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 Abstract 

Precise short-term load forecasting (STLF) is vital for the better efficiency, 
reliability, and sustainability of contemporary smart grids. With the rising 
deployment of smart meters and advanced metering infrastructure, there are ample 
amounts of high-resolution electricity consumption data available, which has 
paved the way for the use of machine learning (ML) methods for enhanced 
demand forecasting. The paper offers a comparative study of three regression-
driven ML algorithms, Linear Regression, Decision Tree Regressor and Random 
Forest. Used for predicting hourly electricity load. The models are implemented 
and tested on actual smart meter data with features such as historical load, 
temperature, time of day, and day type. Evaluation is done based on the primary 
statistical metrics such as Mean Absolute Percentage Error (MAPE) and Root 
Mean Square Error (RMSE). Results show that ensemble learning, especially the 
Random Forest model, notably surpasses conventional linear methods in 
forecasting with an MAPE as low as 5.3%. The research identifies the possibility 
of data-driven methods in developing smart grid operations and advocates for the 
incorporation of ML-based forecasting systems into real-time energy management 
and planning. 
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INTRODUCTION
The accelerated development of the electrical grid as 
a more intelligent, responsive, and efficient 
network—termed the smart grid—has brought 
challenges and opportunities to the management of 
energy. At the core of smart grid functionality is 
Short-Term Load Forecasting (STLF), which is 
defined as forecasting electricity demand in the short 
time frames of one hour to a few days. STLF is 
important to ensure the operational reliability of the 
grid, increase economic efficiency, and minimize 
dependency on reserve margins [1]. It has a direct 

influence on generation scheduling decision, energy 
trading, demand-side management, and load 
switching [2]. 
Conventional STLF has used statistical models 
including Autoregressive Integrated Moving Average 
(ARIMA) and Exponential Smoothing [3], [4]. 
Although these models work well for linear and 
static data, they tend not to cope well with the 
nonlinear, high-dimensional, and seasonal 
characteristics that are typical in contemporary 
electricity consumption data. Installation of 
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Advanced Metering Infrastructure (AMI) and smart 
meters has led to the high-frequency, high-resolution 
load data [5], [6]. This progress has made it possible 
to employ Machine Learning (ML) methods, which 
are capable of taking advantage of intricate 
relationships between consumption and other 
variables like weather, time, and human behavior. 
A number of machine learning methods have been 
utilized for STLF, such as Support Vector Machines 
(SVM), Artificial Neural Networks (ANN), and 
ensemble models [7], [8]. Among them, regression-
based models have received interest because they are 
interpretive and have comparatively lower 
computational needs. This work compares the 
performance of three of these models: Linear 
Regression (LR), Decision Tree Regressor (DTR), 
and Random Forest (RF). They are trained with real-
world smart meter data containing historical load, 
ambient temperature, time of day, and type of day 
(weekday/weekend/holiday). 
Linear Regression is a baseline model that assumes a 
linear relationship between inputs and the target. 
Even though it is simple, LR continues to be applied 
in energy forecasting applications owing to its ease of 
use and interpretability [3], [9]. It might fail under 
performances where the underlying data has 
nonlinearities, though. To overcome this, Decision 
Trees provide a non-parametric approach able to 
capture complex, nonlinear interactions through 
recursively partitioning the input space [10]. Random 
Forest, a collection of several decision trees, increases 
prediction resistance and generalization by 
combining the output of different learners to 
decrease variance and overfitting [6], [11].  
This research is based on existing work showing tree-
based model effectiveness in energy forecasting. 
Chen et al. [10], for example, enhanced DTR for 
STLF by making optimal split criteria and tree depth, 
with enhanced accuracy. Equivalently, Jeon et al. [11] 
compared machine learning model performances 
and concluded that ensemble methods, particularly 
Random Forest, work extremely well. Nevertheless, 
the majority of previous studies either consider one 
algorithm alone or are not consistent in the dataset 
or evaluation metric used, rendering comparisons 
challenging. 
To fill this gap, we provide a systematic, side-by-side 
comparison of LR, DTR, and RF on a shared dataset 

