
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 201

PARAMETER OPTIMIZATION OF AUTOENCODER FOR IMAGE
CLASSIFICATION USING GENETIC ALGORITHM

Ghulam Gilanie*1, Humaira Shafiq1, Syeda Naila Batool1, Syed Naseem Abbas2, Hina Shafique1,
Sana Cheema1, Akkasha Latif1, Anum Saher1, Muhammad Ahsan2

1Department of Artificial Intelligence, Faculty of Computing, The Islamia University of Bahawalpur, Pakistan
2 Department of Computer Science, Faculty of Computing, The Islamia University of Bahawalpur

*1ghulam.gilanie@iub.edu.pk, 1humairashafiq333@gmail.com, 1nailashah313@gmail.com,
2nasim.naqvi@iub.edu.pk, 1hinach1912@gmail.com, 1sanacheema887@gmail.com,
1akashacheema70@gmail.com, 1saheranum1@gmail.com, 2chahsan146@gmail.com

DOI: https://doi.org/10.5281/zenodo.15180569

Abstract
This research focuses on the parameter optimization of an autoencoder for image
classification using a genetic algorithm (GA). An autoencoder is a neural network
architecture commonly used for unsupervised learning, dimensionality reduction,
and feature extraction. Its performance heavily depends on hyperparameters,
which must be carefully tuned to achieve optimal results. In this study, a GA-
based optimization approach is proposed to fine-tune the hyperparameters of an
autoencoder, including the number of hidden layers, the number of neurons per
layer, the activation function, the learning rate, and the batch size. The proposed
approach is applied to two datasets: MNIST and EMNIST (an extended version
of MNIST for handwritten letters), as well as Fashion-MNIST. The performance
is compared against other state-of-the-art optimization techniques. The results
demonstrate that GA-based optimization effectively enhances autoencoder
performance, outperforming traditional methods in terms of reconstruction error
and classification accuracy. Specifically, when using the Adam optimizer, the
average classification accuracy achieved is 97.77% with an average computation
time of 34.77s, using a learning rate of 0.001, momentum of 0.87, and a
sparsity parameter of 0.01. In contrast, the GA-based approach yields an
improved accuracy of 98.85% with a slightly higher computation time of 35.44s,
using a learning rate of 0.1, momentum of 0.85, and a sparsity parameter of
0.01. This research contributes to the development of an efficient autoencoder
optimization framework, applicable to a wide range of tasks, including image
classification, data compression, feature extraction, and anomaly detection.

Keywords
Autoencoder Optimization, Genetic
Algorithm, Hyperparameter Tuning,
Image Classification, Deep Learning

Article History
Received on 01 March 2025
Accepted on 01 April 2025
Published on 09 April 2025

Copyright @Author
Corresponding Author: *

INTRODUCTION
An autoencoder is a type of neural network [1-
5]designed to encode input data into a compressed
and meaningful representation and then decode it to
reconstruct the input as accurately as possible to its
original form [6-9]. Their main goal is to learn an
informative representation of the data autonomously,

without explicit guidance. This learned
representation can be applied to various tasks, such
as clustering. Autoencoders, a type of neural network
architecture, are widely used in various fields,
including but not limited to image compression and
reconstruction, anomaly detection in time-series data,

mailto:gilanie@iub.edu.pk
mailto:humairashafiq333@gmail.com
mailto:nailashah313@gmail.com
mailto:nasim.naqvi@iub.edu.pk
mailto:hinach1912@gmail.com
mailto:sanacheema887@gmail.com
mailto:akashacheema70@gmail.com
mailto:saheranum1@gmail.com
mailto:chahsan146@gmail.com
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 202

recommender systems, image denoising [10-13],
generative models, and natural language processing
(NLP) tasks such as summarization and text
generation [14-16]. In an autoencoder, input data is
first encoded into a lower-dimensional
representation and then decoded back to reconstruct
the original input using this encoded representation.
Autoencoders can learn meaningful feature
representations from data even when it is unlabeled,
making them well-suited for unsupervised learning.
They also serve as a valuable alternative to
convolutional neural networks (CNNs) and long
short-term memory networks (LSTMs). Before
training CNN or LSTM, autoencoders can be
employed in preprocessing tasks such as
dimensionality reduction and feature learning,
enhancing model performance [17-20]. Even when
the task is not image classification or sequence
prediction but rather learning a compact
representation of the data, autoencoders can be used
as an alternative to CNNs [21] or LSTMs. However,
CNNs and LSTMs often outperform autoencoders
in many image and sequence-related tasks. [22].
Autoencoders are primarily used for various tasks,
including data compression, feature extraction,
anomaly detection, image and video processing,
natural language processing (NLP), reinforcement
learning, recommendation systems, and generative
modeling [23-26].
The process of parameter optimization is crucial as it
directly influences model performance and helps
prevent overfitting or underfitting. Additionally, it
ensures that the model remains efficient and
interpretable by avoiding unnecessary complexity,
which can lead to increased computation time and
reduced interpretability [27]. Researchers select
parameter optimization algorithms based on their
specific requirements. Some commonly used
optimization algorithms include Genetic Algorithm
(GA), Simulated Annealing (SA), Artificial Bee
Colony Algorithm (ABC), Particle Swarm
Optimization (PSO), Harmony Search (HS), and
Shuffled Frog Leaping (SFL), among others [28].
Genetic Algorithms (GAs) are commonly used to
solve real-parameter optimization problems by
encoding each parameter as a string of bits [29]. This
can be achieved using either standard binary coding
or gray coding. The bit strings representing

