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Abstract 
In the digital era, the proliferation of hate speech on social media platforms has 
necessitated the development of effective detection systems. This paper presents a 
comprehensive comparative analysis of machine learning and deep learning 
approaches for hate speech classification across diverse datasets, including a 
thorough comparison with existing methodologies. Specifically, this study 
evaluates the performance of two machine learning models Random Forest and 
XGBoost and two deep learning models, LSTM and BERT. Each model is 
trained using various embeddings, including Word2Vec, as well as GloVe, 
supplemented by TF-IDF for the machine learning models. Through rigorous cross-
validation and hyperparameter tuning, the efficacy of each model and embedding 
combination is assessed. The results are analyzed not only to determine the most 
effective approach for hate speech detection but also to benchmark these results 
against previous studies in the field. This comparative analysis provides insights 
into the strengths and limitations of the models and embeddings used, aiming to 
contribute to the ongoing efforts in creating a safer online environment by 
advancing the state-of-the-art in hate speech detection. 
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INTRODUCTION
In the contemporary digital landscape, social media 
platforms have become integral to daily interactions 
(Chetty, N. 2018) , particularly among young users 
(Peng, S. 2018), (Castaño-Pulgarín, S. A. 2021) 
Unfortunately, this increased connectivity has also 
witnessed a concerning rise in hate speech (Keipi, T 
2022), (Wachs, S. 2022). This toxic form of 
communication not only disrupts social harmony but 
also poses a significant threat to individuals’ mental 

well-being (Wypych, M. 2024), (Saha, K. 2019). 
Notably, during the pandemic, the BBC (Baggs, M. 
2021). reported a 20% surge in online hate speech, 
while a study commissioned by the youth charity 
Ditch the Label revealed a staggering 50.1 million 
instances of racist hate speech in the UK and US 
between 2019 and mid-2021. 
In response to this growing concern, In this esearch 
project we aims to address this challenge head-on. We 
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curate a diverse set of datasets, spanning binary, 
multiclass, and multilingual classifications, to train 
and evaluate advanced machine learning and deep 
learning models. Our model selection includes 
Random Forest and XGBoost, known for their 
predictive power, as well as Long Short-Term Memory 
(LSTM) networks, celebrated for their ability to 
process sequential data. Additionally, we incorporate 
BERT (Bidirectional Encoder Representations from 
Transformers), a state-of-the-art language model, to 
enhance our understanding of language nuances. 
 
To enhance the model’s understanding of language 
nuances, we have employed various embeddings, and 
for machine learning models, the traditional TF-IDF. 
The implementation of our approach includes 
cross-validation, a careful selection of 
hyperparameters for having high performance. 
Furthermore, the study includes a comparison with 
the previous literature conducted between the years 
2017 and 2024. Thus, the goal of this paper is to 
evaluate the purpose of using different approaches to 
modeling in the identification of hate speech in 
certain types of datasets, highlighting the advantages 
and disadvantages of each approach on the basis of 
the results obtained in comparison. 
 
The structure of this paper is as follows: Section 2 
offers an extensive review of the existing literature. 
Section 3 details the methodology, outlining the 
proposed general framework. Section 4 provides an 
overview of the system and describes the model 
training process. In Section 5, we discuss the data 
encoding and experimental settings, including the 
datasets used for evaluation. Section 6 presents the 
results and analysis based on the datasets. Section 7 
focuses on the discussion of the graphs obtained 
during the experiments. Section 8 covers the software 
and hardware configuration utilized. Finally, Section 
9 concludes the paper by summarizing the findings, 
exploring their implications, and proposing future 
research directions. 
 
2. Literature Review 
Hate speech detection on social media has garnered 
significant attention due to its societal impact, yet 
challenges persist across languages, datasets, and 
methodologies. While early efforts primarily focused 

on English, tailored approaches have emerged to 
address language-specific nuances. For instance, 
ABMM (Almaliki, M. 2023) introduces a BERT-based 
model optimized for Arabic, achieving remarkable 
accuracy 98.6% on Twitter data through a three-class 
classification framework, emphasizing the importance 
of adapting transformer models to complex languages 
like Arabic. Similarly, a comparative analysis 
(Narayan, N. 2023) across Indo-Aryan languages, 
including Bengali and Gujarati, underscores the 
variability in performance of multilingual models 
such as BERT and XLM-R, highlighting the necessity 
for task-specific adaptations. Complementing these, 
interpretable AI techniques have also been explored, 
as seen in a study (Shakil, M. H. 2022) leveraging 
CNNs with NLP pipelines on multilingual datasets, 
showcasing robust performance across language 
barriers. Moreover, Indian languages have drawn 
attention, with research (Roy, P. K. 2022) utilizing 
region-specific corpora and context-aware deep 
learning strategies, demonstrating the significance of 
localized models for complex linguistic settings. 
 