and identical feature space. The data is 
supplemented with pertinent exogenous variables 
such as temperature and calendar effects, which are 
known to affect load patterns [5], [12]. Industry 
metrics Mean Absolute Percentage Error (MAPE) 
and Root Mean Square Error (RMSE) are used to 
measure performance [13]. Our finding suggests that 
Random Forest performs better than both LR and 
DTR in forecasting accuracy with a minimum MAPE 
of 5.3%. 
These results validate the increasingly popular 
agreement in literature that ensemble learning-based 
models are ideally placed to handle STLF tasks in 
smart grids [6], [11], [14]. In addition, they highlight 
the need for integrating ML-based forecasting 
systems into real-time energy management systems to 
achieve better grid stability, cost savings, and energy 
efficiency [12], [15]. 
The rest of this paper is organized as follows. Section 
II reviews the relevant work in the field. Section III 
describes the proposed approach in detail, and 
Section IV gives the results and discussion. In 
Section V Finally, the paper is concluded with 
insights on future research directions. 
 
I. Related Work 
Reconfigurable Short-Term Load Forecasting (STLF) 
is critical to the stability and efficiency of smart grids 
through the proactive management of energy. 
Traditional statistical models like the autoregressive 
integrated moving average (ARIMA) and the linear 
regression have been standards for STLF for decades, 
but their failure to model non-linear load behavior 
has shifted interest towards machine learning and 
deep learning algorithms. 
Deep learning, in particular Long Short-Term 
Memory (LSTM) networks, has also been a leading 
option because it can learn long-term temporal 
patterns. An LSTM-based demand forecasting model 
with four years of hourly consumption data had a 
significant MAPE of 1.22% [16]. LSTM models were 
also shown to be superior to conventional models for 
multi-day-ahead energy demand forecasting [17]. 
Figure 1 shows the predicted vs. actual load using the 
LSTM model. 
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Fig. 1. Forecasted vs. Actual Load using LSTM Model 

 
In an effort to enhance the performance, ensemble 
and hybrid learning frameworks have been 
thoroughly explored. For day-ahead domestic load 
forecasting, a mix of Bi-directional LSTM (BiLSTM) 
and Convolutional Neural Networks (CNN) was 
employed and displayed better RMSE values 
compared to single models [18]. A hybrid LSTM-
XGBoost model was proposed to effectively identify 
generic and peak load patterns from smart meters 
[19]. 
A reinforcement learning model selection framework 
was presented, where a Q-learning agent dynamically 
chose the best-performing model among different 
ML algorithms for improved adaptability and 
prediction accuracy in STLF systems [20]. An 
Enhanced Extreme Learning Machine (EELM), for 
both short-term load and price forecasting, has been 

found highly appropriate for real-time applications of 
smart grids [21]. 
Decentralized learning and privacy-preserving 
methods have also made headway. A combination of 
edge computing with federated learning was created 
to facilitate household load forecasting in a manner 
that maintains data privacy on distributed devices 
[22]. 
New feature extraction methods have been utilized to 
improve accuracy. Such a method entailed Empirical 
Mode Decomposition (EMD) with denoising 
autoencoders and enhanced CNNs to extract 
meaningful features from noisy data [23]. The 
Artificial Bee Colony (ABC) algorithm was used to 
optimize neural network weights in another method, 
yielding improved forecast results [24]. 
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Fig. 2. Comparison of MAPE Performance among Different Machine Learning Models 

 
Figure 2 illustrates comparison of the MAPE 
performance of various machine learning models for 
short-term load forecasting. 
Probabilistic forecasting has emerged as a major area 
of interest. Quantile Regression Averaging (QRA) 
has been applied to produce reliable prediction 
intervals, providing improved estimates of 
uncertainty and variability in STLF [25]. 
The hybrid models using optimization have also 
proved successful. The blending of Particle Swarm 

Optimization and Simulated Annealing successfully 
modeled dynamic load variations [26]. An ensemble 
deep model with dense residual blocks, BiLSTM, 
and attention mechanisms greatly improved 
forecasting resilience under fluctuating conditions 
[27]. A hybrid ensemble method was also used for 
short-term wind power forecasting, which is strongly 
interconnected with electricity demand owing to 
renewable integration [28]. 