individual parameters are concatenated to form a
single bit string, known as a "chromosome," which
represents the entire parameter vector. [30]. An
autoencoder is a type of neural network architecture
used for dimensionality reduction and feature
learning. It consists of two main components,
encoder
(maps the input data to a lower-dimensional
representation, also known as the bottleneck or
latent space) and decoder (reconstructs the original
data from the latent representation, restoring it to its
original dimensionality) [31]. The goal of
autoencoders is to learn a compact representation of
input data that preserves the most important features
while eliminating noise or irrelevant information.
This makes them particularly useful for tasks such as
image compression, anomaly detection, and
generative modeling [32].
Parameter optimization of an autoencoder involves
finding the optimal set of values for the model's
parameters to achieve the best performance on a
given task. This typically includes adjusting the
encoder and decoder parameters, such as the
number of neurons, activation functions, and
learning rate [33].
In this research, GA was used to optimize the
parameters of an autoencoder. A lower gradient
descent value generally indicates better-optimized
parameters, but in some cases, even with a minimal
gradient descent, the training complexity of the
autoencoder increases. The goal of this study is to
provide an optimal solution for selecting the best
autoencoder parameters using GA, ensuring
maximum accuracy during training while
maintaining efficiency [34-38].
The paper is organized as follows: Section 2 provides
a review of related studies. Section 3 discusses GA,
autoencoders, and the parameter optimization of
autoencoders using GA. Section 4 presents the
experimental setup, results, discussions, and a
comparison with state-of-the-art methods. Finally,
Section 5 concludes the study and outlines future
research directions [39-43].

2.0 Literature Review
In this work [44], a unique deep autoencoder-based
feature learning approach is proposed for defect
diagnostics in rotating equipment. To enhance

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 203

feature learning from observed vibration signals, a
novel deep autoencoder loss function is designed
using maximum cross entropy. Additionally, the
primary parameters of the deep autoencoder are
optimized using an artificial fish swarm algorithm to
improve learning from input signal characteristics.
The proposed approach can be applied to fault
detection in roller bearings of gearboxes or electrical
locomotives. Experimental findings validate the
superiority of this method over existing techniques
in feature learning and fault diagnostics [45-47].
In this paper [48], a novel Human Pose Recovery
(HPR) system is introduced, improving upon
previous methods by employing a new framework
that simultaneously learns joint localization and joint
detection. This framework consists of two key
components: (1) regularization for multiple
manifolds is computed and integrated, and (2)
autoencoders are utilized to develop robust
representations of images and joints. This results in a
multi-task learning framework specifically designed
for HPR. Experimental evaluations on the
HumanEva-I and Human3.6M datasets demonstrate
that the proposed method outperforms existing HPR
techniques. The proposed [49], Optimal Deep
Autoencoder Network-Based Website Phishing
Detection and Classification (ODAE-WPDC) model
employs input data pre-processing to eliminate
missing values from the dataset. Next, feature
selection (FS) is performed based on feature
extraction results using the Artificial Algae
Algorithm (AAA). The selected features are then fed
into a Deep Autoencoder (DAE) model for
classification, with its parameters optimized using the
Invasive Weed Optimization (IWO) method to
enhance performance. The Kaggle dataset was used
to validate the ODAE-WPDC model, and testing
results confirm its superior performance, achieving a
maximum accuracy of 99.28%. This study proposed
[50] a novel deep learning-based model, AdacDeep, is
introduced for predicting various types of
cyberattacks. It integrates an Enhanced Genetic
Algorithm (EGA), a Deep Autoencoder, and a Deep
Feedforward Neural Network (DFFNN) with
backpropagation learning. The CICIDS2017 and
UNSW NB15 datasets, widely recognized
benchmarks, are used to evaluate the model's
performance. Experimental results demonstrate that

AdacDeep outperforms existing state-of-the-art
models, achieving prediction accuracy improvements
of 0.22–35% and F-Score enhancements of 0.1–
34.7%. In this study [51], the Genetic Algorithm-
Based Autoencoder (GAAE) model is proposed to
address data imbalance. Initially, both majority and
minority samples, along with genetic operators, are
used to train an autoencoder, where the
chromosome effectively represents the autoencoder
structure. A fitness function is established using an
error function and a set of classifiers. To balance the
dataset, the optimized autoencoder generates
synthetic data for the minority class. After applying
GAAE to equalize the data distribution, feature
selection is performed using the correlation
coefficient. Finally, various classifiers, including
Multi-Layer Perceptron (MLP), k-Nearest Neighbors
(k-NN), C4.5 Decision Tree (DT), and Random
Forest (RF), are employed for classification [52-56].

