
Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Din et al., 2025 | Page 395 

 

ENHANCING AI SYSTEM TRANSPARENCY AND EXPLAINABILITY: 
INTEGRATING FORMAL METHODOLOGIES FOR IMPROVED MODEL 

PERFORMANCE AND INTERPRETABILITY 
 

Sultan Salah Ud Din1, Muhammad Ahsan Aslam2, Shahid Farid*3, Talha Farooq Khan4, 
Muhammad Kamran Abid5 

 
1,*3Department of Computer Science, Bahaudin Zakarya University, Multan, Pakistan 

2Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 
4Department of Computer Science, University of Southern Punjab, Multan, Pakistan 

5Department of Computer Science, Emerson University, Multan, Pakistan 
 

*3shahidfarid@bzu.edu.pk 
 

DOI: https://doi.org/10.5281/zenodo.15422586 
 
 

Abstract 
Artificial Intelligence operates as essential business infrastructure in healthcare 
together with finance and autonomous systems. The output decisions from deep 
learning neural network-based AI models present significant barriers to both 
understanding and interpretation. The absence of explainability features between 
models creates trust-related conflicts for users and regulators and directly affected 
industrial stakeholders. The combination of SHAP and LIME presents viable 
explanation tools but produces imprecise interpretations when evaluated against 
high-dimensional real-time datasets. Random Forest surpassed both Logistic 
Regression and SVM by obtaining superior results in generalization testing which 
produced greater training and validation accuracy levels. The accuracy 
measurements revealed that Random Forest achieved 0.894 training accuracy 
along with 0.879 validation accuracy while Logistic Regression maintained 
0.905 training accuracy and 0.874 validation accuracy and SVM achieved 
0.848 training accuracy with 0.867 validation accuracy. The decision outcomes 
from the model were primarily influenced by Features 3 and 6 according to SHAP 
and LIME analysis. Random Forest presented the best ROC and precision-recall 
curves which indicated its strength to separate distinct classes. Future research 
should optimize the methodologies through development that enables their scaling 
across multiple applications while achieving better performance specifically in 
time-sensitive and dimensionally complex systems. Despite these promising results, 
the study encountered two primary limitations: Formal methods face scalability 
issues and all models displayed poor AUC scores as their primary limitations. 
Both Logistic Regression and Random Forest with SVM yielded prediction 
performance similar to random guessing based on AUC scores of 0.51 and 0.50 
respectively. The research focus should optimize scalable methods aimed at 
improving performance while solving time-sensitive high-dimension problems. 
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INTRODUCTION
AI system explainability has become essential for 
healthcare and finance operations which adopt 
artificial intelligence and autonomous systems 
together with legal applications despite their growth. 
Most observers find it difficult to comprehend AI 
models made from complex neural networks since 
these systems have ambiguous descriptions. High-
tech applications encounter major implementation 
challenges due to stakeholder requirements for 
understanding AI decision rationales since end users 
and regulatory bodies and affected individuals need 
this information[1]. The implementation of 
transparency functions together with explainability 
capabilities serves to tackle both bias-related issues 
and user-based concerns regarding system 
appropriateness and trust. Recent technology 
advancements unite several methods for AI system 
explanation through post-hoc approaches merged 
with model simplification approaches. Several post-
hoc explainability methods now exist including 
image saliency maps as well as LIME (Local 
Interpretable Model-agnostic Explanations) for 
model-agnostic explanations although every method 
struggles with providing transparent explanations. 
Two contradictory situations result from explanation 
methods which provide rough illustrations or 
incorrect and limited information regarding actual 
decision processes[2]. 
The text needs to be rewritten to achieve direct and 
flowing syntax. Also normalize verbalization during 
the revision process. Also normalize verbalization 
when possible. Systems that use artificial intelligence 
with complicated structures produce several 
functional operational ethical problems and multiple 
technology-related issues. Stakeholders performing 
evaluation of biased or unfair AI system decisions 
must gain access to decision-making processes to 
determine the contributing factors that shaped these 
decisions. Multiple barriers exist between starting 
programs for AI fairness because stakeholders need 
to understand but also need accountability to 
prevent bias. The lack of standardized proof 
protocols and clear data representation system for AI 
techniques generates misleading interpretations that 
reduce the confidence in AI end results[3], [4]. The 
need for resolution within these scenarios is best 
resolved through formal methodologies' effective 

