
Spectrum of Engineering Sciences 
ISSN (e) 3007-3138 (p) 3007-312X 

https://sesjournal.com | Khan et al., 2025 | Page 365 

 

 

 

IDENTIFICATION OF SUBSURFACE SULFIDE ORE DEPOSITS USING 

GROUND MAGNETIC EXPLORATION TECHNIQUE: A CASE STUDY 

FROM DROSH-KALDAM GOL, CHITRAL, NORTHERN PAKISTAN 

Azeem Khan
*1

, Khaista Rehman
2
, Asghar Ali

3
 

 
*1

PhD Scholar, National Centre of Excellence in Geology, University of Peshawar, Pakistan 
2
PhD, National Centre of Excellence in Geology, University of Peshawar, Pakistan 

3
PhD, Department of Geology, University of Peshawar, Pakistan 

 
*1

geoazeemkhan@gmail.com, 
2
rehmannceg@uop.edu.pk, 

3
asghar.ali@uop.edu.pk 

 

 

 

 

Keywords 

Sulfide minerals, magnetic method, 

magnetic anomaly, sulfide drilling, 

porphyry systems 

Abstract 

The ground magnetic data over parts of Gawuch Formation at Drosh-Kaldam Gol, 

Chitral region has been analyzed both qualitatively and quantitatively with the 

aim to map subsurface sulfide mineralization, analyze structural lineaments and 

their influence on mineralization, ascertain the depth of causative source bodies 

and pinpoint economically viable sulfide drilling prospects in the area. In the study 

area, the total magnetic intensity values range from a minimum of 48,500 

nanoteslas (nT) to a maximum of 56,000 nT, whereas the residual magnetic 

anomaly levels span from -3000 nT to 4500 nT. The qualitative structural 

analysis of magnetic data using various visualizations have yielded detailed insights 

into the subsurface geological features and has successfully pinpointed and 

delineated numerous anomalous zones (A, B, C, D & E) having the potential for 

occurrence of sulfide ore minerals and are proposed as a promising drilling targets 

for sulfide mineral prospection in the area. The quantitative analysis using Peter’s 

half slope and Maximum slope technique indicates that the magnetic anomaly 

sources in the study area range from near-surface to around 22.37 meters deep, 

suggesting shallow mineralization targets. 

The magnetic data analysis also reveals a shallow and sporadic network of 

circular to semicircular NE-SW trending magnetic discontinuities/structural 

lineaments (faults/fractures) which facilitate the process of hydrothermal 

mobilization and exert a significant impact on the spatial distribution of sulfide 

mineralization, which is associated with diorite-granodiorite intrusions and 

displays characteristics typical of porphyry systems. The findings demonstrated that 

magnetic method is a dependable tool for mapping subsurface structures, which 

are essential for evaluating the potential of sulfide ore minerals in complex 

topographic and geological settings. 
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INTRODUCTION 

Hydrothermal deposits are characterized by the 

presence of ore minerals, primarily sulfides, which 

tend to precipitate in proximity to faults, fractures, 

and shear zones (Farhan et al., 2021b). Numerous 

 

studies have highlighted the significant role these 

structural features play in mineralization. It has been 

shown that faults and fractures are crucial in 

concentrating various types of deposits, such as 
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porphyry (Cloos and Sapiie, 2013), epithermal 

(Chang et al., 2011), and orogenic deposits (Sinclair, 

2007; Groves et al., 2018; Gaboury, 2019). Sulfide 

minerals are highly valuable economically, not only 

for their primary ore contents such as copper (Cu), 

lead (Pb), and zinc (Zn), but also for their role as 

hosts and carriers of additional valuable elements 

like gold (Au), silver (Ag), arsenic (As), cadmium 

(Cd), cobalt (Co), bismuth (Bi), mercury (Hg), 

molybdenum (Mo), antimony (Sb), tin (Sn), nickel 

(Ni), tellurium (Te), and thallium (Tl) (Norman et 

al., 2003; Fontboté et al., 2017; Wang et al., 2017). 

The geophysical properties of sulfide deposits, 

whether disseminated or massive, differ significantly 

from those of their host rocks, due to variations in 

physical and chemical properties (Thomas et al., 

2000). For instance, the magnetic properties of 

certain sulfide minerals, such as pyrrhotite in 

association with magnetite alters the magnetic profile 

of the host rock which offer a valuable exploration 

tool, enabling the detection and delineation of 

sulfide-rich deposits through magnetic surveys (Ford 

et al., 2007; Morgan, 2012). 

The magnetic method is a widely used passive source 

geophysical exploration technique that detects subtle 

changes in the Earth's magnetic field caused by 

magnetic minerals in rocks, revealing subsurface 

features like faults, folds, intrusions and magnetic 

ore deposits (Telford et al,. 2001; Mariita, 2007; 

Ogagarue and Emudianughe, 2016; Bernard and 

Renisia, 2014; Shahverdi, 2017). This helps 

geologists understand an area's geological history, 

identify potential mineral deposit locations, and 

focus exploration efforts on promising regions, 

leading to more efficient and cost-effective resource 

discovery. Beyond geology, magnetic surveys are also 

useful in archaeology for finding buried artifacts and 

in other fields such as hydrology, environmental 

science, and engineering for assessing subsurface 

conditions (Stanley et al., 2021; Ogagarue and 

Emudianughe, 2016; Amigun and Adelusi, 2013; 

Furness, 2007; Saleem et al., 2002; Weymouth, 

1985; Joshua et al., 2017, Mariita, 2007). Thus, 

magnetic surveys are a versatile and valuable tool 

providing crucial insights across various scientific 

domains. 