3.0 Autoencoder
An autoencoder is a type of neural network designed
to learn a compressed representation of an input and
then reconstruct the original input with minimal loss
of information. It consists of two main components:
an encoder and a decoder. The encoder compresses
the input into a lower-dimensional latent
representation, while the decoder reconstructs the
input from this compressed form. The objective of
an autoencoder is to minimize the difference
between the input and its reconstruction, typically
measured using a reconstruction loss function. For
example, given an image of a handwritten digit or
alphabet, an autoencoder encodes it into a latent
space representation and then decodes it back into
an image. Through this process, the model learns
how to efficiently compress data while minimizing
reconstruction errors [21, 57-59].
In this study, an autoencoder was implemented using
the MNIST dataset [60], the step-by-step procedure
for implementing the autoencoder is as follows: First,
the necessary libraries, such as TensorFlow and
NumPy, were imported at the beginning of the code.
Next, the MNIST dataset was loaded for training the
autoencoder. The data was then preprocessed by
scaling the pixel values to the range [0, 1], which was
achieved by dividing all pixel values by 255. After
preprocessing, the data was flattened to be used as

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 204

input for the autoencoder by reshaping it from
(num_samples, 28, 28) to (num_samples, 784). Once
the data was prepared, the autoencoder architecture
was built. An autoencoder consists of two main
components: an encoder and a decoder. The encoder
maps the input data to a lower-dimensional latent

space, while the decoder reconstructs the input from
this compressed representation. The general
architecture of the autoencoder is illustrated in
Figure 1. Table 1 presents the pseudocode for a
autoencoder [61-64].

Figure 1: General Architecture of Autoencoder

Table 1: Pseudocode for autoencoder
Pseudocode for autoencoder

Define the architecture of the autoencoder
1. input_dim = ... # dimensionality of the input data
2. encoding_dim = ... # dimensionality of the encoded representation
3. decoder_layers = ... # list of layer sizes for the decoder, in reverse order
4. encoder_layers = ... # list of layer sizes for the encoder, in forward order
Define the input and output tensors
5. input_data = ... # placeholder for input data
6. encoded_data = ... # output of the encoder
7. decoded_data = … # output of the decoder
Define the encoder layers
8. for layer_size in encoder_layers:
encoded_data = Dense(layer_size, activation='relu')(encoded_data)

Define the decoder layers
9. for layer_size in decoder_layers:
decoded_data = Dense(layer_size, activation='relu')(decoded_data)

Define the final layer to reconstruct the input
10. decoded_data = Dense(input_dim, activation='sigmoid')(decoded_data)
Define the autoencoder as a keras model
11. autoencoder = Model(input_data, decoded_data)
Compile the autoencoder with an appropriate loss function and optimizer
12. autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
Train the autoencoder on input data
autoencoder.fit(x_train, x_train, epochs=num_epochs, batch_size=batch_size)

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 205

4.0 Genetic Algorithm (GA)
GA is a metaheuristic optimization algorithm
inspired by the process of natural selection. It follows
a population-based approach to search for an optimal
solution to a given problem. In GA, potential
solutions (referred to as individuals) are represented
as chromosomes, typically encoded as bit strings. A
fitness function is then defined to evaluate the
quality of everyone. The algorithm operates by first
generating a random population of individuals. Then,
it evaluates their fitness scores and selects the fittest

individuals for reproduction through crossover and
mutation. This process of selection, crossover, and
mutation is repeated over multiple generations,
enabling the algorithm to gradually converge toward
the optimal solution. GA is widely applicable to
various optimization problems, particularly those
involving non-differentiable, nonlinear, or
discontinuous objective functions. Table 2 presents
the algorithm for a genetic algorithm used for
parameter optimization.

Table 2: Algorithm of GA
Algorithm of GA

1. START
2. Generate an initial population of candidate solutions
3. Compute the fitness of each candidate solution
4. REPEAT

Select the best-fit candidate solutions from the population
Create new offspring candidate solutions through crossover and mutation
Compute the fitness of each new candidate solution
Replace the least-fit candidate solutions with the new offspring candidate solutions

5. UNTIL the population has converged, or a stopping criterion is met
6. OUTPUT the best candidate solution found during the optimization process
7. STOP

5.0 Parameter optimization of autoencoder using
GA
The parameters of an autoencoder that are typically
optimized include the weights and biases of both the
encoder and decoder neural networks. These
parameters are trained using an optimization
algorithm to minimize a reconstruction loss function,
which quantifies the difference between the input
and the reconstructed output of the autoencoder.
During training, the autoencoder processes an input,
encodes it into a lower-dimensional representation,
and then decodes it back to its original
dimensionality. The reconstruction loss function
compares the original input with the output of the
decoder and computes the error. The optimization
algorithm then updates the weights and biases of the
encoder and decoder to minimize this reconstruction
loss, ensuring better feature learning and
representation.
Autoencoder with random parameters, where ‘X’ is
random variable, and ‘W’ is weights for these
parameters.

1st Iteration
�1 = (�1, �2, �3, …………. , ��

(1)
�2 = (�1, �2, �3, …………. , ��

(2)
�3 = (�1, �2, �3, …………. , ��

(3)
--
�� = (�1, �2, �3, …………. , ��

(4)
After the 1st iteration, we got n/2 optimized
parameters
2nd Iteration
In this iteration ‘n/2’ parameters used from previous
iteration and rest of the parameters are selected
randomly.
�1 = (�1, �2, �3, …………. , ��

(5)
�2 = (�1, �2, �3, …………. , ��

(6)
�3 = (�1, �2, �3, …………. , ��

(7)

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 206

--
�� = (�1, �2, �3, …………. , ��

(8)
nth Iteration
�1 = (�1, �2, �3, …………. , ��

(9)
�2 = (�1, �2, �3, …………. , ��

(10)
�3 = (�1, �2, �3, …………. , ��

(11)
--
�� = (�1, �2, �3, …………. , ��

(12)
After iteration obtained objective function as
mentioned in equation no 13.
���� =f(x) = V