processes. Data system evaluation through formal 
specification followed by behaviour verification uses 
mathematical procedures that technical methods 
employ in software engineering and verification 
domains. Formal methodologies allow effective 
improvements in AI system transparency through 
systematic methods that generate understandable 
decision processes which users and auditors both can 
verify. The techniques result in explicit 
interpretations that deliver superior interpretability 
advantages than approximate solutions. The paper 
investigates how formal methodologies provide 
methods to improve both transparency and 
explainability features of AI systems[5]. The study 
looks at contemporary AI formal approaches before 
studying their ability to solve current interpretability 
issues and developing formal implementation 
protocols for the AI life cycle. The purpose is to 
establish explainability features in AI systems by 
using formal approaches so users can maintain trust 
and embrace powerful AI models. 
The research field of AI explainability and 
transparency struggles because AI systems lack 
sufficient formal methodologies which ensure both 
interpretability and accountability. The two post-hoc 
explainability methods SHAP and LIME deliver 
approximate yet insufficient details about complex 
AI models' decision-making processes. The absence 
of standardization and weaknesses when working 
with high-dimensional and real-time systems create 
deployment barriers for these methods. Intrinsic 
methods which provide interpretability at start-up 
can negatively impact operational efficiency making 
them ineffective for uses of highly advanced AI 
systems[6]. The research goal targets the absence of 
an efficient standardized framework which 
establishes total transparency and accountability for 
essential domains including healthcare and finance 
while using AI systems. Computer systems powered 
by artificial intelligence function as black-box systems 
because stakeholders find it hard to comprehend or 
rely on the decisions these systems produce[7]. The 
inability to see through AI operations remains a 
major issue since it brings doubts about fairness in 
addition to the necessity to create standardized AI 
development frameworks with formal mathematical 
proof systems. The research completes this 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Din et al., 2025 | Page 397 

knowledge gap by implementing AI system 
transparency through trustworthy decision-making 
methods that stakeholders need to trust and verify. 
 
Literature Review 
Better explainability in AI technology development 
exists to support machine learning models because 
users require clear understanding of advanced 
systems. Explicit logical formatting in expert systems 
made their features easier to explain to users. 
Programming advancements in machine learning 
particularly deep learning created transparent models 
which ultimately led to the black-box challenge 
occurring[8]. The development of post-hoc 
explainability techniques led to the creation of the 
SHAP (Shapley Additive Explanations) and LIME 
(Local Interpretable Model-Agnostic Explanations) 
which demonstrate model prediction insights and 
maintain the model architecture[9], [10]. Research 
today mainly concentrates on early implementation 
of transparent models by combining formal 
verification methods with transparent modelling 
approaches. The current development indicates 
complete system evolution which now combines 
integrated transparency into the entire AI 
development life cycle following explainability 
responses. The first implementation of these 
methods occurred in critical systems including 
aerospace alongside telecommunications and finance 
since they guarantee correct functioning and safety 
together with reliability. These methodologies derive 
from blending techniques of algebraic and logical 
and computational principles. The developed tools 
expanded their scope to support cyber security 
practices and protocol development thereby creating 
error detection systems and operational efficiency 
enhancement tools[11], [12]. Research teams 
discovered formal methodologies to be viable 
solutions for AI explainability and transparency 
needs since AI implementation had been rapidly 
expanding. Adapted formal methodologies support 
systematic AI system evaluations which check 
whether pre-defined standards for ethics and 
operational needs are satisfied for increased usage 
and development. Better AI system transparency 
results from developing interpretability and 
explainability techniques which provide effective 
end-user access to system workings. The classification 

