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Abstract
Ensuring access to safe drinking water is essential for environmental sustainability
and public health. However, existing water quality assessment methods often
encounter challenges in accurately predicting water quality parameters due to the
inherent uncertainties and complexities associated with water quality data. This
research addresses this gap by proposing a novel hybrid machine learning approach
to enhance water quality prediction. While traditional machine learning models
exhibit strong predictive capabilities, they often struggle to effectively manage the
imprecise and ambiguous nature of water quality data. To address this limitation,
this study investigates the integration of Random Forest with Fuzzy Logic to
improve predictive performance. Specifically, Random Forest enhances the model’s
classification accuracy, while Fuzzy Logic enables the nuanced interpretation of
qualitative parameters. The proposed hybrid model was trained and evaluated on
a comprehensive water quality dataset. The experimental results indicate that the
integrated Random Forest-Fuzzy Logic model achieves a high level of predictive
performance, with an accuracy of 99.92%, precision of 99.47%, recall of 100%,
and an F1-score of 99.73%. These findings highlight the effectiveness of the
proposed approach in improving water quality monitoring and management. The
integration of machine learning and fuzzy logic offers a robust framework for
addressing uncertainties in water quality assessment, with significant implications
for water resource management, public health protection, and evidence-based
policy development.
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INTRODUCTION
The drinking water quality in every Pakistani
province, including Islamabad and Gilgit-Baltistan,
was evaluated in a 2021 study by the Pakistan
Council for Research in Water Resources (PCRWIR).
The startling discovery showed that 61% of
Pakistan's sources of drinking water are unfit for
human use [1].Water is an indispensable element for

life on Earth, sustaining microorganisms, plants,
animals, and humans alike. Safe drinking water is a
fundamental human right, and its provision is a
crucial responsibility of governments. However, with
a burgeoning population, rampant industrialization,
and the looming threat of global warming, water
scarcity is emerging as a formidable challenge for
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humanity[2].Only a small portion of the water on
Earth is easily used by humans, despite the
widespread belief that 71% of the planet is covered
by water. Oceans contain the great bulk of Earth's
water, which is unfit for human consumption.
Pakistan is one of several nations that are
experiencing acute freshwater shortages [3].
Furthermore, these techniques frequently only offer
a moment in time view of the water quality, missing
the predictive power required for proactive water
management. Intelligent systems that can efficiently
evaluate and understand the data are also required
due to the complexity of water quality data. By
putting forth combined machine learning and fuzzy
logic approach, this study tackles these issues. This
method uses fuzzy logic to manage uncertainties and
produce a more nuanced evaluation, while leveraging
machine learning's predictive capacity to forecast
water quality trends and identify possible
contamination hazards. In this study these methods
were combined in order to provide a quick,
affordable, and trustworthy method for evaluating
the quality of water that could enhance public health
and water management. Therefore, evaluating
drinking water quality is paramount before its
consumption. Poor water quality is a significant risk
factor for numerous illnesses, accounting for up to
80% of global diseases. The lack of access to safe
drinking water results in thousands of preventable
deaths and a multitude of waterborne diseases,
including cholera, malaria, polio, and typhoid [4]

Literature Review
Despite covering a large portion of the Earth's
surface, we can clearly see that freshwater is
becoming an increasingly strained resource. Safe
drinking water has been established as a basic human
right under the law and therefore it is up to
governments to ensure its supply [5].
Pakistan is among the majority of nations that are
experiencing a freshwater shortage. They were very
driven to use alternative resources by this concerning
problem. For instance, the Gulf nations use a
laborious desalination process to obtain freshwater

from the sea. However, this procedure is becoming
increasingly difficult due to increased coastal
urbanization and the ensuing water contamination.
Rainwater is being treated in other nations to
produce freshwater. But recently, rainfall has been
impacted by climate change, which is jeopardizing
this possibility. Sadly, water-related problems still
exist in nations with greater access to freshwater.
Concerns about water contamination have been
raised for years [6].

The seas contain around 97% of the world's water,
which is too salty for plants, humans, or agriculture
to utilize. The remaining 3% of the earth's water is
found as freshwater, of which 30% is groundwater
and 69% is trapped in polar icecaps and glaciers. As
a result, only 1% of freshwater is accessible to
humans. Freshwater is extremely scarce these days,
and there are numerous other issues putting it under
extreme strain, like increased urban consumption,
extensive industrial use (primarily for agricultural
purposes), and changing climate due to the global
warming phenomenon that affects water quality [7].
Data Source and Context
The data set used for this research was extracted
from data from National Water Quality Monitoring
Program (NWQMP) by PCRWR. The NWQMP was
first launched in 2001 and has been conducted as a
national program annually since then and the most
recent being conducted in year 2020 which included
29 cities of Pakistan. The program must be valuable
as it provided detailed information about water
quality, which would help to determine the main
issues in bringing safe drinking water to the people.
The monitoring phase of the survey in the year 2020
involved 435 water sources, which show that only
39% of the water sources provide water that has met
the National Standards for Drinking Water Quality,
thus the need for increased effort to ensure that the
quality of water produced by the sources is improved.