1. Study Area 

Pakistan's northern regions exhibit a complex 

geological framework, stemming from the evolution 

of the intra-oceanic Kohistan Island Arc and 

subsequent geological events, rendering them 

conducive to hosting a diverse array of economic 

mineral deposits comprising arc and back-arc 

epithermal precious metal mineralization, as well as 

arc-related porphyry copper, gold, and molybdenum 

deposits (Sweatman et al., 1995; PMDC, 2001; 

Farhan et al., 2021a). The study area, Drosh-Kaldam 

Gol, located approximately 05 km east of Drosh 

town in district Chitral, falls within the geographical 

coordinates of 3938063N to 3940961N latitude and 

755613E to 758843E longitude and lies at the north 

western margin of the Kohistan Island Arc terrane in 

northern Pakistan (Figs. 1 & 2), is distinguished by 

the presence of polymetallic sulfide mineralization 

hosted within the Cretaceous Gawuch Formation’s 

metavolcanic rocks, which have been intruded by 

dioritic to granodioritic sills, dykes and quartz veins 

from the Early Eocene (40–45 Ma) belonging to the 

Lowari pluton of the Kohistan batholith (Tahirkheli 

et al., 2005; Tahirkheli et al., 2012; Farhan et al., 

2021b). The first systematic exploration work for 

economic metal potential in Chitral and adjoining 

regions was initiated by Sarhad Development 

Authority (SDA) in 1974-78 in collaboration with 

Austro-minerals by collecting ~2,000 stream 

sediments samples and covering an area of 

approximately 80,000 km
2
 in northern Pakistan to 

trace possible lode Cu-Au mineralization in northern 

Pakistan (Halfpenny and Mazzucchelli, 1999). The 

samples collected by SDA from the adits, trenches 

and exposures of sulfide and oxidized zones in Drosh 

region represented disseminated, massive and vein 

type mineralization showcasing a diverse array of 

minerals such as pyrite, chalcopyrite, tetrahedrite, 

magnetite, malachite and azurite etc. Results of 

stream sediment surveys suggest that mineralization 

in the study area is generally controlled by structural 

features such as faults, fractures and joints and is 

associated with ferromagnetic minerals like 

magnetite in Kaldom Gol diorites (Tahirkheli et al., 

2012, Ali et al., 2014b). Previous studies in the study 

area present geochemical and petrographic 

characteristics of the ore minerals and their host 

rocks (Tahirkheli et al., 2012; Farhan et al., 2021b), 
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results from fluid inclusion investigation and ages of 

the ore forming processes (Tahirkheli et al., 1997, 

Farhan et al., 2023). However, the study area is 

characterized by a significant lack of geophysical data, 

particularly with regards to subsurface geology and 

the extent of sulfide ore deposits, necessitating the 

application of magnetic geophysical techniques to 

uncover hidden sulfide ore deposits and delineate 

underlying structural features; as such resources are 

frequently located near fault or fracture zones. 

 

 
 

2. Objectives 

The objectives of this study are to thoroughly analyze 

the subsurface geology/structures of the study area 

using ground magnetic geophysical techniques, with 

the goal of assessing the relevance geophysical 

method in accurately delineating subsurface sulfide 

ore deposits, evaluating the influence of structural 

lineaments on mineralization, determining the depth 

of geophysical anomalies, and identifying promising 

sites for economically viable drilling. 

 

4. Regional and Local Geological Setting 

The geotectonic framework of the northern region of 

Pakistan consists of three domains, with the 

Kohistan Island Arc (KIA) sandwiched between the 

Eurasian plate to the north and the Indian plate to 

the south (Kazmi and Jan 1997; Faisal et al. 2014; 

Rehman et al. 2015. The tectonic fabric of the 

Kohistan Island Arc (KIA) is woven by the 

intersection of two major faulted suture zones: the 

Main Mantle Thrust (MMT) or Indus Suture Zone 

(ISZ) and the Main Karakoram Thrust (MKT) or 

Shyok Suture Zone (SSZ), which demarcate its 

northern and southern boundaries, respectively 

(Pudsey et al., 1985; Coward et al., 1986; Petterson, 

2010; Ullah et al., 2022a; Ullah et al., 2022b, Farhan 

et al., 2023, Fig. 1). A complete cross-sectional 

exposure of the KIA reveals its partial subduction 

beneath the Indian terrane and obduction onto the 

Karakoram/Eurasian terrane, (Khan et al., 1997; 

Bignold and Treloar, 2003; Bignold et al., 2006). 

The KIA consists of a varied suite of plutonic and 

volcanic rocks, ranging from felsic to ultramafic 

compositions, reflecting its complex geological 

evolution (Searle et al., 1999; Petterson, 2010). 

The study area, located along the northwestern 

periphery of the Kohistan Island Arc (KIA) in 

Chitral district, northern Pakistan, features three 

major tectonic elements, including the Karakoram- 

Kohistan Suture (or Shyok Suture zone), a volcano- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Geological map of the Kohistan Island Arc, Northern Pakistan, indicating the study area's location (after 

Ewing & Muntener, 2018). 
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sedimentary sequence, and the Kohistan batholith 

(Fig. 1). The Shyok Suture zone, a mélange zone, 

characterized by its varying width, ranging from a 

narrow, sharp fault to a broad zone up to 4 km wide, 

marking the continental boundary between the 

Kohistan and Eurasian landmasses and comprises of 

ultramafics, marbles, and basalts etc (Pudsey and 

Maguire, 1986, Khan et al., 1994, Tahirkhel et al., 

2005). The study area's volcano-sedimentary 

sequence displays greater complexity compared to 

the Yasin-Hunza section of Gilgit Baltistan. 