methods maintain positions between authentic 
identification procedures and additional explanatory 
techniques. The post-hoc interpretation methods 
using SHAP and LIME along with counterfactual 
explanations let users evaluate model predictions 
after training completes[13]. The analytical tools 
function as crucial components that display what 
features the model uses for decision-making and 
create possible situational models for user evaluation. 
Intrinsic method development seeks to build 
interpretable model designs from combination of 
decision trees with neural network attention 
mechanisms and rule-based systems. Visualization 
tools that use interfaces tailored to human contexts 
have bridged the gap between professional model 
end-products and voter audiences which leads to 
better utilization[14]. Explainability stands in front 
of heightened concerns since researchers work to 
link accountability and fairness standards to 
guarantee AI systems uphold interpretability as well 
as ethical and equitable behaviour. Design of 
trustworthy AI systems requires explainability to 
serve as their fundamental component according to 
recent developments. Software engineering 
professionals develop system models through formal 
methods to define specifications of behaviour and 
verify these models which prevents crucial problems 
from affecting critical sectors such as aerospace and 
telecommunications and cyber security. Through 
mathematical tools included in these methods 
professionals can detect errors and confirm 
requirements for building systems that have both 
transparency and accountability[15]. 
Many explainability approaches have various 
constraints which prevent their practical deployment 
and operational effectiveness. Post-hoc methods like 
SHAP and LIME provide model behaviour 
approximations yet they cannot produce real 
transparency leading to potential wrong 
explanations[16]. These methods lack both 
standardization and consistency standards making 
model and domain explanation comparison difficult 
to achieve. Intrinsic methods maintain 
interpretability features but this advantage results in 
decreased operational performance and thus 
prevents their application on advanced problems. 
Current methods lack the ability to produce useful 
insights which would help users grasp high-

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Din et al., 2025 | Page 398 

dimensional or real-time systems because these 
systems need fundamental interpretation features for 
decision-making capabilities[17]. The user-centric 
approach suffers in design methods because these 
methods fail to provide proper support for various 
technical requirement demands that range between 
technological experts and non-technical users. The 
current explainability methods require strong 
development along with domain-specific 
standardization because their skill mix must 
harmonize operation performance with interpretive 
features. Scalability issues prevent formal methods of 
AI from becoming mass-scalable since they demand 
significant technical operations and complicated 
implementation procedures[18]. The application of 
these large AI systems with billions of parameters 
becomes impossible until major specifications 
simplifications enable operational success. Regular 
practitioners cannot implement formal techniques 
used in current AI workflows since these formal 
methods require skills they typically lack[19]. The 
implementation of affordable formal verification 
methods alongside speedy assessment solutions 
requires immediate attention because they determine 
how broadly formal verification methods get adopted 
in practical artificial intelligence systems. Users can 
verify post-hoc explanations through the formal 
verification technique by employing its framework 
for actual model behaviour verification. Joint 
application of these verification methods brings 
significant enhancement to explanation faithfulness 
thus providing theoreticians with new possibilities 
for evaluating AI system operations. Domain 
knowledge when integrated with formal models and 
explanation methods produces significant 
applications that are vital for healthcare due to its 
strong requirement for explainability alongside trust 
establishment[8]. When diagnostic models undergo 
implementation of these techniques, they become 
more transparent to medical practitioners who make 
better choices and potentially save patients. Titan 
Operations advance explainability and transparency 
through ethical examination procedures[20]. AI 
systems now commonly used in justice systems and 
medical facilities and finance areas require an 
absolute need for transparent interpretive AI 
systems. System development assessments and 
procedures require formal methodologies to embed 