Data Selection and Refinement
This study uses a more diverse dataset that draws
from different sources over longer timescales to
increase generalizability and reduced biasness. There
were 19 water quality parameters which also
included a binary classification of ‘safe’ or ‘unsafe’
which was ideal for creating a predictive model of
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Water Quality Assessment. Data sources include
PCRWR (Pakistan Council of Research in Water
Resources) annual reports from the years 2010, 2015,
and 2021 as well as data obtained from EPA
(Environmental Protection Agency) for the year 2024.
A broader diversity of water quality scenarios and
geographic regions are included in this multifaceted
dataset, improving the comprehensiveness and
ultimately generalizability of the analysis. In addition,
the sample size is increased with data augmentation
and small diversities are added to already existing
data so that the model can learn better as well as
generalize on new and unseen data. Having said this,
the diversified data collection approach and data
augmentation technique together will be justified to
provide a suitable model for water quality assessment
with high reliability and prediction capability.

Selection of Water Quality Parameters
Water quality assessment involves measuring various
physical, chemical, and biological parameters to
assess the condition of water. The specific factors or
parameters to monitor can vary depending on the
context and objectives of the assessment.

Logistic Regression
Logistic Regression is a type of classifier which
predicts the likelihood of yes/no based on certain
inputs. To this end, it employs the logistic function
(sigmoid) to map the coefficients summation of
inputs into probability measures ranging from 0 and
1. The coefficients (β) in the linear combination are
estimated by using Maximum likelihood estimation
method, which tends to select the values that would
make the occurrence of the provided data more
probable. The last identification is made by
comparing the probability values with the given
threshold which is normally 0.5. The core equation
representing the logistic regression model is:

……………..Eq. 1
Where:

i. P(Y=1|X) represents the chances of
obtaining the result being 1, for given input features
X, such as ‘unsafe’. arning is the base of natural
logarithms.

ii. β0 is the intercept

iii. Coefficients calculated for each of these
input features are β1, β2,... βn that has to be
determined. Xn

Decision Tree
Decision Tree is a classification algorithm, where
data is divided into sets based on the features the
algorithm has, in the hope of achieving the ‘purest’
nodes in which most cases belong to a single class.
Such a partitioning is done based on splitting
measures which include among others Gini Impurity
a measure of the probability of wrong classification
within the node, Information gain which is the
measure of entropy reduction within each split. The
process of constructing trees goes on until this
criterion is met and we get a hierarchical model
where each node at the lowest level predicts a class.
The core formulas for Gini Impurity and
Information Gain are:

i. Gini Impurity

………………..
Eq. 2

ii. Information Gain

………………………Eq. 3
iii. Entropy

…..Eq. 4
Random Forest
Random Forest is a supervised learning technique
that generates a number of decision trees to improve
the accuracy and avoid problems related with high
variance. It builds thousands of decision trees each
restored on different bootstrapped sample of data
and features, this ensures diversification of models.
Moreover, it is used the technique Random
Subspace where in every node inside a tree only a
random subset of features is considered to split,
enlarging this diversity. The last forecasting of a new
instance is the sum of the conclusions of all discrete
trees; this is typically accomplished using the voting
approach for the classification problem or averaging
for the regression problem.
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……..Eq. 5
where Prediction_i represents the prediction of the
i-th tree in the ensemble, and Aggregate denotes the
aggregation function (e.g., majority vote or average).

Support Vector Machines
SVMs are strong classification techniques used to
identify the right hyperplane that efficiently classifies
classes in a high dimensional space. For linear SVM
the goal is to maximize the distance between the
hyperplane and the nearest data point of every class
(support vectors). This optimization problem can be
mathematically expressed as:

………………Eq. 6
Subject to:

for all i where ‘w’ is the weight vector of the
hyperplane direction, ‘b’ is the bias term constant,
‘xi’ is the input feature vector and ‘yi’ is the output
class label.
For non linearly separable data, SVMs use the kernel
trick, which maps the data implicitly in to a higher
dimension where a line can be fit. Some of the
kernel functions used are the Radial Basis Function
(RBF) and Polynomial kernel functions. The core
principle of SVMs remains the same: in order to
generalise LSE to transformed spaces and identify
the hyperplane giving the maximum margin of
difference between the classes. After finding the
mathematical solution of the hyperplane, new
instances are assigned to which side of the
hyperplane they belong in.

K-Nearest Neighbors (KNN)
K Nearest Neighbor (KNN) is simple and widely used
effective classification technique which classifies a
new data point based on the major class of its ‘k’
closest neighbors in feature space. It works on the
concept of similarity; it uses distance functions like
Euclidean distance or Manhattan distance of
instances. It computes the distances among the new
instance and all the training instances, finds ‘k’
nearest neighbors and assigns a dominant class
among them. The mathematical representation of
the commonly used Euclidean distance is:

………………..Eq.
7

where ‘x’ and ‘y’ are two instances, and ‘xi’ and ‘yi’
are the corresponding features that those two
instances possess. For classification problems,
especially when decision boundaries may not be
clearly observable, KNN is a basic and
straightforward approach to prior problem and
dependent on nearby data.

Naïve Bayes
Naive Bayes is a probabilistic classifier based on the
hypothesis of the Bayes formula, adapted for case
where each feature is independent from all others
given the class variables. It calculates the probability
of a class given a set of observed features using the
following formula:

………Eq. 8
The "naive" assumption states:

Eq. 9
This assumption although violated, sometimes in
most part, means that we can still easily compute the
probabilities even with the presence of many features.
The algorithm makes an assumption of prior
probabilities of each class and conditional
probabilities of values of features in each class
computed from the training sample. For a new
instance it involves bayes’ theorem of probability
with the naive assumption and assigns to the class
with the highest poster probability. However,
sometimes Naive Bayes does not play the role of an
analyst but actually outperforms itself, especially in
text classification and other tasks where the
independence of features is quite accurate.
Gradient Boosting
Gradient Boosting is a machine learning technique
that combines several weak models most of the time
being a decision tree, in a step wise manner, to form
a strong model. It operates on the principle of
additive modeling, where the final prediction is a
weighted sum of the predictions from individual
models:
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…………Eq.10
This learning algorithm just continually introduces
new models into the blend; each model in the new
mixture is intended to provide a lesser, or less
significant, quantity of error or residual for models
in the prior mixture. This process is an optimization
step known as gradient descent, where with every
new tree a function is fitted to the negative gradient
of the loss function with respect to the current

mode’s predictions. There are different categories of
loss functions that depend on the type of a problem,
the most common ones are mean squared for
regression and log loss for classification. Since the
given loss function is optimized stepwise in Gradient
Boosting, the corresponding collaborative model’s
accuracy is gradually raised, which is why this
technology can be applied to most machine learning
issues.