According to Pudsey et al. (1985), this sequence can 

be stratigraphically divided into three distinct units: 

the Drosh Formation at the top, followed by the 

Purit Formation, and the Gawuch Formation at the 

base (Fig. 2). 

The Drosh Formation consists of a thick Eocene 

volcanic sequence of andesitic and dacitic 

composition, that conformably overlies the Purit 

Formation, a fluvial-dominated unit comprising 

reddish shale, conglomerate, sandstone (Pudsey et 

al., 1985, Farhan et al., 2023). While, the Gawuch 

Formation, a Mesozoic era sequence of 

metavolcanites with interbedded metasedimentary 

units including marbles with marine affinity is 

distinguished by a consistent NE-SW strike and a 

steep NW dipping attitude, exhibit an intrusive 

contact with the Lowari pluton of the Kohistan 

Batholith to the south and a faulted contact with the 

Purit Formation (Pudsey et al., 1985, Heuberger, 

2004). The Formation's southern or basal section 

features intensely sheared metabasalts transformed 

into phyllites, while the upper half consists of 

alternating layers of metabasalts and carbonate rocks 

(marbles), intruded by the Kohistan Batholith- 

derived Eocene diorite and granodiorite sills and 

dykes, which in turn have been pervasively infiltrated 

by quartz veins (Tahirkheli et al., 1997, Tahirkheli et 

al., 2005, Farhan et al., 2023). This setting hosts the 

Kaldam Gol region's polymetallic sulfide 

mineralization, characterized by a mineral assemblage 

comprising pyrite, tetrahedrite, galena, chalcopyrite 

and magnetite etc which is genetically tied to the 

dioritic-granodioritic intrusions and quartz veining 

(Tahirkheli et al., 2012, Farhan et al., 2023), 

Geochemical analysis of fluid inclusion studies have 

previously revealed that the quartz veins hosting ore 

minerals formed from a brine with salinity of 12.28- 

13.4 wt% NaCl equivalent. While Lead-isotope 

geochronology constrains the minimum age of ore 

formation to approximately 42 million years, which 

postdates the Cretaceous host rock, Gawuch 

Formation but coincides with the magmatic 

emplacement of the Lowari pluton (40-45 million 

years), a dioritic to granodioritic complex (Zeitler, 

1985; Tahirkheli et al., 2005, Farhan et al., 2023). 

 

 

Fig. 2: Geological map of Drosh area, Chitral, Northern Pakistan showing stratigraphic sequences and depicting 

locality of the study area (after Rasheed et al., 2019). 
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Fig. 3: Geological Map of Gawuch Formation showing litho-stratigraphic units and proposed drill points for 

sulfide mineral prospection within the study area (Modified after LMPL, 2022). 
 

5. Methods & Materials 

This study employed a Geometrics G-858 Cesium 

Vapor Magnetometer, featuring 0.008 nT sensitivity 

and 0.2 nT resolution, to measure the total magnetic 

field intensity across the study area (Figs. 4). Ground 

magnetic surveys are typically conducted using either 

a grid pattern or linear profile approach (Ali et al., 

2020). However, due to the study area's complex and 

challenging landscape, a conventional grid-based 

magnetic survey was not feasible. Instead, geophysical 

measurements were taken along irregular profiles 

that followed dry mountainous streams, footpaths, 

and moderate slope. 

Our Geological field investigations in the study area 

confirm the presence of sulfide mineralization in 

multiple forms including massive, disseminated and 

vein type mineralization showcasing primary and 

supergene sulfide enrichment. 

Geophysical profiles were carefully planned based on 

geological trend analysis and the identification of 

sulfide, oxidized/altered zones, and mineral 

showings within the NE-SW trending Gawuch 

Formation. A detailed magnetic survey was 

performed, acquiring 506 raw magnetic data points 

at 10-20 meter station intervals along 30 survey 

profiles oriented perpendicular or oblique to the 

Gawuch Formation's NE-SW striking fabric (Fig. 5). 

In areas with high magnetic gradients, the sampling 

interval was reduced to 5 meters to ensure detailed 

coverage. Profile spacing was adaptively varied to 

accommodate complex topographic and geological 

features, ensuring optimal data coverage. Due to the 

use of a single magnetometer, each profile's initial 

point was re-occupied for repeat measurements, 

serving as a reference for diurnal corrections. 

Simultaneously, magnetic data points were precisely 

geo-located using a handheld Garmin GPS receiver. 
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Fig. 4: Field photographs showing acquisition of magnetic data using Geometrics G-858 magnetometer across 

various alteration zones within the Gawuch Formation. 
 

 

Fig. 5: Illustration showing magnetic data observations/stations recorded in the study area. 
 

6. Magnetic Data Processing 

The acquired magnetic data were processed using 

Golden Surfer software, with diurnal and 

International Geomagnetic Reference Field (IGRF) 

T  TS – TBS = the temporal gap between 
measurements at the station (S) and the base station 

(BS) and ℓ is a constant outlined as: 

corrections applied to remove external magnetic field 

and geomagnetic effects. The diurnal correction was 

𝓁 = 
 𝐼𝑅−𝐼𝐼𝑛  

𝑇𝑅−𝑇𝐼𝑛 
(1.2) 

calculated utilizing the following equations 

(Ogagarue & Emudianughem, 2016): 

Dc  ℓ × T (1.1) 

Where, 

 

DC = Drift or diurnal correction 

Where, the notation "In" designates the initial 

magnetometer reading recorded at the base station, 

"IR" signifies the magnetometer reading acquired 

during the repeat measurement at the base station, 

and "TIn" and "TR" represent the respective times at 

which the initial and repeat measurement readings 

were obtained at the base station 

The IGRF model was used to compute the 

geomagnetic field, incorporating date, elevation, and 

coordinates from NOAA website 

(http://www.ngdc.noaa.gov; Amigun and Adelusi, 
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2013; Eugene et al., 2019). The average IGRF value 

for the study area was calculated as 51350 nT. The 

residual magnetic anomaly data were computed by 

subtracting the average IGRF value from the 

diurnally corrected magnetic readings at each station 

(Waswa et al., 2015; Ogagarue & Emudianughem, 

2016). These values were subsequently visualized as 

2D and 3D maps employing minimum curvature 

gridding techniques in Surfer Software, thereby 

highlighting local magnetic signatures. 

