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Abstract
Transmission lines, critical to ensuring a constant flow of electricity, are
susceptible to various problems because they are on the surface. Faults occurring in
the system after relays are used to determine the type of the fault and its location.
However, failures of the relays occasionally happen, and these failures can
significantly impact the operation of the power system, resulting in noticeably
delayed fault recovery. Advanced, efficient, and sensitive fault detection systems
are necessary to overcome this issue. This study aims to propose an intelligent and
automated fault detection method for a 117 km, 500 kV power system. The
transmission line is simulated using MATLAB and Simulink to generate an
extensive dataset. In this sense, the dataset is used to train, validate, and test an
Artificial Neural Network (ANN) designed for fault detection based solely on
instantaneous voltage and current measurements, as well as a multilayer ANN
trained using a backpropagation algorithm. The Mean Square Error (MSE) and
confusion matrix were utilized to evaluate the system's performance, achieving an
MSE of 2.2498e-9 and 100% accuracy, thereby showcasing the effectiveness of
the proposed NN-based algorithm in a practical application, such as transmission
lines.
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INTRODUCTION
Electric power transmission is the long-distance
transfer of electrical energy from a power plant to a
substation via a transmission network. On the other
hand, electric power distribution handles the local
wiring from high-voltage substations to end-users.

Depending on the transmission line length and
voltage levels, short lines are usually defined as lines
less than 50 km long and voltages below 20 kV;
medium lines are represented as lines with a length
between 50 and 150 km and voltages [1] between 20
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kV and 100 kV, and long lines are payment with a
length greater than 150 m and voltages higher than
100 kV [2]. The faults in the power system can occur
due to failures in transformers, generators, bus bars,
and other components. Genetic problems, such as
failures of Insulation material, can cause short
circuits in conductors or interruptions in the
conductor path. Under regular operation, power
systems operate at balanced voltage and current
levels; however, faults lead to an imbalance.
Symmetrical faults are extreme but rare faults that
occur in all three phases, typically caused by three-
phase short circuits or ground faults, resulting in
uniform fault currents with a phase shift of 120
degrees [3].
A treat line-to-ground fault (LG) is a protected
condition where all three conductors fail or hit each
other, impacting the phases of the system and
ground terminals, with a chance of 2~3%. With
uneven faults more common but less powerful, 60%
to 75% of failures were single-line ground
faults, 5%–15% were line-to-line faults, and 15%–
25% were double line-to-ground faults [4]. Fault
detection, fault classification, and fault location are
all essential aspects of protection systems, which
allow for the segregation of faulty lines from the grid.
Essentially serving as protection and switching
devices, relays respond to fluctuations in voltage and
current by breaking or making connections to stop
the flow of electricity in the event of a fault. Typically,
such relays are characterized by distance, impedance,
and mho [5] and are also utilized in power systems,
as well as in residential, industrial, and digital
applications. Artificial intelligence (AI) opens up new
avenues for various fields, including engineering and
informatics, based on the human brain's ability to
recognize patterns. Artificial neural networks (ANNs),
which mimic the brain's complex functions by using
a network of interacting nodes, are exceptionally
efficient in handling large datasets with incomplete
features and solving nonlinear problems. They play
essential roles in power system operations, including
fault detection and power quality [6-7]. These tools
include genetic algorithms, fuzzy and adaptive fuzzy
logic, and expert systems. These enable power
engineers to improve system reliability and efficiency.
They help identify power quality issues, such as
disturbance classification using fuzzy logic [8], while

expert systems address harmonic distortion and
damaged waveform analysis [9-10]. When properly
trained, artificial neural networks (ANNs) can be
utilized for prediction, estimation, classification,
forecasting, and various other applications. Artificial
neural networks (ANNs) can be divided into two
main types: the simpler single-layer perceptron (SLP)
and multilayer perceptrons (MLPs), which are more
suitable for solving complex tasks [11-12]. ANN
training is conducted iteratively using the
backpropagation algorithm, with weights adjusted to
minimize errors. Learning may be done in a
supervised, unsupervised, or reinforcement manner.
Also known as feed-forward networks, they process
data in a straight path from input nodes to output
nodes. In contrast, backpropagation networks
improve weights over time through error
backpropagation, with the gradient descent method
being a significant aspect in current machine
learning methods [13-14].

hn = f( m xn. wnm� (1)
hn = f( l hn. wml� (2)

Where h, x, w, and y represent the hidden layer,
input node, weight, and output, respectively. Next,
obtain the error signal, the difference between the
estimated value t and the actual value δ, and the
error term for both output and hidden nodes.

δyn = yn 1 − yn . t − yn (3)
δhn = hn 1 − hn δyn. wnl (4)

Adjust all the weights in the network, from the
output layer to the input layer, to propagate the error
of the nodes' information, denoted as δm, back
through the network.

∆wml = η. δyn. hn 3.5
∆wnm = η. δhn. xn 3.6
new = ∆w + wold 3.7

Where η is the rate of learning yn= f ∑hn wml 3.8
hn= f ∑xn w4 3.9
In supervised learning algorithms, such as
backpropagation, the process begins by propagating
the inputs through the network to obtain the output.
This error is computed to see if there is any
difference between the predicted outputs and the
desired output. The algorithm then uses this error to
update the weights in the network—the parameters
that determine the strength of connections between
different units in the network. This allows for a
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reduction in the error of future outputs[15-16]:
double backpropagation, with varying functions of
error for the output layer and the hidden layer. The
process repeats with iterations until the network
performs better than a certain threshold (e.g., a low
mean squared error or reaching a specified number
of iterations). The article highlights that while relays
are designed to detect faults in transmission lines
and identify their type, they occasionally fail. This
failure to detect faults can lead to significant
problems across the entire power system, as the fault
remains unresolved and cannot be restored or
recovered within the necessary timeframe. To
address this challenge, a more accurate, efficient, and
sensitive system is needed. This research aims to
develop an innovative, precise, and automated
solution to detect faults and mitigate such issues
effectively.