Efforts in low-resource settings have also made strides, 
as demonstrated by an ensemble approach (Anusha 
2020) that combines traditional features like TF-IDF 
with Gradient Boosting and XGBoost classifiers, 
achieving success in English, German, and Hindi 
datasets. This highlights the importance of resource-
adaptive methods for multilingual hate speech 
detection. However, overlap between hate speech and 
offensive language remains a persistent challenge. A 
recent study (Davidson 2017) addressed this by 
employing a crowd-sourced hate speech lexicon and 
training multi-class classifiers capable of 
distinguishing nuanced categories, revealing that 
racist and homophobic content is more consistently 
classified as hate speech compared to sexist remarks. 
 
Despite these advancements, challenges in dataset 
reliability and method consistency remain. A 
comprehensive review (Alkomah, F. 2022) that most 
datasets are small and lack diversity, limiting their 
effectiveness in capturing the multifaceted nature of 
hate speech. Deep learning models, often employing 
hybrid techniques, dominate the field but exhibit 
performance variability across hate speech categories, 
underscoring the need for robust datasets and 
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standardized evaluation criteria. Moreover, model 
brittleness persists; state-of-the-art systems perform 
well only on datasets with similar structures and are 
highly vulnerable to adversarial attacks, such as typos 
and altered word boundaries (Gröndahl, T. 2018) 
Character-level features have shown promise in 
enhancing robustness, outperforming word-level 
features under adversarial conditions. 
 
To address these complexities, recent approaches 
integrate contextual and user-based features. For 
instance, a novel framework (Nagar, S. 2023) leverages 
a Variational Graph Auto-encoder to jointly model 
social context, user metadata, and textual features, 
significantly enhancing detection accuracy on Twitter 
datasets. This adaptable method outperforms text-
only approaches and demonstrates the potential of 
incorporating social and contextual data into hate 
speech detection systems. Complementing these 
efforts, distributed low-dimensional embeddings 
(Djuric, N. 2015) mitigate issues of high 
dimensionality and sparsity, improving both efficiency 
and accuracy. 
 
Collectively, these advancements reflect the evolving 
landscape of hate speech detection, emphasizing the 
need for language-sensitive, context-aware, and 
adversarially robust approaches to safeguard online 
discourse effectively. 
 
3. Methodology 
In our study, we implemented a comprehensive 
approach to the challenge of hate speech detection by 
employing two machine learning models—Random 
Forest and XGBoost—alongside advanced deep 
learning architectures, including Long Short-Term 
Memory (LSTM) networks and Bidirectional Encoder 
Representations from Transformers (BERT). 
4. System overview & Models Training 
In our research on hate speech detection, we explored 
a hybrid system that combines machine learning and 
deep learning techniques to classify text data 
effectively. Initially, we preprocessed the textual data 
by applying common text cleaning techniques such as 
lowercasing, stopword removal, and lemmatization. 
For the machine learning component, we utilized 
both Random Forest and XGBoost classifiers, which 
were trained using TF-IDF vectorization and pre-

trained word embeddings. A comprehensive cross-
validation process was conducted to determine the 
optimal number of trees in the ensemble, with 
iterations over a range of estimators from 50 to 350. 
This step ensured that the models were not overfitting 
while achieving optimal performance. Additionally, 
hyperparameter optimization was carried out using 
RandomizedSearchCV, which sampled from a grid of 
potential parameters and selected the best 
configuration based on accuracy scores. 
 
For evaluation, we used key metrics such as accuracy, 
F1 score, precision, and recall to assess the models' 
effectiveness in detecting hate speech. The models 
were trained with the best-found parameters to 
maximize their performance. In parallel, we 
incorporated a deep learning approach using an 
LSTM network, which was enhanced with pre-trained 
GloVe embeddings to capture semantic word 
meanings. To prevent overfitting, early stopping was 
implemented during the training process. Our system 
also integrates BERT for both multilingual and 
monolingual classification tasks, addressing binary as 
well as multiclass classification problems. This diverse 
architecture, which combines multiple model types 
and feature representations, provides a robust 
solution for detecting the subtle nuances of hate 
speech in textual data. 
 
