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Abstract
Temperature rise, associated with global warming, has increased the severity and
frequency of heat waves worldwide. Several major states of Pakistan have been
facing frequent heat waves in the past few years. The present study used a machine
learning approach to predict the maximum air temperature (AT) for defining the
heat wave occurrences in these states. The analysis was based on the monthly data
of 13 parameters, collected from NASA’s Giovanni and ERA5 reanalysis data
during the summer season for the past 45 years. Three machine learning
approaches were used in the study: multiple linear regression (MLR), support
vector regression (SVR), and random forest (RF). It was observed that the
maximum AT states were above the limits of the IMD criteria for defining heat
wave occurrences. The performance of the models was evaluated using statistical
metrics, comprising of root mean square error (RMSE) and coefficient of
determination (R2). Overall, the study shows that machine learning-based
approaches can predict maximum AT for defining heat wave conditions with high
accuracy. The RF method was observed to have the best results for predicting
maximum AT. The study can have significant applications in different fields like
climate modelling studies, urban planning and infrastructure, agriculture, etc., and
it can help to implement appropriate measures to mitigate the adverse impacts of
temperature rise.
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INTRODUCTION
Global climate change has led to increased
occurrences of heat waves, which significantly
impact the environment, human health, economy,
and agriculture (Pathak et al., 2018; Ebi et al., 2021).
Heat waves intensify droughts and wildfires, leading
to habitat destruction and loss of biodiversity
(Fischer et al., 2014; Sutanto et al., 2020). Extreme

heat poses health risks, causing heat-related illnesses
and even fatalities, especially in vulnerable
populations (Faurie et al., 2022). Moreover, the
economy suffers as productivity decreases, energy
demand surges, and infrastructure faces damage
(Loucks, 2021; García-Leon et al., 2021). Agriculture
bears the brunt, with crop failures and reduced
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yields, leading to food supply challenges and
economic strain on farmers and consumers alike
(Miralles et al., 2019; Bras et al., 2021). Due to the
increase in global temperature during the past ten
years, the incidence of heat waves has increased
drastically. The heat waves also persist for a longer
duration (Dosio et al., 2018). The danger of various
forms of calamities can rise with extreme
temperatures. Drought can worsen due to extended
durations of heat, and wildfires can develop due to
hot, dry weather (Sutanto et al., 2020). The change
in land use in urban areas due to urbanization and
industrialization has significantly raised the
occurrence of heat waves in cities worldwide (Imran
et al., 2021). The urban heat island effect may make
cities up to 7oF hotter than surrounding areas,
resulting from the heat absorbed by buildings, roads,
and other infrastructure (Wang et al., 2016; Zhou et
al., 2017). The production, distribution, and
consumption of electricity are all impacted by rising
temperatures. The ability of transmission lines to
transmit power may be reduced because of high
temperatures, which may result in concerns for the
reliability of the supply of electrical power, such as
rolling blackouts during heat waves (Hatvani-Kovacs
et al., 2018). Heat wave definitions differ across
nations; nevertheless, heat waves are typically
characterized based on the typical weather and
temperatures corresponding to a region’s seasons,
and they are said to occur when there is a significant
departure from the region’s normal temperature
pattern. Extreme weather conditions occur widely
and locally, impeding emergency response efforts.
Due to the widespread occurrence of such severe
weather conditions, response methods, such as the
quick arrangement of emergency resources, are
constrained. The increasing heat waves have severe
effects on the ecosystem and biodiversity globally.
Elevated temperatures disrupt habitats, change
migration patterns, and jeopardize the survival of
many plant and animal species (Upadhyay, 2020;
Vincent, 2020).
The health and economic consequences of the
current heat wave, including the number of
hospitalizations and deaths, lost income, missed
school days, and reduced working hours, are usually
not known for months (Campbell et al., 2018; He et
al., 2019). Sunburn, heat cramps, heat exhaustion,