 

7. Results 

7.1 Qualitative Analysis 

The magnetic data collected within the study area is 

visualized through various representations, including 

total intensity contour maps, residual magnetic 

intensity contour maps, and 3D surface distribution 

maps (Figs. 6a-c) which clearly show parallel to sub 

parallel, high frequency, short wavelength elliptical 

or lenticular magnetic ore bodies, characterized by 

limited extensions occurring adjacently at shallow 

depths. These visualizations highlights four distinct 

areas with significant magnetic susceptibility 

contrast, distinguished by the presence of magnetite- 

bearing sulfide alteration zones, specifically referred 

to as zone 01, 02, 03, and 04 (Figs. 6a-b). The 

magnetic zone division was based on the intensity, 

shape, and pattern in magnetic signatures alongside 

mineralization  distribution  and  accessibility 

approaches in the study area. Within these zones, 

significant positive and negative magnetic anomalies 

denoted as A, B, C, D and E have been identified 

(Fig. 6c). 

The total magnetic intensity map depicted in Fig. 6a 

provides an overview of the absolute strength of the 

Earth's magnetic field (Telford et al., 1990) across 

various locations within the study area. In contrast, 

Fig. 6b, which presents the residual magnetic 

intensity map, unveils specific localized anomalies or 

irregularities in Earth's magnetic field. These 

anomalies become evident after applying corrections 

for diurnal variations and the International 

Geomagnetic Reference Field (IGRF) to the total 

magnetic intensity field data (Otieno, 2012). 

In the study area, the total magnetic intensity values 

range from a minimum of 48,500 nanoteslas (nT) to 

a maximum of 56,000 nT, While the residual 

magnetic intensity levels span from -3000 nT to 4500 

nT (Figs. 6a-b). The study area exhibits a contrast in 

magnetic characteristics, with regions of low 

magnetic intensity indicated by blue to greenish 

colors and areas of high magnetic intensity depicted 

by reddish to yellowish hues. These magnetic 

variations provide insights into the underlying 

geological features and the degree of subsurface 

heterogeneity potentially linked to basement 

structural features like fault or fracture zones in the 

study area (Ozegin and Alile, 2016). 
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(b) 
 

 

(c) 

Fig. 6: Illustrations (a) Total magnetic intensity (TMI) ; (b) Residual magnetic intensity (RMI) map of the study area 

showing location of the identified magnetic zones; (c) 3D surface distribution map of the study area showing the areas 

and positions of the identified magnetic anomalies. 
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i). Zone 01 

Zone 01 is located in the low-land region of Kaldam 

Gol valley and is in close proximity to Kaldam Gol 

River. Ten magnetic profiles, with lengths ranging 

from 80 to 400 meters, have been employed to cover 

this particular zone. In consideration of the 

topographic conditions and accessibility, a total of 

178 magnetic stations were set up along the profiles 

encircling zone 01. The intervals for these stations 

were set at either 10 meters or 20 meters, ensuring 

thorough coverage of the area. After removing the 

diurnal and regional magnetic field components 

from the measured magnetic field, a colored 

Residual Magnetic Intensity (RMI) contour map was 

generated using Golden Surfer software (Fig. 7a). 

Within this zone, the RMI levels display a range of 

high and low magnetic values, varying between 3200 

and -1800 nanoteslas (nT), indicating a significant 

degree of magnetic heterogeneity in the area. The 

color legend indicates that the reddish to yellow hues 

represent areas with high magnetic signatures, while 

the blue to greenish tones denote regions with low 

magnetic signatures. The residual magnetic image, 

derived from the difference between Total Magnetic 

Intensity and IGRF, vividly illustrates the contrasting 

locations of high and low magnetic intensities, 

revealing numerous distinct crustal magnetization 

patterns. Regions exhibiting low magnetic intensity 

signatures on the magnetic maps/profiles suggest 

potential discontinuities, faults, or fracture zones 

whereas, areas characterized by high magnetic 

intensity indicate the presence of underlying 

magnetic materials (Feyisa & Gebissa, 2023). The 

magnetic anomaly contours of RMI map of zone 01 

are generally elongated in the NE-SW direction 

which is in accordance with the regional geological 

strike in the area. In Figures 7a and 7c of zone 01, on 

the northeastern side, there is a distinct positive 

magnetic anomaly closure/peak labeled as A. Here, 

the contour lines form an elliptical closure that is 

densely packed, indicating a steep gradient or rapid 

change in magnetic field strength. This suggests a 

zone characterized by higher magnetic susceptibility, 

likely indicating the presence of igneous intrusion 

within the bedrock or an accumulation of 

ferromagnetic minerals. In addition, there are 

scattered traces of moderate magnetic signatures 

virtually all over the area, indicating the presence of 

blocks or lumps of magnetite within the overburden. 