Figure 3. 2: Supervised Machine Learning Algorithms
Fuzzy Logic
Fuzzy logic is a mathematical framework that provides a way to represent and reason with uncertainty. Unlike
traditional logic systems that rely on binary values of true or false, FL allows for degrees of membership, enabling a
more nuanced representation of the world. This feature makes FL particularly well-suited for handling
uncertainties inherent in water quality data

Fuzzy sets
Fuzzy sets are crisp sets where the characteristic function are transformed to the membership function A: X →[0, 1]
fuzzy logic operators compute:
 MIN(x; y) for conjunction of two fuzzy logic values x
o and y
 MAX(x; y) for disjunction of two fuzzy logic values x
o and y
 1-x for negation of a fuzzy logic value x.

Problem Definition
The objective when training the models is to be able to classify water samples in real time for analysis. Thus, in this
research, seven specific machine learning algorithms derived from research have been trained with high accuracy
and less false alarm rate.
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Acquisition of data
The dataset employed for training the selected classifiers was derived from the publicly accessible 2021 water
quality monitoring report issued by the Pakistan Council of Research in Water Resources (PCRWR), 2010 and
2015 report of PCRWR and EPA report 2024.

Data Preprocessing and Preparation
The raw data obtained from the report was preprocessed in a very stringent way to prepare it for modeling using
machine learning as well as fuzzy logic. Data cleaning was done to check for and remove all the unnecessary or
irrelevant information: for the cases where necessary, a simple imputation technique was used in order to make all
the fields complete. To reduce the impact of outliers on the subsequent analyses, they were properly dealt with by
applying the IQR(Inter Quartile Range) method. The enhanced data set was then exported into a CSV file format
which is suitable for the next phases of machine learning and fuzzy logic. The preprocessing stage was significant in
cleaning the raw data into a credible dataset in order to act as basis for the subsequent modeling stages.

i. Data Cleaning
Here, the PCRWR water quality data cleaning process is completed to remove null and infinite data values from
the available data set.Data types were also converted into the correct format, whether numerical or categorical, so
that memory space is not wasted and errors are avoided in analysis.

ii. Feature Selection
From the sci-kit-learn library, use the SelectKBest method to select the 30 most important features with a high
significance level.Employed a correlation heatmap to eliminate multi-colinear features while increasing the
generalized performance of the model.

iii. Class Balancing
Solved the class imbalance problem in the PCRWR data set using the SMOTE-Tomek Links method.The minority
class was oversampled by synthesizing samples through the SMOTE technique. Reduced data set by taking samples
of Tomek links; these are the instances in the majority class nearest to each instance in the minority class. This was
done to help manage class distribution and also minimize over fitting.

Implementation Details
The project work is performed on personal systems which has the following specifications: An Intel Core i5-4200U,
1.6GHz clock-speed, 8 GB RAM, and Windows operating system. The models will be implemented in Anaconda
3 Jupyter Notebook development environment. Python V.3 was used as the main project language. Numpy,
Pandas, Scipy, Matplotlib, and Scikit-learn libraries were used for the implementation and evaluation of this
project.

Evaluation
The Evaluation was done on a matrix that is on confusion matrix with different attribute that contains
information of the predicted and actual classes. A confusion matrix is 2-Dimensional matrix consist of the
following attributes:
• True Positive (TP): As has been mentioned the data was correctly categorized as an Attack by the classifier.
• False Negative (FN): The data was wrongly predicted as Normal.
• False Positive (FP): This data was wrongly classified as an Attack.
• True Negative (TN): The Normal instances include: the instances correctly classified as Normal instances.
Diagonal elements give correct predictions while non-diagonal elements give wrong predictions of the matrix.
Based on these attributes following evaluation matrices are calculated: Various measures such as F1 score,
precision, accuracy, recall and so on were used to assess the performance of the model. These metrics were
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computed by various factors of the confusion matrix including the True Positive (TP), False Positive (FP), True
Negative (TN) as well as the False Negative (FN). These metrics are defined as follows:

Accuracy
This is simply equal to the proportion of predictions that the model classified correctly as shown in eq.

………..Eq. 11
Precision

It is defined as the ratio of correctly predicted Attacks to all the samples predicted as Attacks as shown in eq .

……….Eq. 12
Recall
It is a ratio of all samples correctly classified as Attacks to all the samples that are Attacks as shown in eq .

……….Eq. 13
A confident result requires high recall and precision.

F1-score
It is a harmonic mean of the model's precision and recall as shown in eq.

………Eq. 14
Web Application Development

The web application is developed using Streamlit Sharing Website development framework. Moreover, in Jupyter
notebook best performing algorithm is saved using streamlit and Joblib library. Real-time water quality parameters
are given as input and the result is shown to the user in the browser.