three essential ethical principles: fairness and 
responsibility combined with non-exclusive criteria 
for decision-making. AI development requires 
technological expertise to team up with ethical 
experts and policymakers for creating specific 
guidelines to help technologists create moral AI 
systems. The verification process of large 
computational programs becomes faster and cheaper 
through distributed systems that use parallel 
processing to lower operational costs. Alternative 
tools must be accompanied by user-friendly features 
to make formal methodologies accessible to 
professionals of diverse skill levels who will then use 
the tools in their work[5], [21]. The present 
combined with past technological advancements are 
driving the development of future AI explainability 
toward regulatory and technical improvements. Easy 
accessibility of explainable AI systems will result from 
implementing automated verification tools with 
interpretability mechanisms along with transparency 
regulations for AI deployment. Professional growth 
can be achieved by experienced practitioners through 
education about necessary skills for implementing 
these methodologies as this eliminates existing 
resource and accessibility barriers. The field will 
produce dependable and value-aligned AI systems 
after solving existing challenges. Standard 
explainable approaches for AI systems are needed 
because stakeholders maintain that these methods 
allow better ethical conduct and ensure operational 
consistency and build trust relationships[2]. The 
precise mathematical framework of formal methods 
allows testing of AI models to verify their decision 
systems meet the required operational standards. 
Model-checking enables organizations to verify that 
AI systems fulfil necessary non-discrimination 
standards for recruitment and law enforcement 
applications[22]. Through theorem-proving methods 
experts can verify the logical accuracy of interpretable 
models to build high confidence in their output 
results. Scientific teams dedicate their efforts to 
developing robust artificial intelligence systems that 
provide explainable processes for their operations. 
Neuro-symbolic AI systems link neural networks to 
logical frameworks so their models can develop 
explanation systems that explain output predictions 
to human users[23]. Organizations achieve beneficial 
outcomes through the approach when they handle 
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domains that require rigorous enforcement rules 
particularly in financial audits and autonomous 
vehicle applications. Causality-based methods give 
models the capability to find fundamental factors 
behind decision-making processes leading to better 
professional insights beyond simple correlations. The 
development of predictive systems requires academic 
research to unify formal cause-effect reasoning and 
explainability methods for creating predictive systems 
that reveal cause-effect logical interpretations in their 
output[24], [25]. Medical diagnostic systems benefit 
most from strong causal relationship understanding 
when handling critical medical decisions. Through 
interprofessional collaboration between domain 
experts and computer scientists together with 
ethicists and policymakers it becomes possible to 
develop ethical frameworks which maintain both 
technical feasibility layout and societal guidelines. 
Accountable AI systems require joint efforts with 
human values as their fundamental core requirement 
to establish reliable deployment systems. The human 
ability to understand and trust AI systems improves 
because of manmade enhancements to explainability 
and interpretability methods. Explanations 
constructed using SHAP together with LIME and 
counterfactual methods offer end results 
transparency followed by intrinsic approaches with 
attention mechanisms and interpretable 
architectures that introduce built-in 
interpretability[26]. The combined use of AI 
techniques specialized for specific domains plus 
visualisation tools enables better understanding of 
technical AI outputs by medical imaging and 
financial analysis specialists to create responsible AI 
deployments[8]. Present-day explainability methods 
face limited success and adoption because of critical 
operational obstacles. SHAP alongside LIME provide 
inaccurate model explanations since they provide 
approximate transparency which might lead users 
towards incorrect conclusions. The original 
explanation capabilities of intrinsic frameworks stay 
restricted because they perform worse than other 
methods resulting in complex system challenges. The 
application potential of interpretability methods 
suffers because they have standard operational 
procedures problems and face difficulties in working 
with multidimensional datasets as well as not 
providing interpretive results that satisfy both experts 

and non-technology staff[27]. The planned systems 
within artificial intelligence create structured 
operational structures for explainability alongside 
transparent system design although difficulties 
develop when applying these methods to practical 
applications. Analytical methods present 
considerable resource requirements especially when 
operating deep learning models having billions of 
parameters because they need extensive 
computational power. Multiple complexities exist 
which prevent these methods from integrating easily 
with modern artificial intelligence development 
procedures. Most professionals find it hard to 
employ formal verification approaches because they 
do not possess enough skills and expertise in this 
specialized discipline[4], [28]. The implementation of 
these methods demands longer timescales and 
elevated expenses that serve as key obstacles for 
businesses working in urgent manufacturing that 
need rapid prototyping services. Formal 
methodologies face growing difficulties when used to 
manage real-time systems with advancing AI systems 
and their data-driven methods. The industrial 
adoption of formal methods requires 
implementations of expandable formal methods 
supported by computing infrastructures which 
includes easy-to-use verification tools and friendly 
graphical interfaces. Modernized formal methods 
have not reached sufficient development to take full 
advantage of their capabilities for enhancing system 
transparency and practical accountability standards 
in modern systems. 
 