(13)
Where ‘V’ is minimum for the loss function.
Such that
� ≤ g ≥ h

(14)
Where g=1 and h=0, due to the images, which are
normalized before processing.
‘X’ is parameters that need to optimize, W’ is weights
of these parameters. In the 1st iteration got ‘n/2’
parameters that use used next iteration rest of
weights selected randomly. The nth iteration done as
result got best optimized parameters. After each
iteration parameters are given to models to check
whether results improved or not. ‘V’ is a loss
function. ‘g’ is maximum range that is 1 and ‘h’ is
minimum range and that is 0.
In addition to optimizing the weights and biases,
other hyperparameters of an autoencoder—such as
the learning rate, batch size, number of hidden layers,
and activation functions—can also be fine-tuned
using techniques like grid search or randomized
search. These hyperparameters significantly influence
the performance and generalization of the
autoencoder, and careful tuning is required to
achieve optimal results. A GA is a metaheuristic
search algorithm that simulates the process of natural
selection to optimize solutions. It starts with a
population of candidate solutions, each evaluated
using a fitness function. The fittest individuals are
selected for reproduction, where crossover and
mutation operations introduce variations in the
population. Over successive generations, GA refines

the solutions, converging toward an optimal or near-
optimal configuration for the given problem.

6.0 The Proposed Methodology
Experiments were conducted using the MNIST
dataset to evaluate the effectiveness of GA-based
optimization for autoencoders. Initially, classification
was performed using a default set of parameters.
Subsequently, GA was employed to optimize these
parameters iteratively. After each iteration, the
algorithm adjusted the hyperparameters and network
weights, refining the settings to achieve improved
performance. This process continued until an
optimal configuration was found, ensuring that the
autoencoder performed efficiently with enhanced
accuracy and minimal reconstruction loss.

6.1 Dataset
In this study, three 3 datasets used MNIST [65],
EMNIST: Extending MNIST to handwritten letters
[60], Fashion-mnist [66]. These datasets are used to
evaluate performance of autoencoder using default
optimizer and with genetic algorithm as optimizer.

6.2 Experimental Setup
The experiments were conducted using the MNIST
dataset, where classification was initially performed
with default parameters. Subsequently, a GA was
applied to iteratively optimize these parameters. After
each iteration, GA adjusted the hyperparameters and
network settings, refining them to enhance the
autoencoder's performance. This optimization
process continued until the optimal parameters were
obtained, ensuring improved accuracy and efficient
reconstruction.

6.2.1 Preprocessing
The MNIST dataset was preprocessed by scaling pixel
values to the range [0,1]. This was achieved by
dividing each pixel value by 255.0, a standard
normalization technique in image classification tasks.
Normalizing the input data helps neural networks
perform more efficiently, improving gradient flow,
convergence speed, and overall model accuracy. By
transforming the pixel values into a more suitable
format, the preprocessing step enhances the
autoencoder's ability to learn meaningful features
during training.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 207

6.2.2 Data Reshaping and Splitting
The MNIST dataset was flattened so it could be used
as input to the autoencoder. Each 28×28 image was
reshaped into a 1D vector of 784 features. The
dataset was then divided into training and testing
samples, ensuring that both sets contained the same
number of features. The reshape method was used to
maintain equal feature representation in both the
training and testing arrays. This step ensures that the
data is in a suitable format for feeding into the
neural network, allowing the autoencoder to learn
effectively.

6.2.3 Autoencoder Architecture
An autoencoder is an unsupervised learning neural
network architecture designed to learn efficient
representations of input data. It consists of two main
components: an encoder that maps the input data to
a lower-dimensional latent space and a decoder that
reconstructs the original input from this compressed
representation. The primary objective of an
autoencoder is to minimize the reconstruction error,
which measures the difference between the original
input and the regenerated output. By doing so, the
autoencoder captures the most essential features of
the data while discarding noise and redundant
information.

 Encoder
The tf.keras.models.Sequential function is used to
create a sequential model, where each layer is
connected in a linear sequence to the next layer in
the network. The first dense layer is added using the
tf.keras.layers.Dense function with 32 units and a
ReLU activation function. The input_shape
argument defines the shape of the input data, which
is a 1D array of length 784 (representing a flattened
image). This layer serves as the input layer of the
encoder, receiving the flattened image. The second
dense layer, also created using tf.keras.layers.Dense,
consists of 16 units with a ReLU activation function.
It acts as a hidden layer within the encoder, further
processing the input data by reducing the number of
units from 32 to 16. This reduction helps in
compressing the input into a lower-dimensional
space, a common approach in auto-encoder
architecture.

 Decoder
The decoder is implemented using a sequential
model from the Keras API in TensorFlow, consisting
of two dense layers. The first dense layer has 32 units
with a Rectified Linear Unit (ReLU) activation
function and an input shape of (16,), meaning it
takes in input vectors of size 16. The second dense
layer has 784 units with a sigmoid activation
function, producing output values between 0 and 1
for each of the 784 units. The sigmoid activation
function is commonly used in binary classification
tasks to generate probability values indicating class
membership. In image generation tasks, it helps
represent pixel intensities in the range [0, 1].

 Combine Encoder and Decoder
The autoencoder is implemented as a sequential
model comprising an encoder and a decoder. The
encoder and decoder are separate models defined
earlier in the code. The encoder processes the input
data and generates a compressed representation. The
decoder takes this compressed representation and
reconstructs the original input. By combining both
models into a single sequential structure, an end-to-
end autoencoder is created, enabling training to
learn efficient data compression and reconstruction.
The training objective is to minimize the difference
between the original input and the reconstructed
output, typically using a loss function such as mean
squared error (MSE).