4.2LSTM 
The Long Short-Term Memory (Hochreiter, S. 1997) 
(LSTM) model, a type of Recurrent Neural Network 
(RNN) (Werbos, P. J. 1990) is particularly effective for 
sequence-based tasks, where the order and context of 
data points significantly influence predictions. This 
makes it an ideal choice for text classification tasks like 
hate speech detection, where the sequence and 
formation of words carry critical meaning. In our 
approach, we utilized an LSTM architecture for multi-
class classification, beginning with a non-trainable 
embedding layer that maps words to 300-dimensional 
vectors via a pre-trained embedding matrix, enabling 
the capture of semantic relationships. The LSTM 
layer, consisting of 64 units, processes the sequence 
data, effectively capturing long-term dependencies 
and contextual nuances. To combat overfitting, a 
dropout layer was added, followed by two dense layers 
with ReLU and softmax activations for multi-class 
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output, and sigmoid for binary classification. The 
model was optimized using the Adam optimizer with 
categorical cross-entropy loss, and early stopping was 

employed to halt training when performance 
stagnated, ensuring a robust and generalizable model.  
 
4.2 XGBoost 
XGBoost (Chen, T. 2016) is an advanced 
implementation of the gradient boosting framework, 
known for its efficiency and robust performance in 
model training. As an ensemble learning method, it 
builds a series of decision trees where each new tree 
corrects the errors of its predecessor, improving 
prediction accuracy through iterative refinement. This 
sequential error-correction mechanism makes 
XGBoost highly effective in capturing complex 
patterns, particularly in imbalanced datasets, common 
in hate speech text classification. We utilized TF-IDF 
vectorization to convert textual data into numerical 
features, enhancing the model's ability to identify 
relevant patterns. Additionally, pre-trained word 
embeddings were incorporated to capture deeper 
linguistic nuances. The model was rigorously 
evaluated using metrics like accuracy, precision, recall, 
and F1 score, ensuring its effectiveness in classifying 
hate speech while maintaining a balanced trade-off 
between false positives and false negatives.  
 
4.3 Random Forest 
nThe Random Forest model (Breiman, L. 2001) is a 
powerful and widely used ensemble learning 
technique that constructs a multitude of decision 

trees during its training phase and predicts the class 
based on the majority vote of the individual trees. As 
an ensemble method, it leverages the wisdom of many 

trees, which significantly improves the model's 
robustness and accuracy. Random Forest is 
particularly well-suited for high-dimensional data sets, 
allowing it to handle large datasets with numerous 
features efficiently. Its capability to assess variable 
importance provides valuable insights into which 
features contribute most to the classification process, 
making it an effective tool for both predictive 
modeling and feature selection. 
 
To mitigate the risk of overfitting and ensure the 
robustness of our evaluation metrics, we carefully pre-
processed the data by dividing it into training and 
testing sets. This separation ensures that the model's 
performance is evaluated on unseen data, providing a 
more accurate measure of its generalization ability. In 
order to represent the text data effectively, we 
employed the Term Frequency-Inverse Document 
Frequency (TF-IDF) vectorization method. TF-IDF 
quantifies the significance of words in a document 
relative to their occurrence across a corpus, which 
helps the model focus on the most important features 
for classification. By transforming the raw text into a 
numeric representation, TF-IDF serves as a crucial 
input to the Random Forest classifier, enabling it to 
process high-dimensional textual data. 
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Furthermore, to enhance the semantic richness of our 
text data, we utilized pre-trained word embeddings, 
which capture the contextual meaning of words in a  
vector space. 
 

These embeddings provide a deeper understanding of 
the relationships between words, enriching the feature 
representation for the model. The Random Forest 
classifier, trained on these enriched embeddings, was 
able to synthesize insights from the decision trees 
more effectively, resulting in improved accuracy and 
robustness in classifying hate speech. The architecture 

of the model, which integrates these techniques, is 
shown in Figure. Further illustrating the 
comprehensive approach to addressing the 
classification task.  
4.4 BERT 

BERT (Devlin, J. 2019) (Bidirectional Encoder 
Representations from Transformers) is a state-of-the-
art model developed by Google that utilizes 
bidirectional embeddings for improved content 
comprehension. Unlike traditional models, BERT is 
trained to consider both the forward and backward 
context of a sentence, making it highly effective for 
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tasks requiring deep semantic understanding. This 
bidirectional approach has been shown to enhance 
performance in various NLP tasks, including hate 
speech detection, where capturing subtle linguistic 
patterns is essential for distinguishing harmful 
content. BERT's pre-trained nature allows it to 
leverage extensive language knowledge, which can be 
fine-tuned to specific tasks such as text classification. 
 