The main focus of the article is to
 The primary objective is to develop a robust
and efficient method for identifying high-current
faults in power system transmission lines. The
approach aims to minimize detection time while
maintaining high accuracy and promptly identifying
faults to prevent widespread damage. By leveraging
advanced algorithms, real-time monitoring, and
intelligent systems, the research seeks to enhance the
reliability of fault detection, ultimately contributing
to stable performance and power grid resilience.
 This objective focuses on minimizing the
time required to isolate and apparent faults in the
power system. The research aims to significantly
reduce system downtime and ensure an
uninterrupted power supply by implementing rapid
fault detection and clearance mechanisms. Faster
fault resolution enhances system reliability, mitigates
economic losses, and reduces operational disruptions,
ultimately benefiting both utilities and end-users.
The goal is to optimize fault management processes
for improved grid performance.
 The research aims to enhance the overall
efficiency and security of the power system by
integrating advanced fault detection and clearance
techniques. The approach seeks to minimize energy
losses, optimize resource utilization, and prevent
cascading failures by enhancing system
responsiveness to faults. Additionally, the research

emphasizes strengthening the power grid's security
against potential threats, ensuring a stable and
resilient infrastructure that can meet growing energy
demands while safeguarding against vulnerabilities.

1. Literature Review
Fundamentally, the electric power system comprises
generation, transmission, and distribution
subsystems interconnected through power
transmission lines, forming the transmission
subsystem. Nevertheless, these lines are susceptible to
defects with environmental effects [17-18]. Typically,
the power system operates at nominal voltage and
current levels. The faults, which are transmission line
errors that occur between phases (within the wiring
for a single incoming supply) or between the phase
and the ground, mostly cause equipment overheating
due to an increase in current and a voltage drop at
the fault point [19-20]. They can be symmetrical and
unsymmetrical [21], symmetrically unaffected and
unsymmetrically affected systems such as line-to-line,
line-to-ground, and double line-to-ground. Single-
phase ground faults are the most common type,
accounting for approximately 70% of all faults on
transmission lines. 15% and 10% of overall short-
circuit incidences are line-to-line and double line-to-
ground faults, respectively, & the remaining 5% are
three-phase faults. Artificial Neural Networks (ANNs)
are utilized due to their generalization capability,
noise immunity, robustness, and fault tolerance,
which enhance the value of the protection system,
thereby preventing a slight change in system
properties from severely impacting system
performance. With their prominence in all power
system applications [22-23], they are primarily known
for their high computational speed and ability to
manage nonlinear and incomplete data. These
networks, known as biological neurons, learn
nonlinear input-output mappings and are widely
used for classification, recognition, optimization,
prediction, and control. All ANN applications
effectively perform vector mapping, though they may
differ structurally and in training methods [24]. An
ANN model consists of interconnected nodes
resembling brain neurons, organized into input,
hidden, and output layers [25-26]. This sentence
describes the process in detail: training begins with
an Excel sheet, where inputs are multiplied by
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weights and biases and then activated in multiple
layers, resulting in an output that is compared to the
target output. This feedforward process progresses
from the input to the output layers. At the same time,
backpropagation is used to modify weights in
response to errors, utilizing activation functions such
as the sigmoid in the hidden and output layers but
not in the input layer (Chen et al., 2023). Below is
an illustration of how the model works [28].
ANNs can generalize, resist noise, and are robust and
fault-tolerant, making them useful for power system
applications. This work focuses on developing a
SCADA-like system for detecting and localizing AC
grid and HVDC faults using artificial neural
networks (ANNs) [29-30].

2. Materials and Methods
As discussed in the previous section, the protection
of transmission lines has been implemented for the
artificial neural network. NN is widely used due to
its capability to address desertion for clever attacks
and the challenges of the transmission line. In object
detection under complex elementary failure
conditions, an artificial neural network employs
several algorithms. [60] ANN to detect faults during
a fault in an overhead transmission line in this
desertion. This paper strongly recommends a specific
type of neural network-based algorithm for analyzing
abnormalities in power transmission lines. A case in
point is a 500 kV transmission line between Tarbella
and the Sheikh Muhammad Grid Station, spanning
117 km in length. This line was then mirrored in
Simulink, where all parameters were set accordingly.

Given these faults, numerous graphs were produced
to be evaluated against them, such as L-G, L-L, L-L-G,
and others. In each fault instance, the GM graph was
chosen to match the variation in length. Multiple
samples (I, V) were analyzed per fault, including both
faulty and non-faulty 3-phase current and voltage
measurements. This data was aggregated and
compiled into an Excel file to create the dataset for
training and testing on a model. This data was then
used as input in the Simulink workspace, which
provided unique codes (one for each fault type) as
output. The final step was to run the ANN tool,
which trained the ANN using both faulty and non-
faulty data, ultimately determining the defective
condition.

2.1. ANN Design for Fault Detection
The ANN classifier applied for fault diagnosis is
presented in Figure 1. The network is constructed
with six inputs, comprising three-phase currents and
voltages. It consists of 700 training samples for both
input and output, respectively, which equals 100
samples for each of the nine faults and the fault-free
condition. Table I indicates whether 1 represents a
fault or 0 represents no fault for the target outputs of
the data. Figure 3.1 illustrates that the architecture
comprises an input layer with six neurons, a hidden
layer with ten neurons, and an output layer with a
single neuron. Hidden and output layers use tan-
sigmoid and linear transfer functions, respectively. A
training algorithm, such as the Levenberg-Marquardt
algorithm, successfully diagnosed faults during
testing [13].
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Diagnosed the faults during testing [13].

Figure 1. Shows the network output and fault type.

(a) (b)

Figure 2. Shows the network architecture and data set training, test, and validation
2.2. Data generation
The data used in this study include input and target
values arranged in an Excel sheet to train an artificial
neural network (ANN). Such training helps the NN
recognize the intricate relationship between input
and target data. The input data must be

appropriately formatted for the training to be
practical, so the answer is yes. This dataset was
created using a simulated modeling approach in
MATLAB, which allowed for the controlled synthesis
of environmental data. Such a methodology helps
establish the correctness of the data and the proper
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functioning of the neural network predicting
patterns.

2.3. Simulation model
The system implemented here uses a 500 kV
transmission line to improve the systematic
application of ANNs. The simulations and modeling
were performed using SunPower Systems in

MATLAB/Simulink 2017a. The model is created
based on the system's architecture to depict and
examine it accurately. Below is a screenshot of the
model running. Additionally, Figure 3.3 provides a
comprehensive breakdown of the complete dataset
used for the ANN training, validation, and testing
phases.