The positive anomaly zone of zone 1 spans 

approximately 30 by 20 meters in surface dimension, 

with a magnetic anomaly peak measuring 3200 

nanoteslas (nT). It exhibits a trend in the NE-SW 

direction and is encircled by areas characterized by 

low magnetic intensity patterns. On the other hand 

relatively low to high amplitude magnetic intensity 

values between -200 to -1800 nT marked with 

greenish to blue color forming elliptical to lenticular 

closures with NE-SW trend are dominated the entire 

map area (north western, south western, eastern and 

south eastern) suggesting the presence of shallow 

subsurface geologic structures and raise the prospect 

of potential faults or localized fractured zones 

traversing these area.. While, in the southern region 

of zone 01, there is a notable elongated low magnetic 

anomaly feature with contour lines spaced further 

apart and trending in the NNE-SSW direction. This 

characteristic suggests the presence of relatively thick 

overburden or deep-lying source bodies and is 

interpreted as a potential discontinuity, such as a 

fault or fracture zone associated with hydrothermally 

demagnetized fractured rocks in the area. 
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Depict positions and areas 

of magnetic minerals with 

potential for sulfide 

mineralization. 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 
(c) 

 

 

 

 

 

 

Fig. 07: (a) 2D Residual Magnetic Intensity (RMI) contour map of zone 01 showing location of anomaly ‘A’; (b) 

Longitudinal profile section of anomaly ‘A’ using peter half slope (P) and maximum slope (S) methods for depth 

approximation; (c) 3D surface map of zone 01 showing location of anomaly ‘A’. 
 

ii). Zone 02 

Zone 02 is situated to the northeast of zone 01, 

occupying the highland region of the Kaldam Gol 

valley. This area presented challenges for conducting 

geophysical profiles due to its steep slopes. 

Nevertheless, concerted efforts were made to ensure 

comprehensive coverage of the promising zones 

within zone 02. The objective was to avoid 

overlooking any potential mineralized areas in the 

subsurface, underscoring the dedication to thorough 

exploration despite challenging terrain. Zone 02 has 

been surveyed with a total of 08 profiles, with lengths 

ranging from 80 meters to 700 meters. Along these 
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profiles, a total of 148 magnetic observations were 

marked at intervals of either 10 or 20 meters. 

The resulting residual magnetic signature reveals 

significant variations in amplitude, ranging from a 

minimum value of -1000 nanoteslas (nT) to a 

maximum of 2800 nT. This variability indicates 

differing magnetic susceptibilities or variations in the 

metallic mineral content of the rock types within the 

surveyed area. A highly magnetic susceptible 

body/closure/peak trending in the NE-SW direction 

labeled as anomaly B is prominently visible at the 

northeastern corner of the RMI and 3D surface 

maps (Figs. 8a & 8c) which exhibits a magnetic 

anomaly peak of 2800 nT) and are interpreted as 

magnetite rich small igneous intrusion which could 

serves as a prospective site for magnetite associated 

sulfide mineralization. While, the majority of the 

map area exhibits a relatively low level of magnetic 

activity, appearing magnetically quiet or plain. The 

quiet magnetic zones or subtle magnetic lows that 

surround isolated high magnetic anomalies may be 

interpreted as indicative of an alteration zone 

associated with a potential mineral deposit (Gunn, 

1996). 

 

 

(a) 

(b) 
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(c) 

 

 
 

 

Fig. 08: (a) 2D Residual Magnetic Intensity (RMI) 

contour map of zone 02 showing location of 

anomaly ‘B’ (b) Longitudinal profile section of 

anomaly ‘B’ using peter half slope (P) and maximum 

slope (S) methods for depth approximation; (c) 3D 

surface map of zone 02 showing location of anomaly 

‘B’. 

 

iii). Zone 03 

Zone 03 was surveyed with 04 magnetic profiles 

ranging from 80 to 400 meters in length, recording a 

total of 82 magnetic observations at 10 meter and 20 

meter intervals along the profiles in this particular 

zone. The residual magnetic intensity contour map 

of zone 03 (Fig. 9a) showcases a range of magnetic 

amplitude characterized by both high and low 

magnetic intensity values spanning from 1100 nT to 

-1000 nanoteslas (nT). The magnetic anomaly 

contours of zone 03 predominantly exhibit a 

prevailing trend in the NE-SW direction, aligning 

with the regional geological strike observed in the 

area. This correspondence highlights the influence of 

geological factors on the magnetic signature of the 

region. In the western corner of zone 03 there is an 

elongated/elliptical contour closure/peak labeled as 

anomaly C that exhibits a high magnetic signature 

and is surrounded by regions of low magnetic 

intensity patterns. It presents a positive anomaly 

peak of 1100 nT and trends in the NE- SW direction, 

distinguishing it from the surrounding magnetic 

characteristics. Based on the analysis of the Residual 

Magnetic Intensity (RMI) and the 3D surface image 

(Figs. 9a & 9d) the highly magnetic susceptible body 

labeled as anomaly C, located at the left corner of 

zone 03, is interpreted as an igneous intrusion within 

the bedrock likely containing magnetite associated 

sulfide mineralization. While towards the northern 

side of anomaly C, there exists a NE-SW trending 

lenticular shape, high amplitude (-1000 nT), short 

wavelength low magnetic intensity feature labeled as 

anomaly D, depicting areas with near-surface 

geological structures, possibly fractures or faults, 

possessing low magnetic contents which could serve 

as potential hosts for minerals. 
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Magnetic Highs: indicate 

the presence of igneous 

intrusion. 