For hate speech detection, our BERT architecture 
adapts the pre-trained model by adding a classification 
layer on top of the contextualized embeddings 
generated by BERT. This layer maps the output to the 
appropriate classes, using softmax for multi-class 
classification and sigmoid for binary classification. 
During fine-tuning, the model adjusts its parameters 
to optimize for the specific task, with the option to 
train all layers or only the top layers based on 
computational resources and dataset size. To prevent 
overfitting and maintain model integrity, only the 
best-performing epochs are saved, while 
underperforming epochs are discarded. The model's 
effectiveness is evaluated using metrics such as 
accuracy, precision, recall, and F1 score.  
 
For further understanding, we have included a 
detailed description of each model used in our hate 
speech detection system in the following section. This 
includes a brief overview of the machine learning 
models, such as Random Forest and XGBoost, along 
with the deep learning models like the LSTM network 
and BERT. For each model, we provide essential 
information about their roles and functionality within 
our system, helping the reader gain a clearer insight 
into how these models were integrated and optimized 
to enhance the performance of our classification task. 
 
5. DATA ENCODING & EXPERIMENTS 
SETTING 
In this section, we describe the dataset used in this 
study, along with the techniques for data encoding 
and representation. We also discuss the data splitting 
strategy implemented for training and evaluation, 
followed by the embedding methods employed for 
feature enhancement. Additionally, we provide an 
overview of the system architecture and configuration, 
as well as the software and hardware setup used in the 
experiments.  

5.1 Datasets 
For the purpose of this study, the dataset has been 
strategically divided into three distinct categories to 
explore the complexity of hate speech detection across 
different contexts. The first category includes binary 
classification datasets, where the task involves 
distinguishing between hate speech and non-hate 
speech. The second category focuses on multi-class 
classification, where the dataset contains multiple 
categories of hate speech, such as abusive, offensive, 
or targeted speech. The third category involves multi-
label classification, where each instance may belong to 
more than one class, reflecting the nuanced nature of 
hate speech. Additionally, a multilingual dataset was 
incorporated to explore hate speech detection across 
different languages, addressing challenges related to 
linguistic diversity and cultural context.  
 
5.2 Binary Classification Datasets 
The first category focuses on the task of binary 
classification, where the provided datasets are used to 
differentiate between hate speech and non-hate 
speech. These datasets serve as a foundation for 
training and evaluating models designed to accurately 
classify text into these two categories. 
 
Dataset-I: The dataset introduced by Thomas Mandl 
et al. (Mandl, T. 2019) comprises 7,005 samples, with 
2,549 hate speech instances and 4,456 non-hate 
speech instances. This dataset exhibits a notable class 
imbalance, where non-hate speech samples constitute 
approximately 63% of the total, creating challenges 
for model training. Despite this imbalance, the dataset 
offers a valuable resource for developing and testing 
classification models aimed at distinguishing between 
harmful and non-harmful content in text. 
 
Dataset-II: 
The dataset derived from the work of Valerio Basile et 
al. (Basile, V. 2019) contains 10,000 samples, with 
4,210 hate speech instances and 5,790 non-hate 
speech instances. This dataset is relatively more 
balanced compared to others, with hate speech 
instances accounting for approximately 42% of the 
total. Although there is still a slight imbalance, the 
distribution is conducive to training models that can 
generalize well to real-world applications, where class 
distributions are often skewed. 
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Dataset-III: 
The Dynamically Generated Hate Dataset introduced 
by Vidgen et al. (Vidgen, B 2022)  consists of 41,255 
samples, with 22,262 hate speech instances and 
18,993 non-hate speech instances. While this dataset 
is larger than the previous two, it still exhibits a mild 
imbalance, with hate speech instances comprising 

approximately 54% of the total, and non-hate speech 
instances making up 46%. The dataset provides a 
substantial sample size, which is beneficial for training 
deep learning models, and its relatively balanced 
distribution allows for robust evaluation of 
classification models.  
The distribution of the dataset across the different 
classes is shown in Table I.

  
Dataset Total Samples Hate Samples Non- Hate Samples 
Mandl  7,005  2,549  4,456 
Basile  10,000  4,210  5,790 
Dynamic  41,255  22,262  18,993 

                                                      TABLE-I: Dataset samples distributions for Binary classification 
 
5.3 Multi-class Classification Datasets 
In addition to binary classification, our study extends 
to multi-class classification to better capture the varied 
and nuanced nature of hate speech. Multi-class 
classification enables the differentiation between 
distinct categories of hate speech, such as offensive, 
profane, and other forms of harmful content. This 
approach allows for a more detailed analysis of the 
diverse types of hate speech that may exist in textual 
data, providing insights into the specific 
characteristics and severity of harmful language.  
 