Figure. 3. The Simulink model for the simulation
The methodology begins by designing the power
transmission system, where relevant physical and
operational features are defined. This covers the
types of conductors, towers, insulation, and routing
of transmission lines. These design parameters are
important because they must conform to the
standard of capacity and reliability to build a stable
and efficient power distribution. Let's define the
system: After the initial design, important power
system parameters, including voltage and current, are
accurately controlled according to different load
requirements and operation modes. The protocols
allow for necessary adjustments based on the diverse
electrical demands of the system, which are essential
for optimizing performance under different
circumstances. A comprehensive dataset is generated,
containing tightly recorded voltage and current
measurements across various scenarios, utilizing well-
optimized parameters. These scenarios encompass

normal operations and simulate peak and low-
demand conditions, providing a comprehensive view
of system behavior across various operational
conditions.
Then, the data captured is categorized according to
different line conditions, i.e., Line to Ground, Line
to Line, and double Line to Ground faults. These
conditions are divided into symmetrical and
asymmetrical when the system parameters are
balanced. This classification is an intermediate step
necessary for the next part of the methodology,
where ANN models will be utilized. All classified
data sets were formatted properly as ANN input,
including standard and faulty operational data. This
helps train and test the neural network, enabling it
to learn effectively to distinguish between different
operational states and fault conditions.
The ANN is then trained in three independent steps:
Training, Testing, and Validation. Training step:
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The network is trained on the data, allowing the
model to learn by updating its weights and biases to
minimize the error between actual and predicted
output values. During the testing stage, a different
data subset is used to evaluate the network's
predictive accuracy. Finally, the validation process
evaluates how well the ANN can generalize to novel
or unseen situations and how well it will perform
across a range of operational conditions. The Results
and Discussion section presents the results of using
the ANN in our power system model. The results
show the ability of ANN to identify complex types of
faults and abnormalities in operation. The proposed
approach offers significant improvements in both

response times and diagnostic accuracy compared to
traditional diagnostic techniques, further
demonstrating the potential of utilizing machine
learning technologies to manage power systems. The
study concludes by stating that the combined use of
ANNs in designing and operating power system
transmission lines represents a new frontier in
electrical engineering. This approach enhances fault
identification and system visibility while also playing
a crucial role in the reliability and efficiency of power
distribution networks, which are essential for the
sustainable and secure operation of electrical power
systems.

Figure 4. Proposed methodology for the research

3. SIMULATION RESULTS
3.1. Fault Simulation:
The results obtained from fault simulation are
shown in Figure 4 for the single-line-to-ground fault,
as listed in Table 1. There are successive changes in
V(voltage) and I(current) values shown in Figure 1,
where a-v fault for phase A of equivalents to work
has been short-circuited to earth, shown in F
waveforms. This arrangement holds for both line-to-
line and multiple faults across phases in the

simulation. Note: All types of charts and their
respective values are stored in the Value section of
Excel. 4.2 V and I Signals Without a Fault and With
a Fault —The impact of a fault in the transmission
line on the quality of the current and voltage signals
has been noted in the previous section. The voltage
drops, and the current surges to levels that can harm
power system equipment and devices during a fault.
From Fig: 4.1 to 4.6, table 4.1 to 4.6, detailed data
on all types of faults and their waveforms are given.
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Figure .5. Current and voltage waveform with A to B

Table 1: Data for AB Short Circuit Fault about Distance Variation.
S# D# �� �� �� �� �� ��
1 30 228600 228600 228600 24570 13090 1917
2 30.5 228600 228600 228600 24340 12940 1915
3 31 228600 228600 228600 24120 12790 1913
4 31.5 228600 228600 228600 23880 12640 1912
5 32 228600 228600 228600 23660 12500 1910
6 32.5 228600 228600 228600 23450 12360 1908
7 33 228600 228600 228600 23241 12220 1907
8 33.5 228600 228600 228600 23020 12090 1905
9 34 228600 228600 228600 22820 11960 1903
10 34.5 228600 228600 228600 22620 11820 1902
11 35 228600 228600 228600 22420 11700 1900
12 35.5 228600 228600 228600 22220 11570 1899
13 36 228600 228600 228600 22020 11450 1897
14 36.5 228600 228600 228600 21840 11330 1895
15 37 228600 228600 228600 21660 11210 1894
16 37.5 228600 228600 228600 21480 11100 1892
17 38 228600 228600 228600 21290 10990 1890
18 38.5 228600 228600 228600 21110 10880 1889
19 39 228600 228600 228600 20950 10770 1887
20 39.5 228600 228600 228600 20780 10660 1885
21 40 228600 228600 228600 20610 10560 1884
22 40.5 228600 228600 228600 20440 10450 1882
23 41 228600 228600 228600 20270 10350 1880
24 41.5 228600 228600 228600 20120 10250 1879
25 42 228600 228600 228600 19970 10150 1877
26 42.5 228600 228600 228600 19810 10060 1876
27 43 228600 228600 228600 19660 9963 1874
28 43.5 228600 228600 228600 19500 9870 1872
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29 44 228600 228600 228600 19350 9779 1871
30 44.5 228600 228600 228600 19210 9689 1869
31 45 228600 228600 228600 19070 9600 1867
32 45.5 228600 228600 228600 18930 9514 1866
33 46 228600 228600 228600 18790 9428 1864
34 46.5 228600 228600 228600 18650 9344 1863
35 47 228600 228600 228600 18510 9261 1861
36 47.5 228600 228600 228600 18370 9180 1859
37 48 228600 228600 228600 18250 9100 1858
38 48.5 228600 228600 228600 18120 9021 1856
39 49 228600 228600 228600 18000 8943 1854
40 49.5 228600 228600 228600 17870 8867 1853
41 50 228600 228600 228600 17750 8791 1851
42 50.5 228600 228600 228600 17620 8717 1850
43 51 228600 228600 228700 17490 8644 1848
44 51.5 228600 228600 228700 17370 8573 1846
45 52 228600 228600 228700 17260 8502 1845
46 52.5 228600 228600 228700 17150 8433 1843
47 53 228600 228600 228700 17040 8364 1842
48 53.5 228600 228600 228700 16930 8297 1840
49 54 228600 228600 228700 16820 8230 1838