NE-SW trending 

structural lineament 

Magnetic Lows: 

altered zone/low 

magnetic signature. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences 
ISSN (e) 3007-3138 (p) 3007-312X 

https://sesjournal.com | Khan et al., 2025 | Page 379 

 

 

 

 
(d) 

Fig. 09: (a) 2D Residual Magnetic Intensity (RMI) contour map of zone 03 showing location of anomaly ‘C’ & ‘D’; (b- 

c) Longitudinal profile sections of anomaly ‘C’ & ‘D’ using peter half slope (P) and maximum slope (S) methods for 

depth approximation; (d) 3D surface map of zone 03 showing location of anomaly ‘C’ & ‘D’. 
 

iv). Zone 04 

Zone 04 is situated in the southwestern direction of 

the study area, within the highland region of the 

Kaldam Gol valley. Comprehensive coverage of this 

area was achieved using 08 magnetic profiles, with 

varying lengths ranging from 80 meters to 200 

meters. During the survey, a total of 98 magnetic 

readings were systematically recorded at intervals of 

either 10 or 20 meters along the profiles. This 

approach ensures a thorough examination of the 

magnetic characteristics specific to zone 04. The 

Residual Magnetic Intensity (RMI) map of the area 

(Fig. 10a) illustrates a range of magnetic signatures, 

with highs reaching a maximum value of 4500 nT 

and lows dropping to a minimum value of -3000 nT. 

This variability indicates a magnetic heterogeneity 

within the area. Notably, the RMI and 3D surface 

maps reveal the presence of a` dipolar magnetic 

feature trending in a NE-SW direction, identified as 

anomaly E (Figs. 10a & 10c). 

This feature is situated in the southwestern part of 

zone 04 and exhibits a positive magnetic signature 

peak of 4500 nT, indicating the likely presence of a 

magnetite-rich igneous intrusive body in the vicinity. 

In addition, there are scattered traces of moderate 

magnetic signatures virtually all over the area, 

indicating the presence of blocks or lumps of 

magnetite within the overburden. On the other 

hand, the northwestern and southeastern parts of 

the study area exhibit a more prominent low 

magnetic signature, ranging from -500 nT to -3000 

nT. This characteristic suggests potential geological 

discontinuities, fault, or fracture zone, possibly 

associated with hydrothermally demagnetized rocks 

in that region. The NE-SW alignment of the highly 

magnetic susceptible body/feature (anomaly E), 

which coincides with the regional geological strike of 

the area, could potentially serve as the host for 

magnetite-associated sulfide minerals such as 

chalcopyrite, pyrhotite, pyrite, galena etc. 

Define the areas of 

magnetic minerals 

potentially linked to 

sulfide minerals. 

Suggest region marked by 

altered rocks or diminished 

magnetic signatures. 
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Region marked by low 
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zone. 
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Fig. 10: (a) 2D Residual Magnetic Intensity (RMI) 

contour map of zone 04 showing location of 

anomaly ‘E’ (b) Longitudinal profile section of 

anomaly ‘E’ using peter half slope (P) and maximum 

slope (S) methods for depth approximation; (c) 3D 

surface map of zone 04 showing location of anomaly 

‘E’. 

7.2 Quantitative Analysis Of Magnetic Data 

The depth estimation process represents a 

quantitative interpretation of geophysical data. The 

Shows areas where igneous 

intrusion or ferromagnetic 

mineral concentrations are 

present. 
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interpretation of geophysical anomalies typically 

relies on scrutinizing data gathered from specific 

profiles. The primary aim of this data analysis is to 

eliminate extraneous signals, ideally retaining only 

the data that holds geological significance. 

Numerous methods exist for approximating the 

depth to the source of anomalies. The key principle 

is that the depth variation influences the shape of an 

anomaly. Shallow sources produce narrower and 

sharper anomalies, while deeper magnetic sources 

yield broader and flatter anomalies (Abdulbariu et 

al., 2016, Fig. 11). 

 

 
 

Fig. 11: Impact of depth on the shape and amplitude of anomalies (Abdulbariu et al., 2016). 
 

 

 

 

 

 

 

 

 

 

 

 

d 

 

Fig. 12: Magnetic anomaly depth determination: 

Maximum Slope (S) and Peter's Half-Slope (d) 

methods (Nettleton, 1971; Telford et al., 1990). 

Longitudinal profiles section for the identified 

magnetic anomalies was produced through Golden 

Surfer software, visually depicted in Figs. 7b, 8b, 9b- 

c & 10b. The approximate depth to the top of 

anomaly sources was determined utilizing graphical 

approaches, including Peter’s half-slope method, and 

Maximum slope method. The Peter’s half-slope and 

maximum slope techniques leverage the sloping 

flanks of the profiles, as demonstrated in Fig. 12, for 

depth estimation (Nettleton, 1971; Telford et al., 

1990). 

For magnetic depth estimation, either the horizontal 

extent of the virtually linear segment at the 

maximum slope (S) or the distance between the two 

 

 

points of tangency, referred to as half slope, (d) is 

measured. The depth (Z or h) below this segment is 

then calculated using the following equations 

(Nwosu and Onuba, 2013; Adegoke et al., 2014). 

Z = KS; 1.67 ≤ K≤ 1.82 (empirical 

constant K: 1.82) (1.3) 

d = 1.2 x h (slender body) 

(1.4) 

d = 1.6 x h (intermediate thickness) 

(1.5) 

d = 2 x h  (very  thick  body) 

(1.6) 

In Figure 7b for magnetic profile section AA’, the 

depth estimation was derived utilizing both Peter’s 

half-slope and Maximum slope methods, yielding the 

following results: 
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Profile Peter Half Slope 

Magnetic Curve Depth 

(m) 

Maximum Slope 

Magnetic Curve Depth 

(m) 

Average 

Depth 

AA’ 07.73 07.60 7.68 

BB’ 02.53 02.54 2.47 

CC’ 16.40 16.38 16.79 

DD’ 13.70 13.65 13.61 

EE’ 22.61 22.02 22.37 

 

Table 01: Summary of depth estimates computed 

via Peter half slope and maximum slope 

techniques. 