Dataset-I: 
The Mandl dataset is used for multi-class classification 
and contains a total of 7,005 samples. It is organized 
into two broad categories: non-hate and hate. The 
non-hate category includes 4,456 samples, while the 
hate category is further subdivided into three distinct 
classes: hate, profane, and offensive language. This 
multi-class structure allows for a more granular 
analysis of hate speech, enabling the model to 
distinguish between various forms of harmful content. 
The distribution of each class within the dataset is 
shown in Table \ref{tab:dataset-distribution-c  shown 
shown in Table \ref{tab:dataset-distribution- 
Multiclass}, providing a clear overview of the dataset's 
composition. Multiclass}, providing a clear overview 
of the dataset's composition.  
 
 

Dataset-II: 
The Dynamically Generated Hate Dataset is employed 
for both binary and multi-class classification, as it 
includes hierarchical information ranging from 
coarse-grained categories to fine-grained subclasses. 
The dataset consists of 41,255 total samples, with 
18,993 non-hate instances. The hate category is 
divided into six subcategories: Derogation, Not-given, 
Animosity, Threatening, Dehumanization, and 
Support. This hierarchical structure provides an 
opportunity to explore not only the broad presence of 
hate speech but also the specific types and intensities 
of harmful language present in the dataset. 
 
Dataset-III: 
The Davidson dataset, introduced by Thomas 
Davidson et al. (Davidson, T. 2017) contributes to the 
multi-class classification framework with 24,783 
samples, of which 4,163 are non-hate samples. The 
hate category is divided into two main classes: 19,190 
samples are classified as offensive language, while 
1,430 samples are categorized as hate speech. This 
distinction allows the model to identify and 
differentiate between more subtle forms of offensive 
language and more explicit instances of hate speech, 
further refining the analysis of harmful content in 
text. 
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5.4 Multi-lingual Classification Datasets 
To extend our experiment to multilingual hate speech 
detection, we utilized two distinct datasets, one in 
English and one in German. This approach allows us 
to assess the model’s performance across multiple 
linguistic contexts, thereby addressing the challenges 
posed by language diversity in hate speech detection. 
Dataset-I: 
As reported by Mandl et al., the English dataset 
consists of 7,005 samples and is specifically designed  

 
for the task of detecting hate speech in English-
language content. This dataset contains a wide variety 
of text samples, encompassing different forms and 
expressions of hate speech, which are crucial for 
training models capable of handling the complexities  
of language and context of language and context of 
language and context expressions of hate speech, 
which are crucial for training models capable of 
handling the complexities  of language and Context. 

Dataset Total Samples Class Class Distribution 

Mandl 7,005 

None 4,456 
Hate 1,267 

Profane 760 
Offensive 522 

Dynamic 41,255 

None 18,993 
Derogation 9,907 
Not-given 7,197 
Animosity 3,439 

Threatening 606 
Dehumanization 906 

Support 207 

Davidson 24,783 
Neither 4,163 

Offensive 19,190 
Hate 1,430 

                                                      TABLE II: Distribution of Data in Multi-class

Dataset-II: 
In addition to the English dataset, the German dataset 
(Risch, J. 2021) contains 4,670 samples and is focused 
on detecting hate speech in German-language 
content. By including this dataset, our study ensures 
that the model is tested in both English and German 
linguistic environments, addressing potential 
language shifts and the challenges inherent in 
detecting hate speech across different languages. This 
bilingual approach strengthens the model's 
applicability and effectiveness in diverse linguistic 
contexts. 
 
 
 
 

5.5 Data Encoding and Representation 
Data pre-processing: 
The preparation of text data is a crucial step in 
training machine learning models, particularly for 
hate speech detection, as it ensures the data is clean, 
consistent, and focused on meaningful information. 
The first stage of pre-processing involves converting all  
text to lowercase, standardizing the case and 
eliminating inconsistencies. Stop words, which are 
frequent but carry little significance, are then removed 
to reduce noise and highlight more important words. 
Irrelevant elements such as URLs, hashtags, and user 
mentions are discarded using regular expressions, as 
they do not contribute to the sentiment analysis. 
HTML tags are also stripped out to focus solely on 
textual content, and punctuation marks are discarded 
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due to their lack of informative value. Further, 
tokenization breaks the text into individual words, 
and lemmatization reduces words to their base forms, 
ensuring that similar words are grouped together. 
Custom regular expressions are applied to eliminate 
filler words, followed by trimming extra whitespace to 
ensure a clean corpus for feature extraction.    
Once the data is pre-processed, it is divided into 
training and testing sets to evaluate model 
performance. For this study, 80% of the dataset was 
used for training the model, while the remaining 20% 
was reserved for testing and validation. This split 
ensures that the model is exposed to a substantial 
amount of data for learning, while also providing an 
unbiased evaluation of its generalization capability. 
These pre-processing and data splitting steps are 
essential in optimizing the machine learning model’s 
ability to detect hate speech accurately, ensuring that 
the features used for training are relevant and the 

model can be effectively evaluated on unseen data. 
The flow of these pre-processing steps is illustrated in  
Figure Below. 
 