Figure 6: Current and voltage waveform with A-B-C
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Table 2: Data for ABC Short Circuit Fault about Distance Variation.
S# D# �� �� �� �� �� ��
1 30 228600 228600 228600 28580 16260 16050
2 30.5 228600 228600 228600 82300 16080 15870
3 31 228600 228600 228600 28020 14890 15180
4 31.5 228600 228600 228600 27740 15740 15530
5 32 228600 228600 228600 27480 15580 15370
6 32.5 228600 228600 228600 27210 15420 15210
7 33 228600 228600 228600 26940 15250 15050
8 33.5 228600 228600 228600 26690 15110 14910
9 34 228600 228600 228600 26440 14940 14760
10 34.5 228600 228600 228600 26180 14800 14610
11 35 228600 228600 228600 25950 14660 14470
12 35.5 228600 228600 228600 25720 14500 14330
13 36 228600 228600 228600 25480 14000 13720
14 36.5 228600 228600 228600 25240 14220 14050
15 37 228600 228600 228600 25020 14080 13920
16 37.5 228600 228600 228600 24800 13950 13790
17 38 228600 228600 228600 24580 13820 13650
18 38.5 228600 228600 228600 24360 13710 13550
19 39 228600 228600 228600 24160 13570 13410
20 39.5 228600 228600 228600 23950 13090 12840
21 40 228600 228600 228600 23750 13320 13160
22 40.5 228600 228600 228600 23530 13200 13050
23 41 228600 228600 228600 23350 13080 12940
24 41.5 228600 228600 228600 23160 12160 12820
25 42 228600 228600 228600 22960 12490 12720
26 42.5 228600 228600 228600 22770 12740 12600
27 43 228600 228600 228600 22580 12630 12520
28 43.5 228600 228600 228600 22410 12160 11970
29 44 228600 228600 228600 22230 12420 12300
30 44.5 228600 228600 228600 22050 11960 12200
31 45 228600 228600 228600 21870 11840 12090
32 45.5 228600 228600 228600 21590 11750 12000
33 46 228600 228600 228600 21530 12000 11900
34 46.5 228600 228600 228600 21370 11910 11790
35 47 228600 228600 228600 21210 11460 11720
36 47.5 228600 228600 228600 21040 11370 11620
37 48 228600 228600 228600 20880 11610 11520
38 48.5 228600 228600 228600 20710 11530 11440
39 49 228600 228600 228600 20560 11090 11360
40 49.5 228600 228600 228600 20420 11000 11260
41 50 228600 228600 228600 20270 11250 11170
42 50.5 228600 228600 228600 20120 10280 10720
43 51 228600 228600 228600 19970 11080 11000
44 51.5 228600 228600 228600 19820 11000 10920
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45 52 228600 228600 228600 19670 10570 10850
46 52.5 228600 228600 228600 19540 10490 10760
47 53 228600 228600 228600 19410 10420 10700
48 53.5 228600 228600 228600 19270 10680 10620
49 54 228600 228600 228600 19140 10250 10170
50 54.5 228600 228600 228600 19000 10510 10470
51 55 228600 228600 228600 18860 10430 10380

Figure 7: Current and voltage waveform with A-B-C-G

Table 3: Data for ABC Phase-to-Ground Fault about Distance Variation
S# D# �� �� �� �� �� ��
1 30 228600 228600 228600 28580 15900 15510
2 30.5 228600 228600 228600 28300 15710 15870
3 31 228600 228600 228600 28010 15540 15590
4 31.5 228600 228600 228600 27740 15360 15530
5 32 228600 228600 228600 27470 15210 14840
6 32.5 228600 228600 228600 27210 15050 15220
7 33 228600 228600 228600 26940 15250 15050
8 33.5 228600 228600 228600 26690 15100 14900
9 34 228600 228600 228600 26440 14470 14250
10 34.5 228600 228600 228600 26180 14430 14610
11 35 228600 228600 228600 25950 14280 14460
12 35.5 228600 228600 228600 25720 14510 14330
13 36 228600 228600 228600 25470 14000 13700
14 36.5 228600 228600 228600 25240 13850 14050

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 4, 2025

https://sesjournal.com | Sulieman et al., 2025 | Page 456

15 37 228600 228600 228600 25020 13730 13930
16 37.5 228600 228600 228600 24800 13580 13790
17 38 228600 228600 228600 24580 13450 13660
18 38.5 228600 228600 228600 24360 13340 13070
19 39 228600 228600 228600 24160 13560 13410
20 39.5 228600 228600 228600 23250 13070 13290
21 40 228600 228600 228600 23740 12960 13170
22 40.5 228600 228600 228600 23530 12830 12600
23 41 228600 228600 228600 23350 12720 12500
24 41.5 228600 228600 228600 23160 12610 12380
25 42 228600 228600 228600 22960 12490 12710
26 42.5 228600 228600 228600 22770 12380 12610
27 43 228600 228600 228600 22580 12280 12060
28 43.5 228600 228600 228600 22410 12160 11970
29 44 228600 228600 228600 22230 12070 11870
30 44.5 228600 228600 228600 22050 11950 12190
31 45 228600 228600 228600 21870 11850 11090
32 45.5 228600 228600 228600 21690 11750 11990
33 46 228600 228600 228600 21530 11640 11900
34 46.5 228600 228600 228600 21370 10980 11390
35 47 228600 228600 228600 21200 11460 11290

The multi-layer Feedforward Artificial Neural
Network (ANN) is an extensively used model for
classifying faults. Selecting the best-performing
network architecture is a complex process that
involves several key factors. These include the
number of units in the network, the size of the
training dataset, and the type of learning strategy
used. The back-propagation algorithm is known to
have an optimal topology, a determination resulting
from significant trial and error. This paradigm, the
slowest learning model among its contemporaries, is
distinguished by its ability to optimize and improve.
A critical approach to enhancing performance is the
implementation of the Levenberg-Marquardt
optimization technique. Additionally, it is crucial to
select the exemplary architecture and determine the
appropriate network sizing. This action significantly
accelerates the training phase and enhances the
computational power of neural networks, thereby
enabling them to solve complex problems. In the
study "Fault Detection Using ANN," the initial stage
involves identifying faults by simultaneously
inputting six variables into the network. These
inputs comprise currents and voltages from three
phases. We examined symmetric and asymmetric
instances of abnormal conditions alongside a case