DataCleaning and Preprocessing
Data cleaning has immense significance during the data prepossessing phase and ensures that the dataset does not
have any contradictions, missing data, or noise. In regard to the current dataset revolved around the water quality
assessment, the following intervention were made:

i. Addressing the Missing Values in Data: The dataset was analyzed in a way to find out missing values for all the
features in the model which would help reduce the integrity of the model. For example, using suitable approaches
such as median or mean imputation for numerical variables, missing data deficiency is tackled. The summary
shows the missing values regarding some major parameters such as pH, EC, TotalColiforms, etc.

a. Evaluation of Missing Data: The evaluation of each parameter was scarried out to verify that none of the
parameters was either ‘none’ or ‘empty’.

b. In such cases, however, some missing values were revealed, and measures were taken to ensure that the model
prediction was not distorted.

ii. Detection of Outliers: These instances, which must also be addressed during data cleansing and modeling, are
very critical features such as pH, TDS, TotalColiforms, which can achieve unordinary values because of water
conditions. The effectiveness of the histogram/boxplots in assessing such values was evaluated using outlier
detection models/Stata statistics and, where applicable, removed inapplicable values.
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Normalization and Scaling: In bringing all parameters within the same range, indices with different scales, like EC
and HCO3, were targeted to ensure no one single feature was excessive in the model when computation was
taking place.

Table 4. 1: Statistical Analysis of Dataset

Parameters Mean Median Mode Standard Deviation

EC 1254.22 762.68 197.8 2248.43
pH 7.58199 7.6158 7.8 0.298312

Turbidity 8.71476 1.6743 0.3 56.4348
HCO3 260.162 240 250 140.038
CO3 0.0890564 0 0 0
Ca 65.9458 48.75 40 80.6199
Mg 40.4239 24 22 67.9408
Hard 328.162 231.35 170 459.226
Cl 172.188 53 14 672.949
Na 137.106 63.4 70 324.975
K 10.3122 3.6 1 19.4607

SO4 143.933 71.73 30 240.54
NO3 2.51352 1.3297 0 3.20103
TDS 764.785 448.47 474 1453.46
Fe 0.235689 0.1 0.02 0.505315
F 0.454237 0.3577 0.03 0.475704
As 8.42909 1.9932 0.12 15.015

TotalColiforms 12.3221 3.49 0 19.132
Ecoli 1.6668 0 0 4.66012

All these parameters contribute to water quality laws
of some degree. Nevertheless, none of them is
necessarily relevant for the prediction on water safety
and feature selection was applied.
To know the most important features, we used
feature importance techniques with Random Forest
Classifier. By using the Gini importance value,
Random Forest can tell us which field is more
informative than othes (helps reduce uncertainty /
impurity in the process of making a model) We used
it to rank the features.

Furthermore, we performed correlation analysis to
find the highly correlated features as multi-
collinearity impacts model performance negatively.
High correlated features were further evaluated to
determine if they could be redundant or eliminated.
We calculated feature importance scores using the
Random Forest algorithm to determine features that
are important in predicting whether water is
unsafe/safe. Feature importance from Random
Forest Classifier is shown below.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Imran et al., 2025 |Page 23

Figure 4.20: Importance of Features in quality analysis

Class Balancing
In processing imbalanced datasets, class balancing
plays an indispensable role to enhance machine
learning models' performance over minority classes.
Results In our dataset, we had an imbalanced target
variable for the water safety classification
(Water_Safety_Class), with much more samples
labeled as “safe” than “unsafe”. This might
unbalance the model and cause it to favor the
majority class which would then be sensitive for false
positive, voiding over detection of unsafe water
samples leading to lower sensitivity in detecting
unsafe conditions.

i. Imbalanced Class Problem
In a binary classification task with class imbalance,
such as in this case where one of the classes is much
more frequent than the other, random forest models
will usually simply predict every sample to be that
majority. The authors of the current study found
that this was mainly due to the fact there were many
more “safe” samples than “unsafe”, so although
initial model accuracy might be high, it often had
low sensitivity for identifying where water is unsafe.

ii. Balancing Techniques
We tackled the class imbalance as follows:
 Random Under sampling: It reduces the
majority class by choosing a subset of “safe” samples
at random to equalize the classes. Since under
sampling removes samples from the data, it also
decreases the total size of the datasets and reduces
potential bias because we get down to almost an even
number of class 1 (minority) and class 0(majorities).
 Synthetic Minority Over-sampling
Technique (SMOTE) : SMOTE, as the name
suggests create a synthetic sample for minority class
by interpolation between existing samples especially
near each other. This balances enough data to get a
fair number of "unsafe" class examples for the model,
but not so much that it is almost all majority-class.
For the second aim, we applied both approaches
(data set partition with stratified sampling and
supervised clustering–based cross-validation)
separately to assess which approach resulted in a
better model performance; after seeing the models
metrics for each case study in Appendix E, we
selected the best performing strategy.
 Results of Class Balancing
SMOTE has improved detection of minority class by
the model. The confusion matrix and classification
report bellow show the improved sensitivity
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regarding the class for "unsafe" water, e.g., more
samples was identified as category to be in which
were indeed labeled 'Unsafe' from both sides of

NULL purified_countagrams,following table shows
results before and after SMOTE result of the
classification report.