and heat stroke are potential effects of heat waves
(Seema and Aigbavboa, 2018). As the Earth’s
average temperature rises, it will be more difficult
for people to live in cities. In 2022, both Asian and
European countries were affected by heat waves.
Peak temperature in European cities was recorded as
about 47◦C in Pinhao, Portugal (Knight, 2022). The
Indian Meteorological Department (IMD) deems a
heat wave when the peak temperature at a station
hits 40 °C or 30 °C, for plains and hilly regions,
respectively (IMD, 2023a). Over the central, east, and
north peninsular India as well as over the plains of
northwest India (covering Punjab, Haryana, Delhi,
Uttar Pradesh, West Bengal, Bihar, Jharkhand,
Rajasthan, Madhya Pradesh, Odisha, Gujarat, and
some portions of Andhra Pradesh, Maharashtra,
Karnataka, and Telangana), heat waves often occur
between March and June (Sharma et al., 2022;
Srivastava et al., 2022; Ashrit et al., 2023). Heat waves
often originate over northwest India and gradually
extend eastward and southward, but not westward
(Dodla and Satyanarayana, 2021). The maximum air
temperatures in India have been registered between
45◦C (113 ◦F) and 50◦C (122 ◦F) in May 2022
(WMO, 2023) at various monitoring stations located
throughout Rajasthan, Madhya Pradesh, East Uttar
Pradesh, Vidarbha, large portions of Gujarat,
Odisha, and some of Maharashtra (ESA, 2022; IMD,
2023b). Jaipur and Ahmedabad, two urban cities of
India, had the highest recorded surface temperatures,
with a maximum land surface temperature (LST) of
about 65◦C (Nandani, 2023). Similarly, the highest
temperature in China was recorded above 40oC, and
LST exceeded 60oC during the summer season (Liu
et al., 2023).
Early forecasting of heat waves may be useful to
pinpoint the location (likely to occur. However, very
limited research has been conducted for predicting
heat waves. Most of the studies were conducted to
assess the rate of mortality induced due to the rise in
heat waves. The majority of the studies were
conducted at regional levels. Prediction of heat
waves can help in addressing issues related to
planning and mitigation. It is possible to anticipate
heat waves using both statistical and dynamic
methods (Nissan et al., 2017). The statistical method
uses empirical models that connect large-scale ocean-
atmospheric variables with heat waves. On the other
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hand, dynamical methods rely on the physical
interactions between the ocean, atmosphere, and
land to construct the prediction model, making the
model’s development computationally costly.
Consequently, statistical models are often employed
for heat wave prediction models (Singh et al., 2018;
Khan et al., 2019). It is difficult to address complex
nonlinear prediction issues through a traditional
statistical approach (Prasad et al., 2019). Various
machine learning models were used in recent years
to reliably forecast various natural events due to the
capability of machine learning algorithms to
comprehend multiple complicated processes (Khan
et al., 2021; Slater et al., 2022). Wang et al. (2019)
conducted a three-year study of predicting
heatstroke occurrences in China using random
forest regression. The study used meteorological
parameters (i.e., temperature and humidity) for the
prediction, and the results were more satisfying
compared to the linear regression model. Fister et al.
(2023) used a deep machine learning model to
predict air temperature in Paris and Cordoba. ´
Their study compared and ranked various machine
learning models. Park et al. (2020) have compared
the Quantile Regression Forests and Random Forest
regression model.
The results show that QRF has a higher capacity
than Random Forest regression.

The novelty of the present study
The novelty of predicting maximum air temperature
for defining heat waves lies in several key aspects.
Firstly, the study focuses specifically on cities of
Pakistan with distinct geographical and ecological
characteristics. Unlike many previous studies that
considered only a limited set of parameters, this
research incorporates a wide range of satellite data as
input variables. These data, collected over a period
of 45 years during the summer season, offer a
comprehensive and detailed understanding of the
factors influencing maximum air temperatures and
heat wave occurrence in these regions. By utilizing
these rich datasets, ML models can capture complex
relationships and identify crucial predictors of heat
waves with greater accuracy. The study also
contributes to the field by comparing the
performance of multiple machine learning
algorithms, including Multiple Linear Regression

(MLR), Support Vector Regression (SVR), and
random forest (RF). This comparative analysis allows
for a comprehensive evaluation of the prediction
models and their suitability for capturing the
specific dynamics of heat wave occurrence in
different cities of Pakistan. Owing to the difference
in geographical and climatic conditions of these
areas and the high performance of the prediction
models, the study is suitable for application to
different regions.