Methodology 
The research project develops a formal methodology 
for enhancing Artificial Intelligence (AI) system 
transparency as well as explainability while 
examining system development processes through 
formal techniques. This methodology works to fix 
present-day explainability system limitations in 
Artificial Intelligence by developing better methods 
that provide reliable decision-making process 
understanding. Through mathematical proofs 
combined with formal verification approaches the 
research creates an exact framework that enables 
confirmation of understandable and verifiable AI 
conduct. 
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Research methodology: (1) Formal Methods 
integration within AI systems followed by (2) 
Verification protocols development then (3) 
Evaluating explainability output performance. 
The first phase incorporates formal methods that 
include algebraic and logical reasoning for AI model 
design via integration. The exact behaviour 

specifications for AI systems are established through 
such methods to confirm their operation follows 
expected standards. Formal techniques will be used 
for model-checking and theorem proving on AI 
systems that operate in critical fields including 
healthcare, finance and cybersecurity because these 
sectors demand maximum transparency. 

 

 
Figure 1: flow of the work 

 
The development of verification protocols stands as 
the second fundamental aspect which concentrates 
on establishing evaluation methods for confirming 
AI model correctness. Formal verification tools 
should be built following their application for 
lifetime evaluation of AI systems and their behaviour 
integrity. The designed tools will examine AI models 
to confirm their ethical compliance regarding 
fairness along with non-discrimination and 
accountability standards thus reducing biases and 
enhancing trust in AI systems. 
The research will conduct an evaluation to 
determine how well integrated formal methods 
improve the explainability features of AI systems 
throughout their assessment process. The evaluation 
process will apply clarify decision-making metrics 
along with pathway tracing abilities and assess how 
well stakeholders understand system processes. The 
research will perform comparative studies between 

formal methodologies against post-hoc approaches 
including SHAP and LIME to determine 
performance outcomes. 
The research integrates formal methodologies to 
establish a complete solution which aims at 
improving transparency and explainability and 
accountability of AI systems while making AI models 
more reliable and trustworthy. 
 
Results and discussion 
The accuracy performance of Logistic Regression 
matches Random Forest and SVM across 20 learning 
cycles through training iterations. Training accuracy 
rates for models demonstrate initial values of Logistic 
Regression at 0.507 and Random Forest at 0.588 
with SVM at 0.530 yet all models show increasing 
accuracy through the epochs. The training accuracy 
of Random Forest surpasses both Logistic Regression 
and SVM throughout the training period with 
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consistent improvements in all models. Random 
Forest achieves training accuracy of 0.894 during 
epoch 20 which exceeds both Logistic Regression at 
0.905 and SVM at 0.848. Random Forest 
demonstrates superior pattern detection and 
generalization abilities which result in substantial 
improvements in predictive performance for complex 
datasets. The trends in validation accuracy show 
equivalent patterns with different quantitative 
outcomes. Random Forest achieved the best 
improvement in model performance by reaching 

validation accuracy of 0.879 at epoch 19 despite 
outperforming both Logistic Regression with 0.874 
and support vector machines with 0.867. Logistic 
Regression and SVM demonstrate unstable 
validation accuracy patterns throughout epochs thus 
suggesting their lower ability to generalize compared 
to the Random Forest method. Random Forest 
exhibits strong resistance to overfitting by achieving 
higher validation accuracy during epoch 10 which 
leads to superior performance on unseen data. 

 
Table 1: models training and validation accuracy 

Epochs 
Logistic 
Regression (Train) 

Random 
Forest (Train) 

SVM 
(Train) 

Logistic Regression 
(Validation) 

Random Forest 
(Validation) 

SVM 
(Validation) 