By employing a centimeter ruler, it was established 

that 8.42 centimeters on the "distance" axis in Figure 

7b corresponds to a distance of 160 meters. 

8.42 cm = 160 m 

01 cm = 𝑥 
⇒ 𝑥 = 01 cm = 19 m 

The horizontal distance between the two tangents is 

𝑑 = 0.624 cm. 

Hence, 

𝑑 = 0.624 × 19 = 11.85 m 

For a slender body, 𝑑 = 1.2 x h: 

ℎ (depth) = 11.85/1.2 = 9.87 m 

For body of intermediate thickness, 𝑑 = 1.6 x h: 

, ℎ (depth) = 11.85/1.6 = 7.40 m 

For very thick body, 𝑑 = 2 x h: 

ℎ (depth) = 11.85/2.0 = 5.92 m 

Average Depth = 7.73 m 

Likewise, employing the maximum slope method for 

profile AA’: 

S = 0.222 cm 

⇒ 0.22 x 19 = 4.18 

Consequently, 

Z= K1S(empirical constant K1 

= 1.82) 

Depth, Z = 1.82 x 4.18 = 7.60 m. 

Additionally, Table 01 provides a summary of the 

estimated depths obtained from the longitudinal 

profile sections of the identified magnetically 

anomalous zones. 

8. Discussions 

The ground magnetic data acquired over parts of the 

Gawuch Formation at Drosh-Kaldam Gol, Chitral 

region have been interpreted both qualitatively and 

quantitatively. Qualitatively, the magnetic data is 

visualized through various representations, including 

total intensity contour maps, residual magnetic 

intensity contour maps and 3D surface distribution 

maps. These visualizations highlights four distinct 

zones with notable magnetic contrasts, distinguished 

by the presence of magnetite bearing sulfide 

alteration zones, specifically referred to as zone 01, 

02, 03, and 04 (Figs. 6a-b). Within these zones 

significant positive and negative magnetic anomaly 

closures denoted as A, B, C, D and E have been 

identified (Figs. 7-10). The high magnetic anomalies 

A, B, C & E identified in zone 01, 02, 03 and 04 of 

the study area predominantly trending in the NE-SW 

direction and exhibits elliptical/elongated contour 

closures with positive magnetic signature peaks of 

3200 nT, 2800 nT, 1100 nT and 4500 nT whereas 

anomaly D in zone 03 with NE-SW trend presents a 

negative anomaly peak of 1000 nT. The elongated or 

lenticular nature of magnetic anomaly contours and 

profile sections analysis indicates that sulfide 

mineralization in the study area occurs as 

discontinuous; steeply dipping veins/lenses, or 

patches. Structural disruption from localized faults 

and fractures has fragmented these bodies, creating a 

characteristic pinch-and-swell pattern across the 

deposit. 

Regions exhibiting low magnetic intensity signatures 

on the magnetic profiles/maps are attributed to 

faults or a highly fractured terrain in the area where 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences 
ISSN (e) 3007-3138 (p) 3007-312X 

https://sesjournal.com | Khan et al., 2025 | Page 383 

 

 

 

the influence of hydrothermal fluid flow during 

weathering or oxidation processes leads to the 

potential depletion and alteration of magnetite to 

minerals like hematite or other non-magnetic 

minerals with lower magnetic responses compared to 

the surrounding rocks (Reeves 2005; Tawey et al. 

2020), whereas areas characterized by high magnetic 

intensity may point to the presence of potentially 

small, shallow mineralized intrusions/plugs of 

intermediate to basic composition within the bedrock 

which could potentially serve as prospective sites for 

magnetite-associated sulfide mineral mineralization 

in the study are. The high magnetic anomaly clusters 

labeled as A in zone 1 has an approximate surface 

extent of 30 by 20 meters, anomaly B in zone 2 with 

a surface area measuring 06 by 24 meters, anomaly 

C and D in zone 3 spanning approximately 115 by 

125 meters and 03 by 10 meter, and anomaly D in 

zone 4 is measuring dimensions of roughly 140 by 

120 meters, which from a geological perspective, are 

likely associated with exposed or concealed intrusive 

bodies containing magnetite rich sulfide 

mineralization and marked as potential drilling target 

zones for sulfide minerals prospection on the 

geological map of the Gawuch Formation of the 

study area (Fig. 3). This interpretation is further 

substantiated by our field investigations and the 

geological characteristics of the region. While the 

mineralogical and geochemical analyses by 

Tahirkheli et al., (2012) confirms that the 

hydrothermal activity tied to the ferromagnetic 

diorite-grandiorite rocks suggests that the igneous 

intrusion rather than the surrounding volcanic rocks, 

is the principal source of the mineralizing solutions 

responsible for sulfide mineralization in Kaldam Gol 

region. Similarly, Pudsey et al. (1985, 1985b) 

documented a grey diorite situated beneath the Purit 

Formation and faulted against the green phyllites of 

the Gawuch Formation, providing additional 

evidence that these geological features contribute to 

the movement and concentration of hydrothermal 

mineralizing fluids in the study area. 
Based on the analysis of magnetic anomaly profiles, 

(Figs. 7b, 8b, 9b-c & 10b) the average depth to the 

top of anomaly sources were estimated to be 

approximately 7.68 meters for anomaly A, 2.47 

meter for anomaly B, 16.79 meters for anomaly C, 

13.61 meters for anomaly D, and 22.37 meters for 

anomaly E, respectively. 