Table 4. 2: Results after SMOTE analysis
C l a s s Prec i s i on (Befo re ) Recal l (Before) Preci sion (After) Reca l l (After)
S a f e 0 . 9 8 0 . 9 9 0 . 9 6 0 . 9 5
U n s a f e 0 . 5 4 0 . 2 1 0 . 8 9 0 . 9 0

M a c h i n e L e a r n i n g M o d e l s
A dataset consisting of various water quality
indicators had to be analyzed and machine learning
models were used for the prediction of water
parameters. The goal was to produce well detailed
and robust models that could be used for the
monitoring and sound management of water
resources. Several algorithms, such as Logistic
Regression, Decision Trees, Random Forests,
Support Vector Machines (SVM), K-Nearest
Neighbors(KNN) Naive Bayes and Gradient Boosting

was evaluated to know which algorithm is best for
this particular task.
For each algorithm a 10-fold cross-validation was
used to evaluate and ensure that the model is not
overfitted. 10-Fold Cross Validation — This works by
splitting the dataset into 10 equal groups(Folds).
This is done 10 times, for each fold as the test set
once. The average performance overlooking these
iterations offers a more reliable measure of the
quality in which model generalizes. The table 4.3
below shows the Accuracy, Precision, Recall and F1
score for each fold with mean.

Table 4. 3: Classification models accuracy Comparison
L o g i s t i c
R e g r e s s i o n

Dec i s i on
T r e e

R a n d o m
F o r e s t

S V M K N N N a i v e
B a y e s

G r a d i e n t
B o o s t i n g

F o l d
F o l d 1 0 . 5 8 8 2 0 . 9 3 4 6 0 . 9 2 8 1 0 . 5 1 6 3 0 . 7 1 9 0 0 . 5 2 2 9 0 . 8 6 2 7
F o l d 2 0 . 5 8 8 2 0 . 9 3 4 6 0 . 9 5 4 2 0 . 5 3 5 9 0 . 7 1 2 4 0 . 5 6 2 1 0 . 8 4 9 7
F o l d 3 0 . 6 0 1 3 0 . 9 4 7 7 0 . 9 3 4 6 0 . 5 2 9 4 0 . 7 1 2 4 0 . 5 3 5 9 0 . 8 6 2 7
F o l d 4 0 . 5 4 2 5 0 . 9 4 7 7 0 . 9 7 3 9 0 . 5 1 6 3 0 . 7 3 2 0 0 . 5 4 9 0 0 . 9 0 8 5
F o l d 5 0 . 6 0 7 8 0 . 9 3 4 6 0 . 9 4 7 7 0 . 5 5 5 6 0 . 7 3 8 6 0 . 5 5 5 6 0 . 8 5 6 2
F o l d 6 0 . 5 9 4 8 0 . 9 6 7 3 0 . 9 7 3 9 0 . 5 4 9 0 0 . 7 0 5 9 0 . 5 2 9 4 0 . 9 0 8 5
F o l d 7 0 . 5 9 2 1 0 . 9 1 4 5 0 . 9 0 7 9 0 . 5 0 6 6 0 . 6 7 1 1 0 . 5 4 6 1 0 . 8 2 2 4
F o l d 8 0 . 5 7 8 9 0 . 9 2 1 1 0 . 9 6 0 5 0 . 5 2 6 3 0 . 7 1 0 5 0 . 5 3 9 5 0 . 8 6 8 4
F o l d 9 0 . 6 2 5 0 0 . 9 0 1 3 0 . 9 2 7 6 0 . 5 3 2 9 0 . 6 9 0 8 0 . 5 5 2 6 0 . 8 9 4 7
Fo l d 10 0 . 5 7 2 4 0 . 9 6 0 5 0 . 9 8 0 3 0 . 4 9 3 4 0 . 6 9 7 4 0 . 5 3 2 9 0 . 8 8 1 6
M e a n 0 . 5 8 9 1 0 . 9 3 6 4 0 . 9 4 8 9 0 . 5 2 6 2 0 . 7 0 9 0 0 . 5 4 2 6 0 . 8 7 1 5
The table above shows the accuracy scores of a
machine learning model in each fold during cross-
validation. This also includes a mean accuracy over
all folds. The Random Forest gets by far the best
accuracy scores in all folds. The Random Forest
approach has been demonstrated to perform very
well, as evidenced by its consistently high accuracy

percentage in our study and is therefore likely the
best candidate for predicting water quality aspects on
this context. Its capacity to model non-linear
relationships and prevent over fitting is probably
what makes it such a strong performer. Classification
algorithms accuracy comparison is shown in figure
4 . 2 1 .
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Figure 4. 21: Classification Algorithms Accuracy Chart

Table 4. 4: Classification models Precision Comparison
Logistic

Regression
Decision
Tree

Random
Forest

SVM KNN Naive Bayes Gradient
Boosting

Fold
Fold 1 0.5892 0.9505 0.9562 0.5539 0.7307 0.5773 0.8644
Fold 2 0.5905 0.9318 0.9422 0.5604 0.7181 0.6314 0.8497
Fold 3 0.6019 0.9505 0.9242 0.5623 0.7139 0.5931 0.8644
Fold 4 0.5428 0.9543 0.9739 0.5283 0.7320 0.5911 0.9085
Fold 5 0.6088 0.9449 0.9751 0.6582 0.7491 0.6582 0.8511
Fold 6 0.5976 0.9674 0.9742 0.6305 0.7222 0.5713 0.9110
Fold 7 0.5931 0.9151 0.9277 0.5138 0.6712 0.6053 0.8224
Fold 8 0.5826 0.9313 0.9605 0.6070 0.7179 0.6180 0.8751
Fold 9 0.6261 0.8992 0.9369 0.6051 0.6911 0.6260 0.8765
Fold 10 0.5739 0.9750 0.9810 0.4815 0.7008 0.6872 0.8818
Mean 0.5907 0.9420 0.9552 0.5701 0.7147 0.6159 0.8705

