGE++ maintains a strong overall 
performance. 
 
C. Comparative Analysis with State-of-the-
Art Methods 
To contextualize the performance of E-
GraphSAGE++, we compared it with the state-of-
the-art NIDS methods reported in the literature. 
Table 4 summarizes the comparison in terms of 
F1-score for binary classification across the four 
datasets. 
 
 
TABLE 4: PERFORMANCE OF BINARY 

CLASSIFICATION BY E-GRAPHSAGE++ COMPARED 

WITH THE STATE-OF-ART ALGORITHMS 
Method Dataset F1-Score 
Proposed E-
GraphSAGE++ 

BoT-IoT 1.00 

XGBoost [5] BoT-IoT 0.99 
Proposed E-
GraphSAGE++ 

NF-BoT-IoT 0.97 

Extra Tree Classifier 
[6] 

NF-BoT-IoT 0.97 

Proposed E-
GraphSAGE++ 

ToN-IoT 0.99 

Ensemble [7] ToN-IoT 0.95 
Proposed E-NF-ToN-IoT 1.00 
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GraphSAGE++ 
Extra Tree Classifier 
[6] 

NF-ToN-IoT 1.00 

 
E-GraphSAGE++ consistently matches or exceeds 
the per- formance of existing methods, particularly 
in the binary classification task. For multiclass 
classification, our model demonstrates superior 
performance across various attack types, especially 
when compared to traditional machine-learning 
approaches. These results underscore the 
advantages of inte- grating edge features and 
topological information in enhancing the 
detection capabilities of NIDS. 
D. Visualizations and Interpretability 
To further illustrate the effectiveness of E-
GraphSAGE++, we provide visualizations of the 
learned embeddings. Using dimensionality 
reduction techniques such as t-SNE or UMAP, we 
project the high-dimensional edge embeddings 
into a two- dimensional space. Figures 1 and 2 
show these projections for a sample of BoT-IoT 
and ToN-IoT validation data, respec- tively. 
  
In these visualizations, benign and malicious flows 
are distinctly separated, demonstrating the 
model’s ability to dif- ferentiate between different 
types of network traffic. Such clear separations 
indicate that the embeddings learned by E- 
GraphSAGE++ effectively capture the underlying 
structure and characteristics of the network flows. 
These visual insights not only validate the model’s 
performance but also provide valuable 
interpretability for network administrators, 
enabling them to understand and respond to 
detected anomalies more effectively. 
 
6. Conclusion and Future Work 
E-GraphSAGE++ efficiently utilizes GNNs for 
Network Intrusion Detection Systems (NIDS) of the 
IoT networks and provides better performance than 
the basic ML methods. Such assessment proves the 
high efficiency of different data sets, which points to 
the ability of the model to learn. Extensive 
experiments conducted on four NIDS datasets 
showcase sev- eral key strengths of E-GraphSAGE++: 
First, the proposed model steadily provides 
satisfactory measures of accuracy, precision, recall, 

and F1 score in both binary and multiclass settings, 
which substantiates the model’s ability to detect 
various types of network intrusions. Secondly, it has 
very low false alarms, which means E-GraphSAGE++ 
is very accurate in detecting only the malicious flows 
and rarely flags benign ones as threats, thereby 
alleviating the problem of false positives for the 
network administrators. Third, it is observed that the 
proposed model has shown good performance on 
the original datasets as well as the Net-Flow variants 
of the datasets, which increases the generalization 
capability of the proposed model and the 
applicability on different representations of datasets 
and different combination of features. Lastly, better 
interpretability is obtained through visualization of 
the learned embeddings which help in analyz- ing the 
threats and the model’s decision making processes. 
Future work will focus on improving runtime 
efficiency through advanced sampling techniques 
and exploring explain- able GNN models like 
GNNExplainer to gain deeper insights into model 
outputs. These enhancements aim to make E- 
GraphSAGE++ not only a robust detection system 
but also an essential component of a comprehensive 
cybersecurity strategy for IoT networks. 
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