5.5 Embeddings 
In our research on hate speech detection, we leveraged 
two widely used word embedding models, GloVe 
(Global Vectors for Word Representation) and 
Word2Vec, to capture the semantic properties of 
words and enhance the classification process. GloVe 
constructs word vectors by aggregating a word-word 
co-occurrence matrix, which encapsulates both the 
probability of word occurrences and their 
relationships with surrounding words. We utilized 
both the 300-dimensional (300d) and 50-dimensional 
(50d) versions of GloVe, where the higher-
dimensional vectors provide a richer context and 
more detailed representation of word meanings, albeit 
at the cost of increased computational demands. On 
the other hand, Word2Vec employs neural networks—
specifically the Continuous Bag of Words (CBOW) 
and Skip-Gram models—to generate distributed word 
representations based on their context within the 
corpus. The 300d version of Word2Vec provides a 
deep semantic understanding of words by learning 
from their contextual usage. 
 
To transform raw text into a format interpretable by 
machine learning models, we also utilized Term 
Frequency-Inverse Document Frequency (TF-IDF) 
vectorization. TF-IDF measures the importance of 

words within a document relative to the entire corpus, 
highlighting key terms while diminishing the weight 
of less informative ones. However, TF-IDF was not 
integrated with the LSTM model in our study due to 
its ability to capture sequential context inherently. 
Instead, the pre-trained GloVe and Word2Vec 
embeddings, which inherently encode contextual 
information, were employed to represent text. These 
embeddings played a pivotal role in facilitating 
effective hate speech classification by providing 
machine learning models with rich, numerical word 
representations that capture both word-level meaning 
and broader contextual relationships essential for 
accurate detection. 
 
5.6 Software And Hardware Configuration 
The project leveraged the computational resources 
provided by Google Colab, utilizing the NVIDIA 
Tesla T4 GPU, which is well-suited for deep learning 
tasks due to its high performance and efficiency. On 
the software front, We utilized Pandas and NumPy for 
data manipulation, gensim and nltk for text 
processing, and scikit-learn’s CountVectorizer and 
TfidfVectorizer for feature extraction. For the LSTM 
model, we incorporated Keras, which runs on 
TensorFlow’s backend. These libraries were chosen 
for their widespread use in the research community, 
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extensive documentation, and active support, making 
them a reliable choice. 
 
6. Results  
The table \ref{TABLE:Binary Accuracy} and 
\ref{TABLE:Multiclass_Accuracy_RF_XGboost} and 
\ref{TABLE: Multilingual Accuracy} showcases the 
results of binary, multi-class and Multilingual 
classification tasks performed using Random Forest, 
XGBoost models, and BERT respectively. It includes 
the best results obtained either from the initial phase 
or after hyperparameter optimization. The table 
highlights the Accuracy and Macro F1 Score of the 
models, emphasizing the importance of feature 
representation methods such as Embeddings and TF-
IDF in improving predictive accuracy. 
 
6.1 Binary Classification 
In the binary classification task, the models show 
distinct strengths and weaknesses across the Basile, 
Mandl, and Dynamic datasets, as outlined in Table III 
shown below.  

BERT consistently outperforms all models, with the 
highest accuracy of 78.00% and an F1-macro of 
78.00% on the Basile dataset. This superior 
performance can be attributed to BERT’s ability to  

capture contextual relationships between words, 
enabling it to excel in tasks requiring deep 
understanding of language nuances, as highlighted 
(Devlin, J. 2022). On the Mandl dataset, BERT again 
leads with an accuracy of 68.00%, but its F1-macro 
score of 67.00% reflects the challenge of imbalanced 
data, an issue BERT struggles with despite its high 
accuracy. This points to the need for class weighting 
or fine-tuning to address such imbalances. 
 