1 0.507429 0.588238 0.53002 0.445694 0.521523 0.508154 
2 0.550288 0.592555 0.533085 0.496114 0.500862 0.518887 
3 0.62159 0.5983 0.508069 0.541679 0.527023 0.578752 
4 0.553561 0.661321 0.551838 0.527853 0.565833 0.498973 
5 0.6445 0.63209 0.601176 0.61432 0.632174 0.563232 
6 0.652498 0.633735 0.612838 0.605432 0.570826 0.524203 
7 0.676707 0.701088 0.638086 0.598729 0.606961 0.557224 
8 0.595058 0.715035 0.693857 0.649534 0.578496 0.617712 
9 0.660885 0.689148 0.645703 0.642465 0.666802 0.654953 
10 0.681034 0.769697 0.633217 0.617997 0.656905 0.617287 
11 0.744117 0.759085 0.680651 0.687305 0.700907 0.68466 
12 0.715099 0.797438 0.761181 0.754447 0.720279 0.669534 
13 0.779994 0.786857 0.688071 0.721215 0.690004 0.658991 
14 0.761655 0.786126 0.674865 0.75077 0.777468 0.722254 
15 0.785574 0.810693 0.724277 0.709367 0.811785 0.734635 
16 0.798967 0.883017 0.757958 0.762264 0.810668 0.742869 
17 0.879129 0.836901 0.80763 0.841728 0.841258 0.742574 
18 0.801622 0.873306 0.845075 0.817763 0.855589 0.816494 
19 0.843027 0.946411 0.842514 0.845763 0.879705 0.761469 
20 0.905295 0.894525 0.848321 0.874308 0.861529 0.867858 
 
Figure 2 depicts the learning and validation curves of 
Logistic Regression, Random Forest and SVM across 
20 epochs. Training accuracy patterns for the models 
appear in the learning curves whereas validation 
curves show assessment results of models on new 
data points throughout the same period. All models 
exhibit low accuracy at the start but Random Forest 
achieves training accuracy improvement at a faster 
rate than Logistic Regression and Support Vector  

 
Machine. The learning curve for Random Forest in 
Figure 2 demonstrates heightened efficiency in 
determining the data pattern through its rapid 
ascent. Random Forest produces its highest training 
accuracy at 0.894 by epoch 20 surpassing the 
accuracy of both Logistic Regression (0.905) and 
SVM (0.848) but Logistic Regression reaches the 
maximum training accuracy later. Regardless of the 
number of epochs the Random Forest model 
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maintains its position as the most accurate classifier 
with a peak accuracy level of 0.879 at epoch 19. 
Random Forest proves its excellence in learning 
capacity along with better ability to understand new 
unseen information thus ensuring reliable model 

results. Logistic Regression and SVM produce 
validation accuracy which shifts considerably 
demonstrating possible overfitting and a challenge in 
applying the models to new data especially during 
the initial epochs. 

 

 
Figure 2: learning and validation curve for used models 

 
The confusion matrix for the Logistic Regression 
model appears in Figure 3 to demonstrate how the 
model classifies instances as either Class 0 or Class 1. 
The matrix is a 2x2 grid where: The true positive 
instances for Class 0 are shown in the top-left cell 
(914) which indicates correct predictions for 914 
examples of this class. The upper-right corner (102) 
indicates false positives where Class 1 instances 
mistakenly received a Class 0 classification. A total of 
96 instances belonging to Class 0 experienced 
misclassification as Class 1 are displayed in the 
bottom-left cell (96) of the confusion matrix. The 
bottom-right cell (888) demonstrates that the model 
accurately classified 888 instances as belonging to 
Class 1. Logistic Regression achieves exceptional 

results in prediction accuracy because it identifies 
914 instances correctly belonging to Class 0 and 888 
instances belonging to Class 1. The logistic 
regression prediction shows high accuracy because it 
correctly predicted 914 Class 0 instances and 888 
Class 1 cases. To enhance prediction accuracy model 
refinements should be coupled with class weighting 
or threshold adjustment approaches. The Logistic 
Regression model shows a systematic pattern of 
misclassifying some Class 1 instances as Class 0 
instances together with the reverse misclassification. 
To enhance forecasting precision healthcare 
organizations should update their models through 
improvements or keep Class weights adjusted at 
proper thresholds. 
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Figure 3: Confusion matrix for logistic regression 