The table 4.4 above represents the precision scores of
each machine learning model on all 10 folds of cross-
validation. Precision: Proportion of correctly
predicted Positive instances out of Total Predicted as
Positive. It clearly beats other models in the class
validation and there is not much variance between
folds, suggesting that Random Forest can classify
positive instances more efficiently than others (it has
a higher precision). Almost all models have been

reasonably accurate, with Naïve Bayes the only model
that consistently has very low accuracy. Random
Forests achieved the same high precision consistently,
which confirms that it is a prominent model in this
context to predict water quality parameters. This is
something that makes it very powerful as was shown
in these analyses: their ability to handle non-linear
relationships and control for over fitting.
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Classification algorithm precision comparison is
shown in figure 4.22

Figure 4. 22: Classification Algorithms Precision Comparison

Table 4. 5: Classification Models Recall Comparison
Logistic

Regression
Decision
Tree

Random
Forest

SVM KNN Naive Bayes Gradient
Boosting

Fold
Fold 1 0.5882 0.9477 0.9412 0.5163 0.7190 0.5229 0.8627
Fold 2 0.5882 0.9412 0.9477 0.5359 0.7124 0.5621 0.8889
Fold 3 0.6013 0.9412 0.9412 0.5294 0.7124 0.5359 0.8627
Fold 4 0.5425 0.9281 0.9608 0.5163 0.7320 0.5490 0.8627
Fold 5 0.6078 0.9346 0.9346 0.5556 0.7386 0.5556 0.8562
Fold 6 0.5948 0.9739 0.9739 0.5490 0.7059 0.5294 0.9085
Fold 7 0.5921 0.9211 0.9211 0.5066 0.6711 0.5461 0.8224
Fold 8 0.5789 0.9342 0.9671 0.5263 0.7105 0.5395 0.8750
Fold 9 0.6250 0.8947 0.9211 0.5329 0.6908 0.5526 0.8618
Fold 10 0.5724 0.9605 0.9868 0.4934 0.6974 0.5329 0.8816
Mean 0.5891 0.9377 0.9495 0.5262 0.7090 0.5426 0.8683

The table 4.5 above lists the recall scores for every
machine learning model over 10 cross-validations.
Recall: It measures how many actual posit ive
instances were correctly predicted from all the true
and depicted positives. Results always show Random

Forest to have the highest recall scores in each fold
of cross-validation, highlighting its ability to capture
a high percentage of positive instances. This is not
quite net as strong as Random Forest, however again
demonstrating that ensemble methods are helpful
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for this task Gradient Boosting registers similar recall
numbers. The regular high recall of Random Forest
again reinforces it as a top performer in predicting
water quality parameters here. One reason for its
exce l lent performance is that it can handle

relationships between variables in a non-linear way
and also reduce overfitting. Classification algorithms
recall(sensitivity) comparison is shown in figure 4.23
b e l o w .

Figure 4. 23: Classification Algorithm Recall Comparison

Table 4. 6: Classification Models F1 Score Comparison
Logistic

Regression
Decision
Tree

Random
Forest

SVM KNN Naive Bayes Gradient
Boosting

Fold
Fold 1 0.5875 0.9542 0.9476 0.4234 0.7157 0.4276 0.8626
Fold 2 0.5863 0.9345 0.9410 0.4888 0.7108 0.4986 0.8497
Fold 3 0.6010 0.9608 0.9214 0.4640 0.7120 0.4567 0.8626
Fold 4 0.5403 0.9542 0.9542 0.4459 0.7320 0.4860 0.9085
Fold 5 0.6066 0.9345 0.9608 0.4663 0.7355 0.4663 0.8560
Fold 6 0.5911 0.9608 0.9608 0.4618 0.7000 0.4419 0.9083
Fold 7 0.5910 0.9079 0.9211 0.4322 0.6710 0.4718 0.8224
Fold 8 0.5742 0.9341 0.9671 0.4163 0.7080 0.4476 0.8815
Fold 9 0.6242 0.8944 0.9208 0.4360 0.6907 0.4764 0.8605
Fold 10 0.5701 0.9671 0.9803 0.3962 0.6961 0.4117 0.8815
Mean 0.5872 0.9402 0.9475 0.4431 0.7072 0.4585 0.8694

F1-scores are shown in the provided table for every
machine learning model on 10 different cross-
validation folds. F1-score is the harmonic mean of
precision and recall, so it can provide 2/3 quality
information about model capability. Random Forest
always achieves the best F1-scores for all folds,

showing that it has a nice value of both precision and
recall at once. For example, in some models such as
Logistic Regression and Naive Bayes there is more
variance of F1-score across the k-folds implying these
which might indicate their performance could be
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much dependent on what exact part of data they are
trained on.
The consistently high F1-score of Random Forest
among the best classifiers, indicates that it is a stark
competitor for water quality parameters in this

regard. Its superior performance can probably be
attributed to its ability in dealing with non-linear
relationships as well reducing over fitting.
Classification algorithms F1 score comparison is
shown in figure 4.24 below.