6.2.4 Compile the autoencoder model
To compile the autoencoder model, we specify the
optimizer, loss function, and evaluation metrics.

6.2.4.1 Using Adam Optimizer
An autoencoder model is designed using the Adam
optimizer and the binary cross-entropy loss function,
with accuracy as the evaluation metric. Autoencoders
are a type of neural network used for unsupervised
learning, where the objective is to reconstruct the
input data at the output layer. The Adam optimizer
is an adaptive optimization algorithm that
dynamically adjusts the learning rate during training,
improving convergence speed and overall
performance. The binary cross-entropy loss function
measures the difference between the predicted and
actual outputs, making it particularly effective for

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 208

binary classification tasks where the outputs are
represented as either 0 or 1.

6.2.4.2 Using GA
It is possible to implement a Genetic Algorithm (GA)
in an autoencoder model using a binary cross-
entropy loss function and an accuracy metric.
However, this approach requires significant
modifications to both the model architecture and the
training process. Unlike traditional optimization
methods, GA operates as a population-based search
algorithm, iteratively refining solutions through
evolutionary principles. GA mimics the process of
natural selection, where a population of candidate
solutions, each representing a unique set of model
parameters, evolves over multiple generations. The
algorithm applies selection, mutation, and crossover
operations to improve these solutions, ensuring that
better-performing candidates have a higher chance of
propagating their characteristics. To integrate GA
with an autoencoder, the first step is to define a
population of potential solutions, each
corresponding to different sets of model parameters.
The autoencoder is then trained using these
parameters, and its performance is evaluated based
on binary cross-entropy loss and accuracy using cross-
validation. After assessing the fitness of each solution,
genetic operations are applied to evolve the
population toward optimal parameter configurations.

This iterative process continues until the
autoencoder achieves improved reconstruction
performance and classification accuracy.

6.2.5 Train the autoencoder on the training data
The autoencoder model is trained using the fit()
method, where each input serves as both the input
and the target output. Training is conducted over
100 epochs with a batch size of 256, and the data is
shuffled before each epoch to enhance learning
stability. During training, the model aims to
minimize the binary cross-entropy loss between the
original input and its reconstructed output. The
Adam optimizer is employed to adjust the model’s
weights in a direction that reduces this loss, ensuring
better convergence. The validation_data parameter is
set to the test dataset, allowing the model to be
evaluated on unseen data during training. This
validation step helps monitor the model’s
generalization ability and detect potential overfitting.

7.0 Results and Discussions
The MNIST dataset is used for experiments, where
classification is initially performed using default
parameters. Afterward, a GA is applied to optimize
these parameters iteratively. GA continues refining
the parameters until an optimal set is found,
enhancing the model’s performance.

Table 3: Comparison of the results with the state-of-the-art methods

References
Evolutionary algorithms used to

optimize parameters
Evaluation measure

[44] Artificial Fish Swarm

Average accuracy= 94.05%
Average computation time= 37.67 s
learning rate, momentum and sparsity
parameter are set to 0.1, 0.85 and 0.02

[49] Invasive weed optimization (IWO) Accuracy of 99.28%.

[50] Enhances GA
Accuracy=0.22–35%,
F-Score=0.1–34.7%.

The Proposed
Adam optimizer

Average accuracy=97.77%
Average computation time=34.77 s

learning rate, momentum and sparsity
parameter are set to 0.001, 0.87 and 0.01

GA
Average accuracy=98.85 %

Average computation time= 35.44 s

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 209

learning rate, momentum and sparsity
parameter are set to 0.1, 0.85 and 0.01

In this study [44], an Artificial Fish Swarm optimizer
was utilized, achieving an average accuracy of 94.05%
and an average computation time of 37.67 seconds.
The learning rate, momentum, and sparsity
parameter were set to 0.1, 0.85, and 0.02,
respectively. This study suggests that future deep
learning techniques could play a significant role in

advancing rotating machinery fault diagnosis. In this
study [49], the Invasive Weed Optimization (IWO)
algorithm was employed to optimize the parameters,
achieving an accuracy of 99.28%. Figure 3 illustrates
the comparison between the results obtained using
default parameters and those optimized through the
GA, in terms of accuracy.

Figure 3: Accuracy with default optimizer and with ga optimizer
8.0 Conclusion
Optimizing an autoencoder's parameters using a
Genetic Algorithm (GA) can significantly enhance its
performance. GAs are optimization techniques
inspired by natural selection, making them useful for
finding optimal parameter sets for complex problems.
When applying GA to autoencoder optimization, it
is crucial to define appropriate selection criteria,
such as reconstruction error or other performance
metrics. Additionally, fine-tuning GA parameters is
essential to maintain a balance between exploration
(searching new solutions) and exploitation (refining
existing solutions) while ensuring sufficient
population diversity.
Overall, GA-based parameter optimization can
outperform traditional methods like grid search or
random search by more efficiently navigating the
search space. However, its effectiveness depends on
the complexity and the quality of implementation.

REFERENCES
1.Gilanie G, Batool SN, Khursheed A, Shafique H,

Mahmood N, Cheema S, et al. Bit Pattern
Selection Based Novel Method of

Steganography in RGB Encoding Scheme
Based Digital Images.

2.Gilanie G, Batool SN, Shafique H, Khursheed A,
Mahmood N, Cheema S, et al. An Overview
on X-Rays ImagesProcessing: Methods,
Challenges& Issues, and Future Work.