 
The evaluation of Logistic Regression, Random 
Forest, and SVM models through their ROC 
(Receiver Operating Characteristic) curves is 
presented in Figure 4. A classification model needs 
the ROC curve to show sensitivity values opposing 1-
specificity across different threshold criteria. These 
models can be assessed for their ability to 
differentiate between categories. Figure 4 displays 
ROC curves which show that all three models 
including Logistic Regression Random Forest and 
SVM present equivalent performance since their 
curves track the diagonal point-to-point. The models 

display comparable performance in their ability to 
differentiate between the two groups. The legend 
shows the area under the curve (AUC) values where 
Logistic Regression achieves 0.51 while Random 
Forest reaches 0.50 and SVM obtains a similar value 
of 0.50. A value of 0.5 in the AUC measures shows 
how well a model performs compared to random 
guessing. The evaluation demonstrates that the three 
models do not excel beyond basic random 
classification because their AUC values remain close 
to 0.5. The models struggle to differentiate between 
classes leading to restricted predictive accuracy. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Din et al., 2025 | Page 404 

 
Figure 4: Models ROC curve 

 
Figure 5 demonstrates the Precision-Recall curves for 
Logistic Regression, Random Forest, and SVM 
models alongside one another. The Precision-Recall 
curve enables evaluation of different thresholds by 
measuring the rate of true positives per predicted 
positive and the ratio of true positives to all actual 
positives. The depicted graphical data shows 
identical performance between Logistic Regression 
blue and Random Forest green as well as SVM red at 
precision levels ranging between 0.4 to 0.6. The 

curves show constant precision-recall symmetry 
between models when threshold adjustments take 
place. Precision demonstrates an initial steep decline 
along the recall axis which transforms into a 
stabilized state. The minimal differences in 
prediction results of these models demonstrate that 
none achieves better precision or recall balance than 
others when assessing instances within the available 
dataset. 
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Figure 5: Models precision recall curve 

 
In Figure 6 viewers can see through the SHAP 
(SHapley Additive exPlanations) summary plot how 
single features affect prediction outputs from the 
model. Different points in the plot reveal feature 
SHAP values across multiple instances using a color 
scheme that depicts feature strength (low to high). 
The model predictions become increasingly 
influenced by features with larger values compared to 
features with values near zero based on SHAP values. 
Each feature point displays a distribution through 
which we observe the range of values that impact its 
sensitivity. Features having longer point ranges 

demonstrate higher vulnerability to changes in 
inputs. The prediction model exhibits significant 
impacts from Feature 4 along with Feature 6 and 
Feature 9 whereas Feature 1 and Feature 0 
demonstrate lower SHAP values. The distribution of 
points across each feature represents how sensitive it 
is to individual values which indicates greater 
sensitivity through wider point range distributions. 
Users can use the summary plot to study model 
features and their predictive influences for better 
understanding of model interpretations. 
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Figure 6: SHAP value 

 
Table 2 shows SHAP and LIME importance values 
for features in the model's predictions. The SHAP 
importance values indicate that features produce 
greater output effects when they have larger 
measured values. The model’s predictions receive the 
most important contribution from Feature 3 because 
this feature includes an SHAP importance value of 
0.831246. Feature 4 and Feature 5 demonstrate 
substantial SHAP importance values amounting to 
0.766768 and 0.350643 respectively. Local outputs 
are most influenced by features proportionate to 
their LIME importance values which establishes 
more significant importance. Feature 6 demonstrates 
the strongest impact on local model explanations 
through its 0.865645 LIME importance value. The 
LIME analysis shows that Feature 2 (0.805906) and 

Feature 10 (0.747652) have strong effects on local 
explanations. The analysis between SHAP and LIME 
importance metrics shows contrasting rankings for 
different features. LIME indicates Feature 6 as being 
highly important with value 0.865645 yet SHAP 
shows a much lower importance level of 0.376811 
for this feature. Contrastingly Feature 3 holds a high 
SHAP importance position of 0.831246 yet LIME 
shows only 0.279674 importance for this feature. 
The examination of SHAP and LIME indicates the 
distinctive frameworks and viewpoints they employ 
to explain predictive models. SHAP and LIME 
analysis provides essential values that show how 
features affect both general and specific prediction 
outcomes. 