XGBoost demonstrates a solid performance, 
outperforming Random Forest (RF) across all 
datasets, especially with TF-IDF embeddings. It 
achieves an accuracy of 78.00% and F1-macro of 
76.54% on the Basile dataset, outperforming RF, 
which reaches 74.00% accuracy and 74.13% F1-
macro. XGBoost's gradient-boosting framework 
enables it to better capture complex feature 
interactions, which is particularly advantageous in 
handling large datasets like Dynamic, where 
XGBoost's ability to model class imbalances through 
regularization (Chen, T. 2016) gives it an edge over 

RF. This is especially evident with XGBoost's accuracy  
of 69.00% and F1-macro of 68.48% on the Dynamic 
dataset, compared to RF’s 61.39% accuracy and 
61.00% F1-macro. 
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Random Forest, while performing well with TF-IDF 
embeddings, especially in terms of F1-macro, struggles 
with dense embeddings like GloVe and Word2Vec, 
where its accuracy and F1-macro scores drop. The 
challenge is due to RF’s inability to fully capture the 
semantic relationships encoded in these embeddings, 
which affect its ability to generalize, as noted (Gupta, 
S. 2022).  Additionally, class imbalance in datasets like 
Mandl further hinders RF's generalization 
capabilities, as it tends to favor majority classes. 
 
LSTM performs adequately in some cases but falls 
behind BERT, particularly on smaller datasets like 
Basile, where overfitting becomes a problem. LSTM’s 
F1-macro score of 75.75% on Basile highlights this 
challenge. However, on Dynamic, LSTM improves, 
achieving an accuracy of 71.00% and F1-macro of 
70.24%. This improvement aligns with LSTM’s ability 
to leverage sequential relationships in text, especially 
in larger datasets. 
 
6.2 Multi-class Classification 
In the multi-class classification task, the performance 
of models varies across the Mandl, Dynamic, and 
Davidson datasets, as shown in Table  
 

LSTM achieves the best results, particularly on the 
Davidson dataset with Word2Vec (300) embeddings, 
obtaining the highest accuracy of 75.65% and F1-

macro of 75.77%. This highlights LSTM’s ability to 
capture sequential dependencies and contextual 
nuances effectively (Hochreiter, S.1997). On 
Dynamic, LSTM performs well with GloVe (300), 
achieving 63.02% accuracy and 59.33% F1-macro, 
showcasing its adaptability to large datasets. However, 
its performance on Mandl, where accuracy drops to 
50.32% with Word2Vec (300), indicates sensitivity to 
smaller datasets with uneven class distributions. 
 
XGBoost shows strong performance across all 
datasets, particularly with TF-IDF embeddings. It 
achieves an accuracy of 69.51% and F1-macro of 
54.23% on the Mandl dataset and on Davidson, 
reaching 69.00% accuracy and 68.48% F1-macro. 
This highlights XGBoost's ability to handle feature 
interactions effectively and its robustness to class 
imbalances, as demonstrated by its use of 
scale_pos_weight and regularization 
techniques(Chen, T. 2016), (Florek, P. 2023) Its 
performance improves with TF-IDF over dense 
embeddings like GloVe and Word2Vec, supporting 
findings that sparse representations work better for 
decision tree-based models (Lian, J. 2023). The 
model’s success in Davidson reflects its ability to adapt 
to larger and more balanced datasets, making it a 

strong contender in multi-class tasks. 
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Random Forest (RF) performs moderately across all 
datasets, achieving the highest F1-macro of 64.96% on 
Davidson with TF-IDF embeddings. However, RF’s 
performance is hindered by its inability to capture the 
semantic relationships present in dense embeddings 
like GloVe and Word2Vec (Tomita, T. M. 2020). For 
instance, it reaches only 42.45% accuracy and 52.16% 
F1-macro on Mandl with GloVe-300 embeddings. 
This can be attributed to RF’s reliance on discrete, 
sparse features, which makes it less effective with 
dense representations, as noted . Additionally, its 
limitations in handling class imbalance (He, H. 2009) 
further reduce its effectiveness, as seen in the lower 
F1-macro scores on Dynamic (56.23%) and Mandl 
(44.69%). Lastly, the risk of overfitting increases with 
high-dimensional, dense data, where RF may focus 
too heavily on noisy features (Louppe, G. 2014). 
 
6.2 Multi-lingual Classification 
In multilingual sentiment classification, BERT 
demonstrates strong performance across both binary 
and multiclass tasks, as shown in Table V given below. 

 
In the binary classification setting, BERT achieves an 
accuracy of 78.82% and an F1-macro score of 72.31%. 
For the multiclass setting, its accuracy improves 
slightly to 88.67%, with a marginal increase in F1-
macro to 79.13%. This suggests that while BERT 
excels in context-heavy tasks, its performance 
difference between binary and multiclass tasks is not 
drastic.  
 
The slight improvement in multiclass classification 
may stem from BERT's ability to capture contextual 
nuances, which is crucial for distinguishing between 
multiple classes in a complex dataset. The simplicity 
of binary classification, however, allows BERT to 
focus on more straightforward class boundaries, 
resulting in similarly high performance. This aligns 

with research highlighting BERT's strength in 
multilingual contexts, where its contextual 
embeddings provide an advantage in both binary and 
more intricate multiclass settings (Devlin, J. 2018). 
 