without faults, resulting in 55 data samples per
scenario. Ultimately, 700 samples were collected
across all scenarios, forming a dataset used to train
the neural network (NN). This dataset encompasses
approximately 700 sets of inputs and outputs, where
each pair consists of six inputs and a single output.
The output indicates the presence of a fault, denoted
by 1, or its absence, denoted by 0. Initially, the ANN
was trained using a 6-10-1 configuration, and the
results, including performance and correlation
metrics, were detailed in Figures 8 to 11.
Subsequently, the network was trained using a 6-12-1
configuration to improve performance and
correlations.
After several training sessions, the 6-8-1 ANN
configuration emerged as the most effective for fault
detection, achieving a Mean Squared Error (MSE) of
2.2498 × 10^ (-9), which is significantly below the
preset threshold of 0.0001, as illustrated in Fig.
4.3(c). This indicates that the training, testing, and
validation phases were aligned, and learning was
effective due to their shared characteristics and a
commitment to learning across all stages. The
correlation measurements revealed an ideal
relationship between the outputs and targets (R = 1),
as depicted in Fig. 4 .3 (d). The ANN's fault
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detection precision reached 100%, verified by a
confusion matrix that showed no misclassifications

in its red section, underscoring the model's accuracy
in fault detection.

1st

attempt

(a)
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(b)

(c)
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(d)
Figure 8: (a) ANN Training Architecture, (b) Trained ANN Model, (c) ANN Performance Evaluation, (d)

Correlation Graphs.

Figure 9 displays a histogram of errors.
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2nd Condition

(a)

(b)
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(c)

(d)
Figure 10 includes (a) the architecture of the trained artificial neural network (ANN), (b) the performance of

the ANN, (c) graphs showing correlations, and (d) a histogram of errors.
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3rd attempts

(a)
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(b)

(c)

(d)
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(e)

(f)

Figure 11. (a) ANN Training Architecture (b) Trained ANN Model (c) ANN Performance Evaluation (d)
Correlation Plots (e) Error Distribution Histogram (f) Confusion Matrix
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4. Discussion
This study has demonstrated the feasibility of
Artificial Neural Networks (ANNs) in the effective
detection of faults in high-voltage transmission lines.
The ANN model used in this research was
thoroughly validated using a MATLAB and Simulink
simulations dataset, representing different fault
conditions in a 500 kV power system of 117 km
length. The outcome highlights the high robustness
and accuracy of the ANN, achieving a remarkable
100% detection of faults, as reflected in the
confusion matrix, and an incredibly low Mean
Square Error (MSE) of 2.2498e-9. The success of the
ANN model lies in its capacity to emulate the
sophisticated decision-making process of the human
brain. This enables it to identify minute patterns and
inconsistencies in voltage and current readings that
can signify faults. Such a capability is imperative in
high-voltage transmission lines, where early fault
detection is vital to avoid prolonged outages and
severe damage to the power grid infrastructure. Our
methodology differs from others in that it keeps the
detection time as short as possible, thereby enabling
faster isolation and correction of faults. Applying a
multilayer perceptron (MLP) with backpropagation
training further refines the model's learning from the
training set, which encompasses a diverse range of
fault types and scenarios. Such variability in training
enables the ANN to learn not just from theoretical
case studies. Still, it is also suitably prepared for
realistic, real-case usage where patterns of faults
could differ significantly.
Compared to conventional fault detection systems,
reliance is more intense on relay-type mechanisms
that cannot always trigger or pinpoint the precise
characteristics of the fault. Traditional systems are
both slower and less reliable due to the occurrence of
faults whose characteristics are contingent upon a
range of external causes, such as environmental
conditions, mechanical damage to units, or process
errors. The capacity of the ANN to keep learning
and to modify its response based on received data
offers a significant enhancement of these traditional
techniques. In addition, incorporating artificial
neural networks (ANNs) in fault detection systems
aligns with the continuous evolution of innovative
grid technologies, where automation and real-time
data analysis play a central role. The scalability of

ANNs enables their application to various grid
segments, ranging from local distribution networks
to extensive transmission networks, providing a
unified solution for fault management. This research
also points towards future improvements in fault
detection methods. Investigating deeper and more
intricate network structures, perhaps incorporating
newer types of artificial intelligence, such as deep
learning and reinforcement learning, could further
enhance the precision and efficiency of fault
detection systems. Implementing these systems in a
real-world setting would also provide valuable
insights into their operational efficiency and areas
for improvement. In summary, the ANN-based fault
detection model developed in this research
represents a significant technological advancement in
the maintenance and operation of power
transmission systems. It not only facilitates the timely
identification and rectification of faults but also
helps enhance the stability and efficiency of the
electrical power distribution network. Further
research and development are recommended to fully
leverage the potential of ANNs in this area,
potentially revolutionizing the monitoring and
maintenance of power systems.

5. Conclusion
This research presents a comprehensive investigation
into the use of Artificial Neural Networks (ANNs)
for fault detection on power transmission lines.
Through a thorough exploration of various data
models and iterative design efforts, an artificial
neural network (ANN) was determined to be the
most effective technical solution for identifying faults
in transmission systems [15]. The ANN design
process required multiple iterations to refine the
model and ensure optimal performance. The neural
network was trained and developed through
MATLAB software and the ANN toolbox.
The results showed that ANN is an excellent fault
detector when trained with reliable and validated
datasets. The model successfully classified voltage (V)
and current (I) readings collected from each phase,
which aided in fault detection. This is particularly
important in the modern world, making this type
crucial for power transmission systems. It helps
detect and correct faults early, ultimately reducing
the downtime and damages caused.
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Everything starts with prefacing that the ANN was
the most successful algorithm in this study, which
can lead to further improvements in fault detection.
Additional research can be performed to optimize
network architectures, including real-time data
processing and deploying ANN-based fault detection
techniques within innovative grid environments.
Using AI-based methods, power transmission systems
can enhance their reliability, efficiency, fault
detection, and diagnosis without human
intervention.
In conclusion, this study highlights the potential of
ANN for fault detection and sets the stage for future
advancements in power system monitoring and
maintenance.

REFERENCES
[1] Hussain, M. M., Siddique, M., Almohaimeed, Z.

M., Shamshad, R., Akram, R., & Aslam,
N. (2021). Synchronization of Chaotic
Systems: A Generic Nonlinear Integrated
Observer‐Based
Approach. Complexity, 2021(1), 4558400.