 
Table 2: Feature importance 

Feature SHAP Importance LIME Importance 
Feature 1 0.038799 0.250483 
Feature 2 0.186773 0.805906 
Feature 3 0.831246 0.279674 
Feature 4 0.766768 0.191521 
Feature 5 0.350643 0.504263 
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Feature 6 0.376811 0.865645 
Feature 7 0.533554 0.24135 
Feature 8 0.000241 0.078536 
Feature 9 0.241244 0.356405 
Feature 10 0.208232 0.747652 

 
Figure 7 presents a bar chart comparing the accuracy 
of three models: Logistic Regression, Random 
Forest, and SVM. The chart clearly shows that all 
three models exhibit similar accuracy levels, with 
only slight differences in their performance. Logistic 
Regression (blue) achieves an accuracy close to 0.9, 
while Random Forest (green) and SVM (red) show 
accuracy values just slightly lower, also near 0.8. This  

 
suggests that all models are fairly strong at classifying 
the data, with Random Forest and SVM performing 
almost identically in terms of accuracy. The bar chart 
visually reinforces the idea that, while the models are 
comparable, Logistic Regression stands out as having 
the highest accuracy among the three. This type of 
comparison is useful for quickly evaluating the 
effectiveness of different models in a given task. 

 

 
Figure 7: Models comparison chart 

 
Testing with training and validation accuracy, ROC 
curves as well as precision-recall curves and 
confusion matrices and feature importance analyses 
provides detailed performance insights for the 
Logistic Regression Random Forest and SVM 
models. The models exhibited a persistent rise in 
training accuracy across epochs and Random Forest 
produced superior outcomes compared to the other 
tested models. The validation accuracy indicates 
Random Forest surpasses Logistic Regression and 

SVM as the most dependable model for unseen data 
analysis. The similar trends observed in ROC and 
precision-recall curves did not translate into 
competitive AUC and precision-recall values across 
the three predictive models which requires 
additional development. 
The excellent training and validation results paired 
with enhanced SHAP and LIME interpretations 
confirms Random Forest as the optimal selection for 
this task. Random Forest employed SHAP and LIME 
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methods to determine which elements influenced 
model selection decisions and identify the strongest 
impacting features. The SHAP feature importance 
data agrees with our models' results showing Feature 
3 and Feature 6 as dominant features. The best 
model for this project becomes Random Forest 
which performs successfully on training and 
validation data while providing interpretable SHAP 
and LIME analysis results. 
 
Conclusion 
This paper presents a solution which enhances AI 
system transparency through formal development 
methods integration. The study employed SHAP and 
LIME explainable models along with formal 
verification methods to link complex AI frameworks 
to their mandatory interpretability needs especially in 
the healthcare and financial sectors. The combined 
methods led to a growth of stakeholder trust and 
substantial enhancement of model decision 
comprehensibility. Formal methods provided 
organizations with a standardized development 
process to verify models by comparing them against 
organizational guidelines and ethical standards. The 
results showed Random Forest surpassed both 
Logistic Regression and SVM through higher 
accuracy values across training and validation data. 
Random Forest demonstrated superior performance 
in unseen data evaluation to detect patient pane 
while presenting higher accuracy levels than its peer 
models. The and precision-recall curves indicated 
that Random Forest maintained better performance 
across all true positive rate and precision-recall trade-
offs. LIME and SHAP analysis revealed the 
connection between how specific features within the 
models affect their predicted outcomes. 
Certain shortcomings emerged during the course of 
this study. The models demonstrated limited 
diagnostic accuracy through low AUC scores and 
short precision-recall values although Random Forest 
delivered the maximum functionality. Model 
verification jointly with SHAP/LIME interpretation 
remains difficult to implement for non-technical AI 
practitioners due to their complexity in formal 
methodologies. The research direction should focus 
on creating scalable explainability frameworks that 
integrate with studies of advanced models and hybrid 
techniques which perform well in processing 

complex high-dimensional real-time datasets. Future 
research needs to develop automated verification 
systems that work alongside efficient computational 
methods to enable practical implementation of AI 
systems. 
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