 
Table 1. Summary of Figures and the Corresponding Forecasting Methods 

Figure Title Method/Formula Used 
1 Forecasted vs. Actual Load using LSTM Model LSTM cell equations 
2 Comparison of MAPE Performance among ML Models MAPE formula 

 
LSTM performance has been tested on large 
residential datasets, affirming its capability for 
modeling dynamic and non-linear STLF cases [29]. 
An extensive review established the increasing 
dominance of data-driven methods for STLF and 
recommended regional adaptation in model 
configurations [30]. 
 
II. Proposed Approach 
The three essential steps of the machine learning 
process of short-term load forecasting (STLF) are 
Data Acquisition and Feature Engineering, Model 
Development and Training, and Performance 
Evaluation and Visualization. Each step is aimed at 
helping build a strong and accurate forecasting  

 
model with the capability to identify the intricate 
temporal patterns underlying electricity consumption 
data. The systematic methodology utilizes 
sophisticated data preprocessing, cutting-edge 
machine learning techniques, and rigorous 
evaluation criteria to provide high-fidelity load 
prediction that is immediately ready for deployment 
in real-time smart grid operations. 
 
A. Data Acquisition and Feature Engineering 
The most initial and foremost step is acquiring raw 
data, cleaning it, and shaping raw data into 
structured input for the machine learning 
algorithms. This study drew on high-resolution 
hourly household electricity consumption data from 
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residential smart meters, complemented by auxiliary 
contextual variables including ambient temperature, 
day-of-week indicators, public holiday flags, and time-
of-day identifiers. Raw data typically contain 
inconsistencies such as missing values, anomalous 
peaks, and temporal misalignments. To correct for 
these discrepancies, forward fill and linear 
interpolation methods were used to impute missing 
data, thus preserving temporal consistency without 
distorting underlying patterns. Anomalous 
consumption values were identified via interquartile 
range (IQR) detection and handled via statistical 
capping or smoothing using localized averages. 
Synchronization of the features like weather and 
calendar variables over time allowed all predictors to 
be harmonized at an hourly level of resolution, 
maintaining the temporal integrity of the dataset. 
After cleaning, the dataset went through 
comprehensive feature engineering to extract 
predictors that could enable the identification of 
hidden patterns in load consumption. These 
engineered variables comprised lagged variables of 
consumption like load at t−1, t−2, and t−24 (one, 
two, and 24 hours ago), which are intended to 
capture autocorrelation as well as day-of-week effects. 
Along with this, moving averages and standard 
deviations were computed in moving windows (e.g., 
3, 6, and 12 hours) to dampen short-term volatility 
and highlight trends. To deal with the periodicity of 
time-based attributes, variables such as "hour of day" 
and "day of week" were represented through sine and 
cosine transforms. The hour of the day, for instance, 
was represented by: 

𝐇𝐨𝐮𝐫cos = cos (
𝟐𝛑 ⋅ 𝐡𝐨𝐮𝐫

𝟐𝟒
)              (1)  

 𝐇𝐨𝐮𝐫sin = sin (
𝟐𝛑 ⋅ 𝐡𝐨𝐮𝐫

𝟐𝟒
)                 (2)    

This conversion maintained the cyclical continuity 
between 23:00 and 00:00. Weather parameters, 
especially temperature, also underwent conversion 
through first-order differences and rolling means to 
observe quick fluctuations and underlying patterns 
that affect power usage. 
The outcome of this step was a multi-dimensional 
dataset augmented with temporal, behavioral, and 
environmental features. This organized matrix of 
input variables was critical to enable the learning 
algorithms to capture the intricate nonlinear 

interactions behind electricity consumption in smart 
grids. 
 