Figure 4. 24: Classification Algorithms F1 Score Comparison
Fuzzy Logic Membership functions and
Development of rules
The following figures show membership function
diagrams for each of the key water quality parameters
used in our fuzzy logic model and outline thresholds
for deeming waters safe or unsafe. The diagrams
represent the membership functions that have been
defined to capture different degrees of safety for
parameters such as Electrical Conductivity (EC), pH,
Total Coliforms, E. coli., Turbidity, Nitrate(NO₃)
and Total Dissolved Solids(TDS). The model can

then, according to predefined safe ranges for each
parameter of the water quality indicators be able to
assess more nuanced statuses about—briefly
speaking—the states/crisis levels etc. by which it is
bound into three intervals (intermediate / serious
and extreme), as built on these membership
functions that form basis for our fuzzy logic rules.
What follows is a comprehensive description of the
membership functions, including safe and unsafe
transition points in which they are grounded within
standard water quality guidelines.
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Figure 0- 1: Membership Fucntion of Electrical
Conductivity
The graph pertaining to Electrical Conductivity (EC)
presents the boundary between the safe and unsafe
water quality echelons based on EC levels. The plot
illustrates that those EC values which are indicated
to be less than 1000 are entirely safe with a
membership level of one. This range undoubtedly
indicates that the water assessed within this column
is safe. However, at the EC level of 1000, the

membership for safe status declines to 0 and from
there onwards it means that the water is unsafe. In
the case of values above 1000, the only function left
which is safe is unsafe with a membership value of
one meaning that the water is unsafe. This suggests
that there is a clear delineation of what constitutes
safe and unsafe levels of EC in water having a safe
t h r e s h o l d .

Figure 4. 25: Membership Function of pH
The blotted pH membership function depicts three
levels or categories to assess water quality: low,
normal and high. It has been noted that safe or
normal pH levels (neutral range) are on the
borderline of 6.5 and 8.5; a scoring of 1 is granted
within the range which is consistent with drinking
water standards. Low values of less than 6.5 suggest
acidity; therefore, a low membership function of 1 is
accorded as pH continues to fall below 6.5. On the

contrary, pH readings greater than 8.5 suggest an
alkaline condition, which means that individual is
referred to as high, and once pH is greater than 8.5,
that membership function of high gets a value of 1.
This explains why serious attention should be given
with regard to the pH level of the water consumed,
as both extremes are detrimental to health.

.

Performance Evaluation

Following figures shows the confusion matrix of each
classification algorithm and integrated random forest
a n d f u z z y l o g i c c o n f u s i o n m a t r i x .
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Figure 4. 42: Logistic Regression Model Prediction
The model's ability to categorize examples into two
classes (0 and 1) is revealed by the Logistic
Regression confusion matrix. According to the
matrix, the model accurately identified 107 cases as
negative (true negatives) and 79 instances as positive
(true positives). Nevertheless, it misclassified 44 cases
as negative when they were actually positive (false
negatives) and 76 cases as positive when they were
actually negative (false positives). The model

classified 58% of the cases correctly, indicating a
decent degree of accuracy. Only 51% of the positive
predictions were successfully identified, indicating its
accuracy issues. The model missed a sizable portion
of real positive occurrences, as evidenced by the
recall of 64%. The recall, at 64%, indicates that the
model missed a significant number of actual positive
cases. This suggests that the model might be better at
identifying negative instances than positive ones.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Imran et al., 2025 |Page 31

Figure 4. 43: Decision Tree Model Prediction
The Decision Tree model's confusion matrix sheds
light on how well it performs when dividing cases
into two groups (0 and 1). The model properly
identified 140 cases as positive (true positives) and
138 instances as negative (true negatives), according
to the matrix. On the other hand, it misclassified 17
cases as negative when they were actually positive
(false negatives) and just 11 cases as positive when
they were actually negative (false positives).
With an accuracy of almost 93%, this shows that the
Decision Tree model has done quite well. The model

has a recall of about 89% and an accuracy of about
93%. These high values imply that both positive and
negative situations may be successfully identified by
the model. The Decision Tree's capacity to identify
intricate non-linear correlations in the data may be
the reason for its better performance when compared
to Logistic Regression.

Figure 4. 44: Random Forest Model Prediction
With an accuracy of around 97%, Random Forest's
confusion matrix performs quite well. The model has
a recall of about 89% and an accuracy of about 98%.
These high numbers demonstrate how well the
model detects both positive and negative situations.

The Random Forest's higher performance over the
other models is probably a result of its capacity to
generate several decision trees and aggregate their
predictions.
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Figure 4. 45: SVM Model Prediction
Classifying examples into two classes (0 and 1) yields
a reasonable performance, according to the SVM
confusion matrix. About 84% accuracy was attained
by the model. The model's recall is just 93%, despite
its excellent accuracy of 85%. This suggests that
while the SVM model is good at detecting actual

positive situations, it has trouble detecting all
positive cases, which results in some false negatives.
The intricacy of the decision boundary and the
SVM's sensitivity to hyperparameter adjustment
might be the cause of this.
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Figure 4. 46: KNN Model Prediction
Classifying cases into two classes (0 and 1) yields a
reasonable performance, according to the confusion
matrix for KNN. About 75% accuracy was attained
by the model. The model's recall is just 76%, but its
accuracy is a respectable 66%. This suggests that

some false negatives result from the KNN model's
inability to correctly recognize every good event. This
might be because KNN is sensitive to the distance
m e a s u r e a n d k - v a l u e s e l e c t i o n .

Figure 4. 47: Naive Bayes Model Prediction
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Classifying cases into two classes (0 and 1) yields a
reasonable performance, according to the confusion
matrix for KNN. About 75% accuracy was attained
by the model. The model's recall is just 76%, but its
accuracy is a respectable 66%. This suggests that

some false negatives result from the KNN model's
inability to correctly recognize every good event. This
might be because KNN is sensitive to the distance
measure and k-value selection.