Objective
The present study aims to develop a model for
predicting maximum air temperature, which can be
used for defining heat waves. MLR, SVR, and RF
approaches were used for the model, which has been
developed by utilizing data corresponding to
different cities of Pakistan. These states have
experienced frequent heat waves in the past decade.
As the rate of heat wave incidents is rising every year,
there is a need for a prediction model for better
planning, management, and mitigation.

Methods and methodology
Data collection
The data of maximum air temperature, aerosol
optical depth, black carbon, carbon monoxide, land
surface temperature, relative humidity, normalized
difference vegetation index, total column water vapor,
boundary layer height, surface net solar radiation,
surface pressure, east wind component, and north
wind component were collected from NASA’
Giovanni and ERA5 reanalysis data for the three
months representing summer season (i.e., March,
April, and May) for the past ten years (2013–2022).
Giovanni is a NASA Goddard Earth Science Data
and Information Services Centre’s (GES DISC)
Distributed Active Archive Centre (DISC) web
application that makes it easy to visualize, analyze,
and access Earth science remote sensing data
(https://giovanni.gsfc.nasa.gov/giovanni/). ERA5 is
the 5th generation atmospheric reanalysis global
climate data provider of the European Centre for
Medium Range Weather Forecasts (ECMWF). At
reduced spatial and temporal resolutions, ERA5
contains information about all variables’ uncertainty
(Hersbach et al., 2020). ERA5 obtains data from
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various satellite products, which is then made
available after reanalysis.
Satellite imageries provide a comprehensive view of
a large geographical area, including remote and
inaccessible regions. This extensive coverage enables
monitoring heat wave conditions over vast
territories, including rural and less populated areas,
where ground-based monitoring stations are usually
scarce or absent. Satellite imagery provides near real-
time data and thus may allow frequent updates on
heat wave conditions, which can help in tracking the
development and progression of heat waves.
Continuous monitoring makes issuing timely
warnings and advisories to the public and relevant
authorities easier. Satellites provide a consistent
stream of data over long periods, which is essential
for studying heat wave trends, patterns, and changes
over time. This historical perspective can be valuable
for researchers and policymakers in understanding
the impacts of climate change on heat waves.
Satellite based monitoring does not require physical
installations on the ground or human intervention,
reducing the risk of data disruption and ensuring a
continuous flow of information during extreme
weather events. The methodology adopted in the
present study gives a comprehensive approach that
contributes to accurate and region-specific
temperature predictions, enabling better heat wave
preparedness, risk management, and climate
adaptation efforts in all states.

Prediction of maximum at using the machine
learning algorithms
Three different methods, MLR, SVR, and RF, were
used to develop a model to predict AT. The
effectiveness of machine learning predicted
outcomes was assessed using coefficients of
determination (R2), and root means square error
(RMSE). R2 is a statistical measure used to evaluate
the goodness of fit of a regression model. It
represents the proportion of the variance in the
dependent variable (the variable being predicted) that
is explained by the independent variables (the
predictors) in the model. It ranges from 0 to 1. If the
R2 value is close to 1, it suggests that the model
provides a good fit to the data, as it explains a
substantial portion of the variance. On the other
hand, if the R2 value is close to 0, it indicates that

the model is not explaining much of the variance
and may not be a good fit for the data. RMSE is
used in statistics and machine learning to evaluate
the performance of predictive models. It measures
the average magnitude of the differences between
predicted and observed values. RMSE calculates the
square root of the average of the squared differences
between predicted and actual values, effectively
penalizing larger errors more heavily. Its principle
lies in quantifying the accuracy and precision of a
model’s predictions, where lower RMSE values
indicate better performance (Adnan et al.,2021;
Singh et al., 2022). It also represents the capability
of predicted models (Sheng et al., 2022).