The interpreted 2D and 3D maps also reveals a 

network of structural lineaments in the study area 

that align with linear geological features including 

faults, fractures/shear zones that collectively 

contributes to the rugged nature of the basement 

topography (Hayatudeen et al., 2021). These 

structural elements are particularly important in 

mineral exploration, as many mineral deposits are 

located close to these fault or fracture zones (Curan 

et al., 1982). The dominant NE-SW orientation of 

the identified magnetic anomalies corresponds well 

with the geological strike of the surrounding host 

rock Gawuch Formation, indicating a strong 

connection between the study area's mineralization 

and a major NE-SW trending structural lineament, 

potentially a fault or fracture zone, highlighting the 

important role that structural features play in 

controlling the spatial distribution of mineral deposit 

in the region. The lineaments may reflect a thrusting 

element related to the transpressional strike-slip 

faulting along the Karakorum-Kohistan Suture or 

could be a remnant of an earlier North-South 

oriented compressional thrusting (Heuberger, 2004). 

The study area largely displays reduced 

magnetization, resulting in regions that appear 

magnetically plain or quiet zones that surround the 

isolated high magnetic anomalies in the area, 

potentially signifying an alteration zone that could be 

associated with underlying mineral deposits (Gunn, 

1996). This interpretation is reinforced by Farhan et 

al. (2021a and 2021b), who identified a suite of 

propylitic alteration minerals such as epidote, 

actinolite, chlorite, albite, and pyrite with an 

estimated alteration temperature range of 150- 

300°C, indicating that the rocks in the Kaldam Gol 

area experienced an alteration process similar to that 

found in porphyry-style systems. 
Supporting  this  prediction,  the  magnetic  data 

analysis has identified a shallow and sporadic array of 

circular to semicircular magnetic discontinuities and 

alteration patterns in the study area. These 

geophysical characteristics are consistent with 

porphyry systems and imply the presence subsurface 

stock work of fractures and veins, which may serve as 

key  target  zones  for  detailed  exploration  and 
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assessment of potential sulfide mineral deposits in 

the region. 

Porphyry systems are identified by distinct 

geophysical attributes due to the presence of 

alteration halos such as propylitic, phyllic, and 

potassic zones, which are commonly associated 

with sulfide mineralization (Holden et al., 2011). In 

these alteration zones, magnetic susceptibility is 

typically enhanced in potassic alteration zones, 

where iron oxide minerals like magnetite are 

concentrated, resulting in a prominent positive or 

high magnetic anomaly that is often sub-circular or 

elliptical in shape, while magnetic susceptibility is 

reduced in propylitic or phyllic alteration zones, 

leading to a lower or negative magnetic anomaly 

that typically surrounds the high magnetic anomaly. 

(Clark et al., 1992 and 2004; Holden et al., 2011, 

Hope et al., 2019). This low magnetic anomaly 

arises from the depletion of magnetite in the 

volcanic host rock (Holden et al., 2010). 

As noted by Clarke (2014) and Pisiak et al. (2017), 

magnetite serves as a significant indicator mineral 

for locating concealed porphyry deposits due to its 

prominent association with these systems, making 

magnetic anomalies a prevalent geophysical 

signature in porphyry prospecting. In the context of 

this study, the identified magnetic zones exhibit a 

distinct anomaly pattern typical of porphyry 

deposits. This pattern features a high magnetic core 

surrounded by a non-magnetic rim, a configuration 

that corresponds to the alteration halos 

commonly associated with porphyry systems. 

Specifically, within the study area, the central high 

magnetic core is likely associated with the potassic 

alteration zone, which is characterized by the 

presence of iron oxide minerals such as magnetite 

along with associated sulfide mineralization. 

Conversely, the peripheral non-magnetic minerals 

are interpreted as corresponding to the propylitic 

alteration zone, delineating the outer boundary of 

the mineralized region. So a thorough evaluation of 

the magnetic data indicates that the sulfide ore 

minerals present in the Gawuch Formation of 

Kaldam Gol regions displays key characteristics of 

a porphyry style mineralization which is associated 

with diorite-granodiorite intrusions and is 

structurally influenced by a NE-SW trending fault 

or fracture system. To further validate and refine 

this interpretation, it has been recommended to drill 

vertical and inclined exploratory core holes, 

targeting the high magnetic anomalous zones, to 

depths ranging up to 100 meters. 

9. Conclusion 

In the present study ground magnetic method of 

geophysical exploration has been employed to map 

the lateral heterogeneities in the Earth's magnetic 

field, aiming to delineate the distribution of 

magnetically susceptible sulfide mineralization, as 

well as to qualitatively map geologic structures like 

faults or fractures that influence the distribution of 

mineralization. The magnetic method has yielded 

detailed insights into the subsurface geological 

features and has successfully pinpointed and 

delineated numerous occurrences of sulfide 

minerals at relatively shallow depths within the 

study area. 

The magnetic data analysis also reveals that the 

study area has been significantly influenced by 

dominant NE-SW structural lineaments which are 

responsible for hydrothermal mobilization and play 

a key role in controlling the spatial distribution of 

sulfide mineralization, which is linked to diorite- 

granodiorite intrusions and exhibits distinct 

attributes typical of porphyry-style mineralization. 

The quantitative analysis using Peter’s half slope 

and Maximum slope technique indicates that the 

magnetic anomaly sources in the study area range 

from near-surface to around 22.37 meters deep, 

suggesting shallow mineralization targets. 

Consequently, it is concluded that the magnetic 

method is highly effective for delineating subsurface 

structural features related to sulfide mineralization, 

even in complex topographic and geological 

environments. 
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