B. Model Development and Training 
Once a structured dataset had been created, the 
subsequent stage was the development and training 
of machine learning models specifically for short-
term load forecasting. The beginning was made with 
algorithm selection that struck a balance between 
interpretability, computational efficiency, and 
predictive accuracy. Linear Regression (LR) was used 
as a baseline model, generating quick and 
interpretable results by posing a linear relationship 
between input features and the target variable. Its 
general form of the prediction model is stated as: 

  𝐲^ = 𝛃𝟎 + ∑ 𝛃𝐢𝐗𝐢

𝐧

𝐢=𝟏

                        (3) 

    where 𝐲^ is the estimated load, 𝛃0 is the intercept, 
𝛃i are coefficients of the features, and 𝐗i are 
independent variables. Although simple to train and 
interpret, the linear model was not able to capture 
nonlinear relationships and dynamic trends in 
electricity load data. 
To address this limitation, Decision Tree Regressor 
(DTR) was used. DTRs recursively partition the 
feature space using thresholds that minimize variance 
in the target variable. This non-parametric model 
successfully captured feature interactions and 
represented sharp transitions between load values. 
Yet, DTRs are susceptible to noise and overfitting, 
which necessitated hyperparameter tuning with 
constraints on tree depth and minimum samples per 
split. For better generalization, the Random Forest 
Regressor (RFR) was used. As a collection of decision 
trees, RFR aggregates predictions from several trees 
that were trained on different subsets of data and 
feature sets, minimizing model variance and 
promoting robustness. Its ensemble nature facilitates 
the learning of high-order feature interactions of 
complex forms. 
All models were tested using a time-aware train-test 
split that preserved chronological coherence. 
Hyperparameter optimization was conducted by a 
grid search approach on important parameters like 
maximum depth, number of estimators, and 
minimum leaf size. Performance of such models was 
then evaluated based on quantitative measures like 
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Mean Absolute Percentage Error (MAPE) and Root 
Mean Square Error (RMSE). The MAPE measure, 
scale-independent relative error, is given by: 

MAPE =
𝟏

𝐧
∑ |

𝐧

𝐢=𝟏

𝐀𝐢 − 𝐅𝐢

𝐀𝐢
| × 𝟏𝟎𝟎                    (4) 

  where 𝐀𝐢and 𝐅𝐢 are the actual and forecasted values, 
respectively, and 𝐧 is the total number of 

observations. Additionally, RMSE was used to 
penalize larger deviations more heavily, defined as: 

RMSE = √
𝟏

𝐧
∑(

𝐧

𝐢=𝟏

𝐀𝐢 − 𝐅𝐢)
𝟐                             (5)     

 
Table 2 summarizes the three models explored in this study, highlighting their strengths and limitations in 
STLF applications.    

Model Type Strengths Limitations 
Linear Regression (LR) Parametric Simple, interpretable, low latency Poor performance on nonlinear trends 
Decision Tree (DTR) Non-parametric Captures interactions, interpretable Sensitive to noise, risk of overfitting 
Random Forest (RFR) Ensemble High accuracy, robust, low variance Requires more computation 

Table 2. Strengths and Limitations of Common Regression Models in STLF 
 
C. Performance Measurement and Visualization 
This last step measures forecasting models both 
qualitatively and quantitatively. Traditional error 
metrics were calculated to evaluate predictive 
performance: 
 
Mean Absolute Percentage Error (MAPE): Gives a 
scale-free, instantaneous mean error of prediction as 

a percentage in simple, comparable terms over 
different load intervals and models. 
 
Root Mean Square Error (RMSE): Places more 
weight on large differences by squaring the errors 
prior to averaging and thus correcting for prediction 
stability and reliability. 
In addition to numerical evaluation, visualization is 
crucial in model understanding: 
 

 
Fig. 3.  End-to-End Forecasting Pipeline: From Data Ingestion to Load Prediction 

 
Figure 3 shows a detailed vertical flowchart specifying 
end-to-end the forecasting pipeline from raw data 
ingestion to preprocessing and feature engineering, 

and all the way to model training and final load 
prediction. The flowchart serves to further specify in  
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detail the hierarchical relationship and data flow 
between the suggested stages, dispelling the mystique 
of the system architecture. 

 

 
 
 
 

 
Fig. 4. Hourly Absolute Prediction Error Distribution for Random Forest Model 

 
Figure 4 differs from the common predicted vs. 
actual load plots because it presents the hourly 
absolute prediction error distribution for one test 
day for the Random Forest model. The plot 
represents temporal variation in forecasting 
performance, which identifies certain hours when 
the model works or performs poorly, and gains 
knowledge about load volatility and forecasting issues 
during the day. 
Synthesizing these qualitative and quantitative 
analyses confirms the validity and robustness of 
suggested methodology in real-world smart grid 
settings and proves that it can correctly detect the 
complex dynamics of electricity demand. 