7. Discussion 
In this section, we compare the results across different 
models on various datasets and benchmark them 
against findings from previous research. This 
comprehensive analysis provides insights into the 
relative performance and effectiveness of each model 
in the context of hate speech detection. 
 
For Basile binary classification task using LSTM with 
Word2Vec (300) embedding, the training and testing 
accuracy and F1 scores exhibit distinct trends. 
Initially, both metrics show a sharp increase, reflecting 
effective learning of underlying patterns. This is 
followed by a plateau phase, indicating convergence 
on key features. However, a slight overfitting is 
observed in the later epochs, where testing 
performance begins to decline while training metrics 
remain high. This behavior suggests the model is 
learning dataset-specific details rather than 
generalizable patterns. The issue may be influenced by  
class imbalance, which skews the model's focus 
towards majority classes. Techniques such as early 
stopping, class balancing through SMOTE (Chawla, 
N. V. 2002) or weighted loss functions can mitigate 
 
these effects. Furthermore, adopting contextual 
embeddings like ELMo or Flair, which offer richer  
semantic representations, has been shown to enhance 
generalization on imbalanced datasets (Akbik, A. 
2019), (Peters, M. E. 2019). 
        
The trends in multiclass LSTM models using 
Word2Vec 300 and GloVe 300 embeddings show 
similar learning behaviors. Initially, both models 
demonstrate improved accuracy and F1 scores, 
stabilizing after a few epochs as they reach their 
generalization capacity. The GloVe-based model 
converges faster and starts with higher metrics due to 
its robust embeddings (Pennington, J. 2014), while 
the Word2Vec-based model benefits from gradual 
learning but may require enhancements like attention 
mechanisms for comparable performance (Vaswani, 
A. 2017). Challenges such as overfitting and class 
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imbalance are evident, particularly when test metrics 
decline after stabilization or diverge from training 
metrics. Strategies like weighted loss functions, 
regularization, and hybrid models (e.g., combining 
CNN with LSTM layers) can address these issues and 
improve generalization. 
 

 
(a) Binary Classification with LSTM using 
Word2Vec (Basile). 
 

 
(c) Multi-class Classification with LSTM using 
Word2Vec (dynamic). 
 
8. Software and Hardware Configuration 
The project leveraged the computational resources 
provided by Google Colab, utilizing the NVIDIA 
Tesla T4 GPU, which is well-suited for deep learning 
tasks due to its high performance and efficiency. On 
the software front, We utilized Pandas and NumPy for 
data manipulation, gensim and nltk for text 
processing, and scikit-learn’s CountVectorizer and 
TfidfVectorizer for feature extraction. For the LSTM 

model, we incorporated Keras, which runs on 
TensorFlow’s backend. These libraries were chosen 

for their widespread use in the research community, 
extensive documentation, and active support, making 
them a reliable choice. 

(b) Multi-class accuracy with LSTM using glove 
(Davidson). 
 
(d) Multi-class accuracy with LSTM using word2vec 
(mendal). 
 
9. Conclusion 
Our project has made significant progress in tackling 
the complex issue of identifying hate speech in text 
data. By carefully preprocessing the data and applying 
machine learning and deep learning techniques, we've 
built a system known for its accuracy and reliability. 
 
We integrated Random Forest and XGBoost 
classifiers with TF-IDF vectorization and word 
embeddings, forming a strong foundation for our 
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models. Additionally, our deep learning component, 
powered by an LSTM network with GloVe 
embeddings, enhances our system's ability to 
understand language nuances. Furthermore, we 
utilized BERT for binary and multiclass classification 
tasks on multilingual datasets, significantly enhancing 
hate speech detection.Through thorough evaluation 
using various metrics, we've confirmed the 
effectiveness of our models and identified areas for 
improvement. Our architecture is adaptable, 
accommodating different feature representations and 
model types to improve hate speech detection. 
Looking ahead, we plan to further enhance the 
performance of all our models. This involves fine-
tuning BERT more extensively across a wider range of 
datasets, as well as refining our machine learning and 
LSTM models. Additionally, we are considering 
strategies to address dataset bias and imbalance. One 
approach is to augment the dataset by increasing the 
representation of underrepresented classes, 
particularly negative samples, to decrease imbalance 
and bias. By improving the balance of our dataset, we 
aim to enhance the robustness and fairness of our 
models, ensuring even greater accuracy and reliability 
in hate speech detection. 
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