MLR
MLR is an expansion of simple linear regression to
explain the linear relationship between single
dependent and multiple independent variables
(Singh et al., 2023). The MLR formula is given in
equation (�) below (Kuhn and Johnson., 2013).

�� = �0 + �1�1 + �2�2 + �3�3 + ……
���� + �� (�)
Where � = 1, 2, 3, …. �, ��, and �� values are
dependent and independent variables, respectively.
�� is the intercept.

SVR
The SVR algorithm predicts discrete values using
the same methodology as support vector machines
(SVMs). The idea behind SVR is to find the
optimum fit line. This best-fit line in SVMs is an
ideal hyperplane with most data points on the plane.
The prediction from SVR was carried out using
equation (ix) (Vickers, 2017).
�(��) = ∑� (�� ɸ(��)) + � (��)

�=1
Where � and �� are the linear SVR function and
nonlinear SVR function is denoted by �(��), SVR is
classified into two types: linear SVM and nonlinear
SVM. For the present study, nonlinear SVM model
was used for the prediction. The kernel function, or
[�(��, ��) = (�(��) ⋅ �(��)], is the nonlinear SVR
function is computed and used to produce interior
products, assess the space, and examine the feature
separating space.
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Random forest
The RF is an ensemble machine learning technique
that creates many regression trees to help predict
future outcomes. In RF, various trees generate
different results. In RF, two methods boosting and
bagging, can be applied to get a conclusion based on
the results of each tree. The trees that can detect
erroneous predictions are given greater weight in
boosting, and the final prediction is determined by
weighted voting. Regression trees are built using a
bootstrap sample in bagging, and the prediction is
derived from the outcomes of a majority vote (Yu et
al., 2020; Zhang et al., 2021). The RF approach
created the model linking AT with the selected
variables. 90% of the data were randomly selected as
training data, and the remaining 10% was used to
test the model (Ma et al.,2021). In order to pick
model parameters, the number of variables and

decision trees were selected based on the maximum
model R2 for improved model fitting.
Results and discussion:
The Figure 1 illustrates the geographic distribution
of average temperatures across 20 Pakistani cities,
plotted using their latitude and longitude. The cities
are color-coded based on their average temperatures,
with blue shades representing cooler areas and red
shades indicating warmer regions, as shown by the
color bar. Southern cities like Karachi and Mirpur
Khas exhibit higher average temperatures, while
northern cities such as Mardan and Kohat experience
cooler climates. Central cities, including Multan and
Faisalabad, display intermediate temperatures,
reflected in orange tones. This visualization
highlights the spatial variation in average
temperatures, showcasing the climatic diversity across
Pakistan.

Figure 1: Average Temperatures in 20 Pakistani Cities
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The graph in Figure 2, illustrates the historical trends
in average temperatures across various cities in
Pakistan, highlighting significant climatic shifts.
Before the Industrial Revolution (marked by the red
dashed line), temperatures remained relatively stable,
but a notable upward trend began post-
industrialization, especially after the mid-20th
century (marked by the orange dashed line).

Southern cities like Karachi and Hyderabad
consistently exhibit higher average temperatures
compared to northern cities, indicating the influence
of geographic and climatic factors. The rising
temperature trends align with global warming
patterns, reflecting the impact of industrial activities
and urbanization on Pakistan’s climate.

Figure 2: Average Temperature of Pakistani Cities over time
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Figure 3: Seasonal Temperature Patterns in Pakistani Cities
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Figure 4: Count of Missing Values by Feature

The fifth image displays a box plot comparing
temperatures across different seasons, offering a
statistical summary of seasonal variations. It provides
a clear visualization of the median temperature,
interquartile range, and potential outliers for each
season. Summer exhibits the highest median
temperature and the widest range, reflecting greater
variability in temperature extremes, while Winter
shows the lowest temperatures with a more compact
distribution. The presence of outliers in the data

suggests occasional extreme temperature events,
which could be linked to climate anomalies such as
heatwaves or cold spells. These extremes may have
significant socio-economic impacts, affecting
agriculture, infrastructure, and public health. The
box plot serves as a valuable tool for identifying
patterns of variability and assessing the stability of
seasonal temperature trends, aiding in better climate
risk management and adaptation planning.