[2] W. A. Alsulami and R. S. Kumar, "Artificial
neural network based load flow solution of
Saudi national grid," 2017 Saudi Arabia
Smart Grid (SASG), Jeddah, 2017, pp. 1-7,
doi: 10.1109/SASG.2017.8356516.

[3] Saravanan, N., & Rathinam, A. (2012,
November). A comparative study on ANN-
based fault location and classification
technique for double circuit transmission
line. In 2012 Fourth International
Conference on Computational
Intelligence and Communication
Networks (pp. 824-830). IEEE.

[4] P. Liu, Z. Zeng, & J.Wang “Complete stability of
delayed recurrent neural networks with
Gaussian activation functions” Neural
Networks (2016),
http://dx.doi.org/10.1016/j.neunet.2016.
09.006

[5] R. Sathya and Annamma Abraham “Comparison
of Supervised and Unsupervised Learning
Algorithms for Pattern Classification”
IJARAI
International Journal of Advanced
Research in Artificial Intelligence, Vol. 2,
No. 2, 2013 34 [5] T. Kohonen, O. Simula,
“Engineering Applications of the Self-
Organizing Map,” Proceeding of the IEEE,
Vol. 84, No. 10, 1996, pp.1354 – 1384

[6] Siddique, M., Hussain, G., Khan, R. S., Abbas, D.,
Shahzad, M., & Hussain, M. (2021).
Synchronization of N-Nonlinear Chaotic
or Comple Systems by Feedback
Controller. Pakistan Journal of
Engineering and Technology, 4(1), 38-42.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M.
Riedmiller, “Playing Atari with deep
reinforcement learning,” in Workshop on
Deep Learning, NIPS, 2013

[8] Ram, K. K., Nirmala, S., Ramesh, K., &
Vishwakarma, D. N. (2013). An overview-
Protection of Transmission line Using
Artificial Intelligence
Techniques. International Journal of
Engineering Research & Technology
(IJERT), 2(1), 1-9.

[9] Saha, M. M., Das, R., Verho, P., & Novosel, D.
(2002). Review of Fault Location
Techniques for Distribution
Systems. Power Systems and
Communications Infrastructures for the
Future, Beijing.

[10] Koley, E., Jain, A., Thoke, A. S., Jain, A., &
Ghosh, S. (2011, September). Detection
and classification of faults on a six-phase
transmission line using ANN. In 2011 2nd
International Conference on Computer
and Communication Technology
(ICCCT-2011) (pp. 100-103). IEEE.

[11] Sanaye-Pasand, M., & Khorashadi-Zadeh, H.
(2003, September). Transmission line fault
detection & phase selection using ANN.
In International Conference on Power
Systems Transients (pp. 1-6).

http://dx.doi.org/10.1016/j.neunet.2016.09.006
http://dx.doi.org/10.1016/j.neunet.2016.09.006
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 4, 2025

https://sesjournal.com | Sulieman et al., 2025 | Page 467

[12] M.Jamil, S.K. Sharma and R. Singh “Fault
detection and classification in electrical
power transmission system using artificial
neural network” DOI 10.1186/s40064-
015-1080-x (2015)

[13]Guillen, D., Paternina, M. R. A., Zamora, A.,
Ramirez, J. M., & Idarraga, G. (2015).
Detection and classification of faults in
transmission lines using the maximum
wavelet singular value and Euclidean
norm. IET Generation, Transmission &
Distribution, 9(15), 2294-2302.

[14]Darwish, H. A., Taalab, A. M., & Kawady, T. A.
(2001). Development and implementation
of an ANN-based fault diagnosis scheme
for generator winding protection. IEEE
Transactions on Power Delivery, 16(2),
208-214.

[15]Aziz, Abdul, Muhammad Zain Yousaf, Feng
Renhai, Wajid Khan, Umar Siddique,
Mehran Ahmad, Muhammad Abbas,
Mohit Bajaj, and Ievgen Zaitsev.
"Advanced AI-driven techniques for fault
and transient analysis in high-voltage
power systems." Scientific Reports 15, no.
1 (2025): 5592.

[16]Thwe, E. P., & Oo, M. M. (2016). Fault
detection and classification for
transmission line protection system using
artificial neural network. Journal of
Electrical and Electronic Engineering, 4(5),
89-96.

[17]Yadav, A., & Dash, Y. (2014). An overview of
transmission line protection by artificial
neural network: fault detection, fault
classification, fault location, and fault
direction discrimination. Advances in
Artificial Neural Systems, 2014.

[18]Santamaria, J. (2011). Analysis of power systems
under fault conditions.

[19] Singh, S., Mamatha, K. R., & Thejaswini, S.
(2014). Intelligent fault identification
system for transmission lines using
artificial neural network. IOSR Journal of
Computer Engineering, 16(1), 23-31.

[20]A.Nagabandi, G. Kahn, S.Ronald . Fearing,
S.Levine “Neural Network Dynamics for
Model-Based Deep Reinforcement
Learning with Model-Free Fine-Tuning”
2018 IEEE International Conference on
Robotics and Automation (ICRA) May 21
-25, 2018, Brisbane, Australia

[21]T. Zhou; M. Chen; Y. Kang; J. Zou
“Reinforcement learning based data fusion
method for multi-sensors” DOI:
10.1109/JAS.2020.1003180, IEEE/CAA
Journal of Automatica Sinica ( Early
Access )

[22]M. Z. Rehman1, N. M. Nawi1 “Improving the
Accuracy of Gradient Descent Back
Propagation Algorithm (GDAM) on
Classification Problems”

[23]D. Erhan, P.A. Manzagol, Y. Bengio, S. Bengio,
P. Vincent “The Difficulty of Training
Deep Architectures and the Effect of
Unsupervised Pre-Training.”

[24] I. Ullah, MNR Baharom, H.Ahmad, F. Wahid2,
H.M.Luqman1, Z. Zainal, B.Das3 “Smart
Lightning Detection System for Smart-City
Infrastructure Using Artificial Neural
Network” DOI: 10.1007/s11277-018-
5383-4

[25]Khan, R. S., Aziz, A., Babar, R., Abbas, K., Elahi,
N., & Abdullah, M. A. (2025). Advanced
Battery Management for Electric Vehicles:
Charge Monitoring and Fire
Security. Pakistan Journal of Engineering
and Technology, 8(1), 1-13.