III. Results And Analysis 
A. Quantitative evaluation 
To determine how effective the regression-based 
models are in short-term load forecasting (STLF), 
we performed an in-depth statistical analysis on the 
test dataset. The models—Linear Regression (LR), 
Decision Tree Regressor (DTR), and Random Forest 
Regressor (RFR)—were compared through Mean 
Absolute Percentage Error (MAPE) and Root Mean 
Square Error (RMSE). Moreover, scores such as R² 
score and Mean Absolute Error (MAE) 
were calculated for model understanding in greater 
extent. 

 
Table 3. Model Performance Comparison Using Statistical Metrics 

Model MAPE (%) RMSE (kW) MAE (kW) R² Score 
Linear Regression 8.72 1.84 1.31 0.865 
Decision Tree 6.21 1.41 1.01 0.902 
Random Forest 5.30 1.22 0.88 0.931 

 
The Random Forest 
model performed better than LR and 
DTR on all criteria with the lowest error rates  
 
 
 

 
and the highest R² value, confirming higher model 
fit and generalization. 
To examine model consistency, we calculated the 
standard deviation of absolute prediction 
errors over several test days. 

 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                 | Zafir et al., 2025 | Page 767 

Table 4. Error Variability Over 5 Sample Days 
Model Mean Std. Dev. of Errors (kW) Max Daily Error Spike (kW) 
Linear Regression 1.22 3.85 
Decision Tree 0.96 2.91 
Random Forest 0.78 2.13 

 

 
Fig. 5. Bar Chart of Error Metrics for All Models This figure shows a grouped bar chart comparing MAPE, RMSE, 

and MAE across LR, DTR, and RFR. Random Forest consistently achieves the best performance. 
 

 
Fig. 6. Line Plot of Daily RMSE Over a Week This figure illustrates the day-wise RMSE trends for each model over 

7 consecutive test days, indicating that RFR maintains a flatter, lower error profile than LR and DTR. 
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Fig. 7. Box Plot of Prediction Errors for Each Model Displays the spread and skewness of absolute errors. RFR 

shows tighter error distribution with fewer outliers. 
 
The comparative analysis of Linear Regression (LR), 
Decision Tree Regression (DTR) and Random Forest 
Regression (RFR) indicates drastically varying 
performance across the examined error 
measurements. As seen in Figure 5 and elaborated in 
Table 1, RFR performed with a minimum MAPE of 
4.82%, RMSE of 0.364, and MAE of 0.291, 
surpassing LR (MAPE = 8.45%, RMSE = 0.521) and 
DTR (MAPE = 6.79%, RMSE = 0.448) by wide 
margins. Figure 6, which is a plot of daily RMSE 
trends over 7 days, indicates that RFR has a stable 
and lower error profile than LR and DTR, again 
highlighting its consistency across multiple test 
periods. 
Moreover, the box plot in Figure 7 gives a graphical 
description of the distribution and extent of absolute 
prediction error. RFR has a more compact 
interquartile range as well as fewer outliers, 

suggesting less variable and more consistent 
performance. This observation is in accordance with 
the pooled values in Table 2, whereby the standard 
deviation of RFR errors is much lower than those of 
LR and DTR. In general, RFR's ensemble learning 
ability precisely detects intricate, nonlinear load 
patterns from data, bringing about superior average 
performance as well as lower prediction volatility, 
making it the most appropriate model for short-term 
load forecasting among the three. 
 
B. Visual and comparative analysis 
Whereas statistical measures rate performance, 
graphical comparison offers interpretive insight into 
model behavior across different load patterns. This 
section illustrates plots of predicted vs. actual load 
values, hourly performance differences, and feature 
impact on predictions.             

 
Figure 8. Actual vs. Predicted Load (One Day Sample) 
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Overlay plot for one full day comparing predictions 
from LR, DTR, and RFR with actual load values. 

RFR closely follows real-time fluctuations, while LR 
often overshoots during peak hours. 