Figure 5: Temperature by Season
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Figure 6: Average Temperature Anomalies by Season in Pakistani Cities

Figure 7: Seasonal Average Temperature for Pakistani Cities
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The Figure 7 presents a heat map of seasonal average
temperatures across various Pakistani cities,
providing a comparative view of temperature
distribution. Cities are listed along the y-axis, while
seasons are represented on the x-axis. The heat map
uses a color gradient to visually differentiate
temperature intensities, with warmer colors
indicating higher temperatures during Summer and
cooler colors in Wint
er. Cities in southern Pakistan, such as Karachi,
show consistently higher temperatures across all
seasons compared to northern cities like Islamabad,
which experience colder winters. This visualization
highlights the geographical variations in temperature,
emphasizing the need for region-specific climate
policies and interventions. The heat map also serves
as a useful tool for identifying climate trends,
allowing policymakers and researchers to assess the
impact of climate change on different regions and
develop localized mitigation strategies.

Figure 8 shows a line plot depicting seasonal
temperature trends in Pakistani cities from 1750 to
2013. It highlights seasonal variations, with Summer
having the highest average temperatures and Winter
the lowest. A significant drop in temperatures is
observed around the mid-1800s, possibly due to
climatic events such as volcanic eruptions or natural
climate variability, followed by a steady warming
trend across all seasons. The gradual temperature
increase in recent decades may suggest the influence
of global climate change, urbanization, and local
environmental factors. The consistent rise in
Summer temperatures indicates a potential
intensification of heat waves, which could have
implications for agriculture, water resources, and
public health. This visualization provides a
comprehensive perspective on historical temperature
fluctuations and aids in understanding the long-term
climate patterns affecting the region

Figure 8: Seasonal Temperature Trends in Pakistani Cities (1750 - 2013)

The results highlight the performance of three
regression models—Polynomial Regression, Random
Forest, and Support Vector Regression (SVR)—in

terms of their ability to predict the target variable,
measured by �2 scores and Root Mean Square Error
(RMSE) on both training and testing datasets. Each
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model was optimized to its best hyper-parameters
using grid search or a similar optimization technique.
Polynomial Regression with the optimal degree of 4
demonstrates strong predictive capability, achieving

a training �2 of 0.9589 and a testing �2 of 0.9587,
indicating minimal overfitting. The RMSE values
for the training and testing sets are nearly identical
(7.5423 and 7.5144, respectively), reinforcing the
model's stability and generalization across unseen
data. However, The relatively higher RMSE
compared to other models suggests that while
Polynomial Regression captures complex
relationships, it may not be as precise as other
methods for this dataset.Random Forest regression
emerges as the most effective model, with hyper-
parameters tuned to a maximum depth of 20 and
150 estimators. This model achieves the highest �2

scores for both training (0.9742) and testing (0.9736)
datasets, demonstrating exceptional predictive
accuracy. The RMSE values are significantly lower
than those of the Polynomial Regression model,
with 1.2629 for training and 1.2646 for testing,
indicating both precision and robust generalization
to unseen data. The negligible difference between
training and testing metrics suggests that the
Random Forest model successfully avoids overfitting
while leveraging its ensemble nature to capture
complex patterns in the data.
Support Vector Regression (SVR), optimized with a
learning rate of 0.1 and 100 estimators, shows
reasonable performance but falls short compared to
the other models. The training �2 score is 0.8867,
and the testing �2 is slightly lower at 0.8866. This
close alignment of scores across datasets indicates a
well-generalized model, but the lower �2 compared
to the Random Forest model suggests that SVR
struggles to capture some nuances of the dataset. The
RMSE values (2.5023 for training and 2.5144 for
testing) are intermediate between the two other
models, showing that while SVR offers good
predictions, it is less precise than Random Forest in
this context.
Overall, the Random Forest model outperforms
both Polynomial Regression and SVR in terms of
predictive accuracy and precision, making it the
most suitable choice for this dataset. Polynomial
Regression, despite its strong generalization and
ability to model non-linear relationships, is less

precise in prediction, while SVR provides a balanced
alternative with moderate performance. These
results underscore the importance of tailoring model
selection to the dataset characteristics and
prediction requirements.