3.Gilanie G, Javedb M, Rauf B, Cheemaa S, Latif A,
Perveena S, et al. RiceAgeNet: Age
Estimation of Pakistani Grown Rice Seeds
using Convolutional Neural Networks.

4.Khera EA, Ullah H, Hussain F, Abubakar S,
Majeed A, Tabssum I, et al. Characterization
of Nickel Oxide Thin Films for Smart
Window Energy Conversion Applications:
Comprehensive Experimental and
Computational Study. Available at SSRN
4235112.

5.Ullah H, Jahangir A, Gilanie G. Classification of
Chronic Kidney Diseases with Statistical
Analysis of Textural Parameters: A Data
Mining Technique.

6.Attique M, Gilanie G, Mehmood MS, Naweed MS,
Ikram M, Kamran JA, et al. Colorization and

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 210

automated segmentation of human T2 MR
brain images for characterization of soft
tissues. PloS one. 2012;7(3):e33616.

7.Gilanie G, Attique M, Naweed S, Ahmed E, Ikram
M. Object extraction from T2 weighted
brain MR image using histogram based
gradient calculation. Pattern Recognition
Letters. 2013;34(12):1356-63.

8. Asghar K, Gilanie G, Saddique M, Habib Z.
Automatic Enhancement Of Digital Images
Using Cubic BÃ© zier Curve And Fourier
Transformation. Malaysian Journal of
Computer Science. 2017;30(4):300-10.

9.Janjua HU, Andleeb F, Aftab S, Hussain F, Gilanie
G. Classification of liver cirrhosis with
statistical analysis of texture parameters.
International Journal of Optical Sciences.
2017;3(2):18-25.

10.Ullah H, Andleeb F, Aftab S, Hussain F, Gilanie
G. Classification of Liver Cirrhosis with
Statistical Analysis of Texture Parameters.
IJOS. 2017;3(2):1-8.

11.Bajwa UI, Shah AA, Anwar MW, Gilanie G, Ejaz
Bajwa A. Computer-aided detection (CADe)
system for detection of malignant lung
nodules in CT slices-a key for early lung
cancer detection. Current Medical Imaging.
2018;14(3):422-9.

12.Gilanie G, Bajwa UI, Waraich MM, Habib Z,
Ullah H, Nasir M. Classification of normal
and abnormal brain MRI slices using Gabor
texture and support vector machines. Signal,
Image and Video Processing. 2018;12:479-
87.

13.Gilanie G, Ullah H, Mahmood M, Bajwa UI,
Habib Z. Colored Representation of Brain
Gray Scale MRI Images to potentially
underscore the variability and sensitivity of
images. Current Medical Imaging Reviews.
2018;14(4):555-60.

14.Janjua HU, Jahangir A, Gilanie G. Classification
of chronic kidney diseases with statistical
analysis of textural parameters: a data
mining technique. International Journal of
Optical Sciences. 2018;4(1):1-7.

15.Ullah H, Batool A, Gilanie G. Classification of
Brain Tumor with Statistical Analysis of
Texture Parameter Using a Data Mining

Technique. International Journal of
Industrial Biotechnology and Biomaterials.
2018;4(2):22-36.

16.Gilanie G. Automated Detection and
Classification of Brain Tumor from MRI
Images using Machine Learning Methods:
Department of Computer Science,
COMSATS University Islamabad, Lahore
campus; 2019.

17.Gilanie G, Bajwa UI, Waraich MM, Habib Z.
Automated and reliable brain radiology with
texture analysis of magnetic resonance
imaging and cross datasets validation.
International Journal of Imaging Systems
and Technology. 2019;29(4):531-8.

18.Gilanie G, Bajwa UI, Waraich MM, Habib Z.
Computer aided diagnosis of brain
abnormalities using texture analysis of MRI
images. International Journal of Imaging
Systems and Technology. 2019;29(3):260-71.

19.Gilanie G, Bajwa UI, Waraich MM, Anwar MW.
Risk-free WHO grading of astrocytoma using
convolutional neural networks from MRI
images. Multimedia Tools and Applications.
2021;80(3):4295-306.

20.Gilanie G, Bajwa UI, Waraich MM, Asghar M,
Kousar R, Kashif A, et al. Coronavirus
(COVID-19) detection from chest radiology
images using convolutional neural networks.
Biomedical Signal Processing and Control.
2021;66:102490.

21.Batool SN, Yang J, Gilanie G, Latif A, Yasin S,
Ikram A, et al. Forensic Radiology: A robust
approach to biological profile estimation
from bone image analysis using deep
learning. Biomedical Signal Processing and
Control. 2025;105:107661.

22.Kovenko V, Bogach І, editors. A Comprehensive
Study of AutoencodersApplications Related
to Images. International Conference"
Information Technology and
Interactions"(IT&I-2020) Workshops
Proceedings, Kyiv, Ukraine, December 02-03,
2020: 43-54; 2020: Київський
національний університет імені
Тараса Шевченка.

23.Gilanie G, Nasir N, Bajwa UI, Ullah H. RiceNet:
convolutional neural networks-based model

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 211

to classify Pakistani grown rice seed types.
Multimedia Systems. 2021:1-9.

24.Gilanie G, Saher A, Batool SN, Khursheed A,
Shafique H, Perveen S, et al. Digital Image
Processing for Ultrasound Images: A
Comprehensive. Digital Image Processing.
2021;15(3).

25.Rafiq M, Bajwa UI, Gilanie G, Anwar W.
Reconstruction of scene using corneal
reflection. Multimedia Tools and
Applications. 2021;80(14):21363-79.