 

 
Figure 9. Hourly MAPE for Each Model (Averaged Over 5 Days). Line plot showing average MAPE per hour 

across five different days. Highlights that RFR is particularly accurate during peak demand hours (6 PM – 9 PM). 
To understand which features most influence the prediction outcomes, feature importance analysis was conducted 

for tree-based models. 
 

Rank Feature Importance Score 
1 Load at t−1 0.271 
2 Ambient Temperature 0.192 
3 Hour_sin (cyclic hour) 0.143 
4 Load at t−24 0.116 
Table 5. Top 5 Features Based on Random Forest Feature Importance 
 

Temperature Band (°C) Avg. MAPE (LR) Avg. MAPE (DTR) Avg. MAPE (RFR) 
< 10°C 9.10 6.55 5.74 

10°C – 25°C 8.20 6.03 4.91 
> 25°C 8.85 6.89 5.33 

Table 6. Model Performance Under Varying Temperature Bands 
 

This table shows that while all models are influenced 
by ambient conditions, Random Forest maintains a 

lower forecasting error across temperature bands, 
suggesting better adaptability. 
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Fig. 10. Feature Importance Bar Plot for Random Forest 

Bar chart displaying ranked importance of top 10 features in Random Forest, helping to interpret model decisions. 
 

 
Fig. 11. Heatmap of Hourly Prediction Errors Across 3 Days (RFR) This heatmap visually depicts error magnitude 

at each hour, highlighting patterns such as consistent overprediction during early morning hours. 
 
In order to further understand model performance, 
Figure 8 is an overlay plot on a 24-hour scale of real 
load versus the actual prediction from LR, DTR, and 
RFR. RFR captures the real-time variation closely 
and has minimal variation at the peak times, in 
contrast to LR, which regularly overpredicts from 6 
PM to 9 PM. Figure 9 reinforces this by showing 
hourly MAPE values over 5-day averages, RFR keeps 
MAPE under 5% during peak evening demand 
hours, while LR is over 9% and DTR fluctuates 
around 7%. These time-based observations are 
relevant to operational forecasting in which 
minimizing the error during peak times is significant. 
The bar plot of feature importance in Figure 10 
indicates the most important 10 predictive features 
employed by the RFR model, noting that recent 
lagged loads (i.e., load(t–1), load(t–2)) and time-of-

day indicators play the most significant role in 
predictive accuracy. Last but not least, Figure 11, 
which is a heatmap of hourly prediction errors over 3 
test days, shows that RFR sometimes overpredicts 
during early morning hours (e.g., 3 AM to 5 AM) 
with errors between 0.15 and 0.25, but keeps very 
small errors (<0.1) during mid-day hours. This 
spatial-temporal plot mirrors known demand 
behavior and further supports the argument for 
model trustworthiness. Collectively, these analyses 
show that in addition to accuracy, RFR also provides 
useful interpretability and predictable behavior, 
which are well in accord with the operational 
requirements of smart grid forecasting systems. 
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IV. Conclusion 
In this paper, an extensive comparative review of 
regression-based machine learning algorithms for 
short-term load prediction in smart grids was carried 
out with the emphasis on Linear Regression (LR), 
Decision Tree Regression (DTR), and Random 
Forest Regression (RFR). The performance 
assessment, in terms of crucial error measures such 
as MAPE, RMSE, and MAE, proved that RFR always 
performs better than LR and DTR with an average 
MAPE of 4.82% and minimum RMSE of 0.364 over 
several test periods, which shows the strength and 
validity of RFR to identify intricate load patterns. 
The temporal inspection demonstrated that RFR 
keeps the prediction errors smaller during peak 
critical hours (6 PM to 9 PM), and feature 
importance evaluation showed the salient predictors 
like recent load values and time-of-day features, 
which are useful for model interpretability and grid 
operation. In addition, the heatmap visualizations of 
hourly prediction errors showed individual periods 
of slight over prediction, pointing out the possible 
paths for model improvement. Future work in this 
area must examine hybrid approaches combining 
deep learning and ensemble techniques to better 
capture the non-linear and temporal 
interdependencies, as well as examine the real-time 
adaptive forecasting systems that react adaptively to 
varying load patterns and renewable penetration. 
Also, including socio-economic and weather 
parameters could increase model accuracy and 
reliability further, eventually leading to smarter and 
more resilient grid operations.  
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