Conclusions:
The effect of unbridled urbanization is being felt in
the form of global warming throughout the world.
Most parts of the world are facing unprecedented
heat waves, which are causing a lot of discomfort to
the residents, and their health is also being adversely
affected. The heatwaves also cause a lot of stress on
the energy infrastructure, with frequent power cuts
and voltage fluctuations, especially in semi-
developed/underdeveloped countries. It is very
important to plan the measures to face extreme
weather events, and predicting heat waves is one
such step. Heat waves are associated with AT, and a
heat wave is considered to occur when the AT
remains unusually high for an extended period, and
the temperature increase’s duration and intensity
determine the heat wave’s severity. The present study
was carried out to predict AT for defining heat wave
occurrences in different states of Pakistan. The
prediction was carried out using three machine
learning approaches; MLR, SVR, and RF. The results
show that maximum AT exceeded, on numerous
occasions, the IMD limits for heat waves in states,
indicating the heat wave occurrences. All three
models performed well for states with moderate to
high coefficient of determination values. It was
observed that the RF method gave the best results for
predicting maximum AT. The study can help to
predict the maximum AT or heat wave episodes and
help the government to develop a plan to mitigate
this issue. Results of the present study are in line with
few other studies reported in the literature while
different results have also been observed. It can be
interpreted that the performance of the model
depends on climatic conditions, geography, topology,
and vegetation. The study can be extended to include
more parameters such as geopotential height, and sea
level pressure etc. Predicting AT using machine
learning model enables improved understanding and
identification of heat wave events with higher
accuracy and precision. Machine learning models can
analyze historical weather data, atmospheric
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conditions, and other relevant factors to detect
patterns and make reliable predictions, aiding in the
early detection of heat waves. This early warning
capability allows authorities to implement timely
mitigation strategies, such as activating cooling
centers, adjusting energy demand, and initiating
public health interventions. Furthermore, machine
learning models can provide localized predictions,
considering specific geographic features and
microclimates. Forecasting AT helps communities
and organizations make their responses and allocate
resources more efficiently. It also facilitates the
identification of vulnerable areas and populations at
higher risk during heat waves, allowing for targeted
interventions and proactive measures to protect
public health. The potential applications of
predicting maximum AT for defining heat waves
using machine learning approaches extend beyond
states of Pakistan. This methodology can be applied
to various case studies and regions worldwide.
Predicting maximum AT can be useful in developing
a comprehensive monitoring system for heat waves,
enabling early warnings and informed decision-
making at a global scale. Urban areas worldwide face
the challenge of urban heat islands, where
temperatures are significantly higher than those
surrounding rural areas, and this study can aid in
developing targeted strategies to mitigate urban heat

islands, such as the placement of green spaces, cool
roofs, and other heat-reducing interventions. AT
predictions can support climate change adaptation
efforts by providing valuable insights for developing
strategies to protect vulnerable populations, enhance
infrastructure resilience, and prioritize resource
allocation. The study can also be used to evaluate the
impact of the adaptation efforts for various scenarios.
The present study also has application in agriculture
as it can help farmers adapt selected practices,
optimize irrigation, and adjust cropping patterns to
mitigate the impacts of heat waves on agricultural
productivity, contributing to global food security.
Heat waves pose significant risks to public health,
and the predictions can support public health
planning and interventions. Authorities can develop
targeted public health strategies, implement timely
heat wave response plans, and allocate healthcare
resources to mitigate heat-related illnesses and
protect vulnerable populations. Mitigation works,
and efforts for global warming issues are primarily
concentrated in urban areas. Most of the monitoring
network is concentrated in and around the cities.
The present study can be useful in predicting the
occurrence of heat waves by predicting AT for remote
and isolated locations where such a monitoring
network is not present.
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