26.Ghaffar AA, Mushtaq MF, Amna, Akram U,
Samad A, Gilanie G, et al., editors. Refined
Sentiment Analysis by Ensembling
Technique of Stacking Classifier.
International Conference on Soft
Computing and Data Mining; 2022:
Springer.

27.Hartman TW, Radichev E, Ali HM, Alaba MO,
Hoffman M, Kassa G, et al. BASIN: A Semi-
automatic Workflow, with Machine
Learning Segmentation, for Objective
Statistical Analysis of Biomedical and
Biofilm Image Datasets. Journal of
Molecular Biology. 2023;435(2):167895.

28.Wang G, Shao M, Lv S, Kong X, He Z, Vining G.
Process parameter optimization for lifetime
improvement experiments considering
warranty and customer satisfaction.
Reliability Engineering & System Safety.
2022;221:108369.

29.Chalmers G. Introducing ligand GA, a genetic
algorithm molecular tool for automated
protein inhibitor design. Scientific Reports.
2022;12(1):20877.

30.Wright AH. Genetic algorithms for real
parameter optimization. Foundations of
genetic algorithms. 1: Elsevier; 1991. p. 205-
18.

31.Ali HM, Liu J, Bukhari SAC, Rauf HT. Planning
a secure and reliable IoT-enabled FOG-
assisted computing infrastructure for
healthcare. Cluster Computing.
2022;25(3):2143-61.

32.Patel N, Patel S, Mankad SH. Impact of
autoencoder based compact representation
on emotion detection from audio. Journal of

Ambient Intelligence and Humanized
Computing. 2022:1-19.

33.Zhang C, Geng Y, Han Z, Liu Y, Fu H, Hu Q.
Autoencoder in Autoencoder Networks.
IEEE transactions on neural networks and
learning systems. 2022.

34.Gilanie G, Asghar M, Qamar AM, Ullah H, Khan
RU, Aslam N, et al. An Automated and
Real-time Approach of Depression
Detection from Facial Micro-expressions.
Computers, Materials & Continua.
2022;73(2).

35.Gilanie G, Rehman N, Bajwa UI, Sharif S, Ullah
H, Mushtaq MF, editors. FERNet: A
Convolutional Neural Networks Based
Robust Model to Recognize Human Facial
Expressions. International Conference on
Soft Computing and Data Mining; 2022:
Springer.

36.Iqbal MJ, Bajwa UI, Gilanie G, Iftikhar MA,
Anwar MW. Automatic brain tumor
segmentation from magnetic resonance
images using superpixel-based approach.
Multimedia Tools And Applications.
2022;81(27):38409-27.

37.Rubab SF, Mushtaq MF, Tahir MH, Amna,
Samad A, Gilanie G, et al., editors. The
Comparative Performance of Machine
Learning Models for COVID-19 Sentiment
Analysis. International Conference on Soft
Computing and Data Mining; 2022:
Springer.

38.Wazir E, Gilanie G, Rehman N, Ullah H,
Mushtaq MF, editors. Early Stage Detection
of Cardiac Related Diseases by Using
Artificial Neural Network. International
Conference on Soft Computing and Data
Mining; 2022: Springer.

39.Yaseen M, Khurshed A, Ullah H, Batool Z, Nazir
A, Gilanie G, et al. In-vitro Evaluation of
Anticancer Activity of Rhodamine-640
perchlorate on Rhabdomyosarcoma cell line.
2022.

40.Afzal F, Ullah H, Amjad M, Akhtar M, Shah MI,
Batool Z, et al. Detection of Uric Acid in
UV-VIS wavelength Regime. JOURNAL OF
NANOSCOPE (JN). 2023;4(1):75-81.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 212

41.Ahmed M, Gilanie G, Ahsan M, Ullah H, Sheikh
FA. Review of Artificial Intelligence-based
COVID-19 Detection and A CNN-based
Model to Detect Covid-19 from X-Rays and
CT images. VFAST Transactions on
Software Engineering. 2023;11(2):100-12.

42.Asghar S, Gilanie G, Saddique M, Ullah H,
Mohamed HG, Abbasi IA, et al. Water
classification using convolutional neural
network. IEEE Access. 2023;11:78601-12.

43.Batool SN, Gilanie G. CVIP-Net: A
Convolutional Neural Network-Based Model
for Forensic Radiology Image Classification.
Computers, Materials & Continua.
2023;74(1).

44.Shao H, Jiang H, Zhao H, Wang F. A novel deep
autoencoder feature learning method for
rotating machinery fault diagnosis.
Mechanical Systems and Signal Processing.
2017;95:187-204.

45.Ghani M, Gilanie G. The IOMT-Based Risk-Free
Approach to Lung Disorders Detection from
Exhaled Breath Examination.
INTELLIGENT AUTOMATION AND
SOFT COMPUTING. 2023;36(3):2835-47.

46.Gilanie G, Bajwa UI, Waraich MM, Anwar MW,
Ullah H. An automated and risk free WHO
grading of glioma from MRI images using
CNN. Multimedia tools and applications.
2023;82(2):2857-69.

47.Hafeez HA, Elmagzoub MA, Abdullah NAB, Al
Reshan MS, Gilanie G, Alyami S, et al. A
CNN-model to classify low-grade and high-
grade glioma from mri images. IEEE Access.
2023;11:46283-96.