[26]M. Bianchini and France “On the complexity of
neural network classifier: A comparison
between Shallow and deep layer
architecture” IEEE transaction, VOL 25
No 8 Aug 2014

[27]S. Ekici, S. Yildirim, and M. Poyraz, “Energy and
entropy-based feature extraction for
locating fault on transmission lines by
using neural network and wavelet packet
decomposition,” Expert Syst. Appl., vol.
34, no. 4, pp. 2937– 2944, 2008.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022


ISSN (E): 3006-7030 ISSN (P) : 3006-7022 Volume 3, Issue 4, 2025

https://sesjournal.com | Sulieman et al., 2025 | Page 468

[28]Mbamaluikem, O. Peter., Awelewa, A. Ayokunle.
and S. A Issac. “An Artificial Neural
Network-Based Intelligent Fault
Classification System for the 33-kV
Nigeria Transmission Line” Volume 13,
Number 2 (2018) pp. 1274-1285

[29]D. Silver, “Mastering the game of Go with deep
neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7022

	1.Literature Review
	2.Materials and Methods
	2.1.ANN Design for Fault Detection
	2.2.Data generation
	2.3.Simulation model

	3.SIMULATION RESULTS
	3.1.Fault Simulation:  
	The results obtained from fault simulation are sho
	S#
	D#
	�𝑽�𝒚�
	�𝑽�𝒃�
	�𝑽�𝒓�
	�𝑰�𝒚�
	�𝑰�𝒃�
	�𝑰�𝒓�
	1
	30
	228600
	228600
	228600
	24570
	13090
	1917
	2
	30.5
	228600
	228600
	228600
	24340
	12940
	1915
	3
	31
	228600
	228600
	228600
	24120
	12790
	1913
	4
	31.5
	228600
	228600
	228600
	23880
	12640
	1912
	5
	32
	228600
	228600
	228600
	23660
	12500
	1910
	6
	32.5
	228600
	228600
	228600
	23450
	12360
	1908
	7
	33
	228600
	228600
	228600
	23241
	12220
	1907
	8
	33.5
	228600
	228600
	228600
	23020
	12090
	1905
	9
	34
	228600
	228600
	228600
	22820
	11960
	1903
	10
	34.5
	228600
	228600
	228600
	22620
	11820
	1902
	11
	35
	228600
	228600
	228600
	22420
	11700
	1900
	12
	35.5
	228600
	228600
	228600
	22220
	11570
	1899
	13
	36
	228600
	228600
	228600
	22020
	11450
	1897
	14
	36.5
	228600
	228600
	228600
	21840
	11330
	1895
	15
	37
	228600
	228600
	228600
	21660
	11210
	1894
	16
	37.5
	228600
	228600
	228600
	21480
	11100
	1892
	17
	38
	228600
	228600
	228600
	21290
	10990
	1890
	18
	38.5
	228600
	228600
	228600
	21110
	10880
	1889
	19
	39
	228600
	228600
	228600
	20950
	10770
	1887
	20
	39.5
	228600
	228600
	228600
	20780
	10660
	1885
	21
	40
	228600
	228600
	228600
	20610
	10560
	1884
	22
	40.5
	228600
	228600
	228600
	20440
	10450
	1882
	23
	41
	228600
	228600
	228600
	20270
	10350
	1880
	24
	41.5
	228600
	228600
	228600
	20120
	10250
	1879
	25
	42
	228600
	228600
	228600
	19970
	10150
	1877
	26
	42.5
	228600
	228600
	228600
	19810
	10060
	1876
	27
	43
	228600
	228600
	228600
	19660
	9963
	1874
	28
	43.5
	228600
	228600
	228600
	19500
	9870
	1872
	29
	44
	228600
	228600
	228600
	19350
	9779
	1871
	30
	44.5
	228600
	228600
	228600
	19210
	9689
	1869
	31
	45
	228600
	228600
	228600
	19070
	9600
	1867
	32
	45.5
	228600
	228600
	228600
	18930
	9514
	1866
	33
	46
	228600
	228600
	228600
	18790
	9428
	1864
	34
	46.5
	228600
	228600
	228600
	18650
	9344
	1863
	35
	47
	228600
	228600
	228600
	18510
	9261
	1861
	36
	47.5
	228600
	228600
	228600
	18370
	9180
	1859
	37
	48
	228600
	228600
	228600
	18250
	9100
	1858
	38
	48.5
	228600
	228600
	228600
	18120
	9021
	1856
	39
	49
	228600
	228600
	228600
	18000
	8943
	1854
	40
	49.5
	228600
	228600
	228600
	17870
	8867
	1853
	41
	50
	228600
	228600
	228600
	17750
	8791
	1851
	42
	50.5
	228600
	228600
	228600
	17620
	8717
	1850
	43
	51
	228600
	228600
	228700
	17490
	8644
	1848
	44
	51.5
	228600
	228600
	228700
	17370
	8573
	1846
	45
	52
	228600
	228600
	228700
	17260
	8502
	1845
	46
	52.5
	228600
	228600
	228700
	17150
	8433
	1843
	47
	53
	228600
	228600
	228700
	17040
	8364
	1842
	48
	53.5
	228600
	228600
	228700
	16930
	8297
	1840
	49
	54
	228600
	228600
	228700
	16820
	8230
	1838
	S#
	D#
	�𝑽�𝒚�
	�𝑽�𝒃�
	�𝑽�𝒓�
	�𝑰�𝒚�
	�𝑰�𝒃�
	�𝑰�𝒓�
	1
	30
	228600
	228600
	228600
	28580
	16260
	16050
	2
	30.5
	228600
	228600
	228600
	82300
	16080
	15870
	3
	31
	228600
	228600
	228600
	28020
	14890
	15180
	4
	31.5
	228600
	228600
	228600
	27740
	15740
	15530
	5
	32
	228600
	228600
	228600
	27480
	15580
	15370
	6
	32.5
	228600
	228600
	228600
	27210
	15420
	15210
	7
	33
	228600
	228600
	228600
	26940
	15250
	15050
	8
	33.5
	228600
	228600
	228600
	26690
	15110
	14910
	9
	34
	228600
	228600
	228600
	26440
	14940
	14760
	10
	34.5
	228600
	228600