48.Yu J, Hong C, Rui Y, Tao D. Multitask
autoencoder model for recovering human
poses. IEEE Transactions on Industrial
Electronics. 2017;65(6):5060-8.

49.Alqahtani H, Alotaibi SS, Alrayes FS, Al-Turaiki I,
Alissa KA, Aziz ASA, et al. Evolutionary
Algorithm with Deep Auto Encoder
Network Based Website Phishing Detection
and Classification. Applied Sciences.
2022;12(15):7441.

50.Ibor AE, Oladeji FA, Okunoye OB, Uwadia CO.
Novel adaptive cyberattack prediction model
using an enhanced genetic algorithm and
deep learning (AdacDeep). Information
Security Journal: A Global Perspective.
2022;31(1):105-24.

51.Ram PK, Kuila P. GAAE: a novel genetic
algorithm based on autoencoder with
ensemble classifiers for imbalanced
healthcare data. The Journal of
Supercomputing. 2022:1-32.

52.Khera EA, Ullah H, Hussain F, Abubakar S,
Majeed A, Tabssum I, et al. Characterizing
nickel oxide thin films for smart window
energy conversion applications: Combined
experimental and theoretical analyses.
ChemistrySelect. 2023;8(37):e202302320.

53.Nazir A, Ullah H, Gilanie G, Ahmad S, Batool Z,
Gadhi A. Exploring Breast Cancer Texture
Analysis through Multilayer Neural
Networks. Scientific Inquiry and Review.
2023;7(3):32-47.

54.Shafiq H, Gilanie G, Sajid M, Ahsan M. Dental
radiology: a convolutional neural network-
based approach to detect dental disorders
from dental images in a real-time
environment. Multimedia Systems.
2023;29(6):3179-91.

55.Gilanie G, Cheema S, Latif A, Saher A, Ahsan M,
Ullah H, et al. A Robust Method of Bipolar
Mental Illness Detection from Facial Micro
Expressions Using Machine Learning
Methods. Intelligent Automation & Soft
Computing. 2024;39(1).

56.Naveed S, Husnain M, Alsubaie N, Samad A,
Ikram A, Afreen H, et al. Drug efficacy
recommendation system of glioblastoma
(GBM) using deep learning. IEEE Access.
2024.

57.Rashid MS, Gilanie G, Naveed S, Cheema S,
Sajid M. Automated detection and
classification of psoriasis types using deep
neural networks from dermatology images.
Signal, Image and Video Processing.
2024;18(1):163-72.

58.Saher A, Gilanie G, Cheema S, Latif A, Batool
SN, Ullah H. A Deep Learning-Based
Automated Approach of Schizophrenia

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Gilanie et al., 2025 | Page 213

Detection from Facial Micro-Expressions.
Intelligent Automation & Soft Computing.
2024;39(6).

59.Gilanie G, Batool SN, Abbas SN, Cheema S,
Latif A, Shafique H, et al. DEEP
LEARNING-BASED APPROACH FOR
ESTIMATING THE AGE OF PAKISTANI-
GROWN RICE SEEDS. Spectrum of
Engineering Sciences. 2025;3(1):557-72.

60.Cohen G, Afshar S, Tapson J, Van Schaik A,
editors. EMNIST: Extending MNIST to
handwritten letters. 2017 international joint
conference on neural networks (IJCNN);
2017: IEEE.

61.Gilanie G, Batool SN, Abbas SN, Latif A, Iqbal
M, Shafique H, et al. STEGANOGRAPHIC
SECRET COMMUNICATION USING
RGB PIXEL ENCODING AND
CRYPTOGRAPHIC SECURITY. Spectrum
of Engineering Sciences. 2025;3(3):323-36.

62.Gilanie G, Batool SN, Abbas SN, Shafique H,
Iqbal M, Cheema S, et al. READABLE
TEXT RETRIEVAL FROM NOISE-
INFLUENCED DOCUMENTS USING
IMAGE RESTORATION METHODS.
Spectrum of Engineering Sciences.
2025;3(3):337-60.

63.Sajid M, Sharif W, Gilanie G, Mazher M, Iqbal K,
Akhtar MA, et al. IoMT-Enabled
Noninvasive Lungs Disease Detection and
Classification Using Deep Learning-Based
Analysis of Lungs Sounds. International
Journal of Advanced Computer Science &
Applications. 2025;16(2).

64.Siddique MA, Akhtar M, Majid MA, Khera EA,
Ahmad M, Gilanie G, et al. A Multi‐Modal
Approach for Exploring Sarcoma and
Carcinoma Using FTIR and Polarimetric
Analysis. Microscopy Research and
Technique. 2025.

65.Jansson Y, Lindeberg T. MNIST Large Scale data
set. 2020.

66.Xiao H, Rasul K, Vollgraf R. Fashion-mnist: a
novel image dataset for benchmarking
machine learning algorithms. arXiv preprint
arXiv:170807747. 2017.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

	PARAMETER OPTIMIZATION OF AUTOENCODER FOR IMAGE CL
	2.0 Literature Review
	3.0 Autoencoder
	4.0 Genetic Algorithm (GA)
	5.0 Parameter optimization of autoencoder using GA
	6.0 The Proposed Methodology
	6.1 Dataset
	6.2 Experimental Setup
	6.2.1 Preprocessing
	6.2.2 Data Reshaping and Splitting
	6.2.3 Autoencoder Architecture
	6.2.4 Compile the autoencoder model
	6.2.5 Train the autoencoder on the training data

	7.0 Results and Discussions