	228600
	26180
	14800
	14610
	11
	35
	228600
	228600
	228600
	25950
	14660
	14470
	12
	35.5
	228600
	228600
	228600
	25720
	14500
	14330
	13
	36
	228600
	228600
	228600
	25480
	14000
	13720
	14
	36.5
	228600
	228600
	228600
	25240
	14220
	14050
	15
	37
	228600
	228600
	228600
	25020
	14080
	13920
	16
	37.5
	228600
	228600
	228600
	24800
	13950
	13790
	17
	38
	228600
	228600
	228600
	24580
	13820
	13650
	18
	38.5
	228600
	228600
	228600
	24360
	13710
	13550
	19
	39
	228600
	228600
	228600
	24160
	13570
	13410
	20
	39.5
	228600
	228600
	228600
	23950
	13090
	12840
	21
	40
	228600
	228600
	228600
	23750
	13320
	13160
	22
	40.5
	228600
	228600
	228600
	23530
	13200
	13050
	23
	41
	228600
	228600
	228600
	23350
	13080
	12940
	24
	41.5
	228600
	228600
	228600
	23160
	12160
	12820
	25
	42
	228600
	228600
	228600
	22960
	12490
	12720
	26
	42.5
	228600
	228600
	228600
	22770
	12740
	12600
	27
	43
	228600
	228600
	228600
	22580
	12630
	12520
	28
	43.5
	228600
	228600
	228600
	22410
	12160
	11970
	29
	44
	228600
	228600
	228600
	22230
	12420
	12300
	30
	44.5
	228600
	228600
	228600
	22050
	11960
	12200
	31
	45
	228600
	228600
	228600
	21870
	11840
	12090
	32
	45.5
	228600
	228600
	228600
	21590
	11750
	12000
	33
	46
	228600
	228600
	228600
	21530
	12000
	11900
	34
	46.5
	228600
	228600
	228600
	21370
	11910
	11790
	35
	47
	228600
	228600
	228600
	21210
	11460
	11720
	36
	47.5
	228600
	228600
	228600
	21040
	11370
	11620
	37
	48
	228600
	228600
	228600
	20880
	11610
	11520
	38
	48.5
	228600
	228600
	228600
	20710
	11530
	11440
	39
	49
	228600
	228600
	228600
	20560
	11090
	11360
	40
	49.5
	228600
	228600
	228600
	20420
	11000
	11260
	41
	50
	228600
	228600
	228600
	20270
	11250
	11170
	42
	50.5
	228600
	228600
	228600
	20120
	10280
	10720
	43
	51
	228600
	228600
	228600
	19970
	11080
	11000
	44
	51.5
	228600
	228600
	228600
	19820
	11000
	10920
	45
	52
	228600
	228600
	228600
	19670
	10570
	10850
	46
	52.5
	228600
	228600
	228600
	19540
	10490
	10760
	47
	53
	228600
	228600
	228600
	19410
	10420
	10700
	48
	53.5
	228600
	228600
	228600
	19270
	10680
	10620
	49
	54
	228600
	228600
	228600
	19140
	10250
	10170
	50
	54.5
	228600
	228600
	228600
	19000
	10510
	10470
	51
	55
	228600
	228600
	228600
	18860
	10430
	10380
	S#
	D#
	�𝑽�𝒚�
	�𝑽�𝒃�
	�𝑽�𝒓�
	�𝑰�𝒚�
	�𝑰�𝒃�
	�𝑰�𝒓�
	1
	30
	228600
	228600
	228600
	28580
	15900
	15510
	2
	30.5
	228600
	228600
	228600
	28300
	15710
	15870
	3
	31
	228600
	228600
	228600
	28010
	15540
	15590
	4
	31.5
	228600
	228600
	228600
	27740
	15360
	15530
	5
	32
	228600
	228600
	228600
	27470
	15210
	14840
	6
	32.5
	228600
	228600
	228600
	27210
	15050
	15220
	7
	33
	228600
	228600
	228600
	26940
	15250
	15050
	8
	33.5
	228600
	228600
	228600
	26690
	15100
	14900
	9
	34
	228600
	228600
	228600
	26440
	14470
	14250
	10
	34.5
	228600
	228600
	228600
	26180
	14430
	14610
	11
	35
	228600
	228600
	228600
	25950
	14280
	14460
	12
	35.5
	228600
	228600
	228600
	25720
	14510
	14330
	13
	36
	228600
	228600
	228600
	25470
	14000
	13700
	14
	36.5
	228600
	228600
	228600
	25240
	13850
	14050
	15
	37
	228600
	228600
	228600
	25020
	13730
	13930
	16
	37.5
	228600
	228600
	228600
	24800
	13580
	13790
	17
	38
	228600
	228600
	228600
	24580
	13450
	13660
	18
	38.5
	228600
	228600
	228600
	24360
	13340
	13070
	19
	39
	228600
	228600
	228600
	24160
	13560
	13410
	20
	39.5
	228600
	228600
	228600
	23250
	13070
	13290
	21
	40
	228600
	228600
	228600
	23740
	12960
	13170
	22
	40.5
	228600
	228600
	228600
	23530
	12830
	12600
	23
	41
	228600
	228600
	228600
	23350
	12720
	12500
	24
	41.5
	228600
	228600
	228600
	23160
	12610
	12380
	25
	42
	228600
	228600
	228600
	22960
	12490
	12710
	26
	42.5
	228600
	228600
	228600
	22770
	12380
	12610
	27
	43
	228600
	228600
	228600
	22580
	12280
	12060
	28
	43.5
	228600
	228600
	228600
	22410
	12160
	11970
	29
	44
	228600
	228600
	228600
	22230
	12070
	11870
	30
	44.5
	228600
	228600
	228600
	22050
	11950
	12190
	31
	45
	228600
	228600
	228600
	21870
	11850
	11090
	32
	45.5
	228600
	228600
	228600
	21690
	11750
	11990
	33
	46
	228600
	228600
	228600
	21530
	11640
	11900
	34
	46.5
	228600
	228600
	228600
	21370
	10980
	11390
	35
	47
	228600
	228600
	228600
	21200
	11460
	11290

	The multi-layer Feedforward Artificial Neural Netw
	After several training sessions, the 6-8-1 ANN con
	1st attempt
	4.Discussion
	5.Conclusion
	REFERENCES 