Figure 4. 48: Gradient Boost Model Prediction
Strong performance in dividing occurrences into two
classes (0 and 1) is shown by the Gradient Boosting
confusion matrix. The accuracy of the model was
high, at about 89%. It was successful in recognizing
both positive and negative cases, as evidenced by its

high accuracy and recall scores. The model's
outstanding performance is probably a result of its
capacity to integrate several weak learners into a
powerful ensemble.

Figure 4. 49: ML and FL Integrated Model Predictions
Based on the confusion matrix, the combined
machine learning and fuzzy logic model performs
very well in dividing cases into "Safe" and "Unsafe."
With just three cases misclassified, the model's
accuracy was 99%. The model's high ability to

distinguish between "Safe" and "Unsafe" cases is
demonstrated by its exceptional accuracy and recall.
This implies that the model is very dependable in
producing precise forecasts, which is essential for
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evaluating and making decisions about the quality of
water.

Confusion matrix of machine learning
algorithms as well as integrated model of machine

learning and fuzzy logic is shown in subplot in figure
4 . 5 0 b e l o w .

Figure 4. 50 : Subplot of Confusion Matrix of Machine Leaning Models
A comparison of machine learning methods for
evaluating water quality is shown in the table 4.7 that
is supplied. The Integrated Model, which combined
Random Forest with Fuzzy Logic, outperformed the
other examined algorithms. This model
outperformed other algorithms such as Random
Forest (96%), SVM (84%), Decision Tree (93%), and
others, achieving a remarkable accuracy of almost

99%. Fuzzy logic improves the model's capacity to
manage the imprecision and uncertainty present in
water quality data, resulting in forecasts that are
more reliable and accurate. A web application has
been created to support real-time water quality
evaluation and decision-making, based on the
Integrated Model's outstanding performance.

Table 4. 7: Models Prediction Comparison
Algorithm True

Positive
(TP)

False
Positive
(FP)

False
Negative
(FN)

True
Negative
(TN)

Accuracy Precision Recall F1-
Score

Logistic
Regression

79 76 44 107 58% 51% 64% 57%

Decision Tree 140 11 17 138 93% 93% 89% 91%
Random
Forest

148 3 18 137 97% 98% 89% 93%

SVM 140 25 11 130 84% 85% 93% 89%
KNN 96 59 37 114 75% 66% 76% 70%

Naive Bayes 16 139 8 143 55% 10% 67% 17%
Gradient
Boosting

137 25 14 130 89% 85% 91% 88%

Integrated 567 3 0 651 99.92% 99.47% 100% 99.73%
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Model

Web Application
To implement the integra ted model , a web
application was created utilizing the Streamlit

framework. Streamlit is a great option for quick
prototyping and deployment since it offers a simple
method for creating interactive web apps in Python.

Figure 4. 51: Web Application Interface
Web Interface Working

Users may enter different water quality criteria using
the online application's user-friendly interface. After
submission, the model analyzes the input data and

produces a water quality estimate with a confidence
level. Because of its user-friendly interface and clear
visualizations, the program may be used by users with
different levels of technical proficiency.

Figure 4. 52: Web Application Input Parameters Interface
The integrated model, which combines the power of
Fuzzy Logic and Random Forest, is deployed using
the Joblib library. This library enables the

serialization of Python objects, including machine
learning models, allowing for efficient deployment
and execution in a web environment.
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Figure 4. 51: Web Application Output

Conclusion
This study aimed to develop an integrated machine
learning and fuzzy logic model for assessing drinking
water quality. To achieve this, various machine
learning algorithms—including Logistic Regression,
Decision Trees, Random Forest, SVM, KNN, Naïve
Bayes, and Gradient Boosting—were explored. The
findings demonstrated that combining Fuzzy Logic
and Random Forest provided superior classification
accuracy compared to standalone models. The
research successfully addressed its objectives by
developing an integrated model where Fuzzy Logic
handled uncertainties in water quality parameters,
while Random Forest enhanced classification
accuracy by learning complex patterns from the
dataset. The model was rigorously compared with
existing classification approaches, and results showed
that the integrated approach outperformed
traditional models in terms of accuracy, precision,
recall, and F1-score.
The model was further tested and evaluated,
demonstrating high reliability in distinguishing "safe"
and "unsafe" water. The incorporation of fuzzy logic
improved interpretability, while Random Forest
strengthened predictive performance, making the
model both robust and effective. Additionally, a web-
based application was developed to enhance the
model’s usability, allowing users to input water
quality parameters and instantly receive a

classification result, enabling informed decision-
making regarding water usage and management.
In summary, this research successfully developed,
compared, and validated an advanced water quality
assessment model, demonstrating the potential of
integrating machine learning with fuzzy logic to
improve water quality monitoring systems for
researchers, policymakers, and the general public.

Significance of Findings and Future Work
The findings of this study have important
significance for both practical applications and
future research in water quality evaluation. By
combining fuzzy logic with machine learning, notably
Random Forest, the model successfully manages
uncertainty in water quality metrics while
maintaining high classification accuracy. This hybrid
method improves decision-making by offering a more
interpretable and consistent framework for
categorizing drinking water as "safe" or "unsafe." The
creation of a user-friendly online application expands
accessibility by allowing real-time evaluations for
customers, regulatory agencies, and water
management groups.In the future, this model might
be used for larger environmental monitoring systems
such as wastewater treatment, industrial effluent
analysis, and agricultural water quality evaluation.
Furthermore, including real-time sensor data into the
model might boost its responsiveness and flexibility
for large-scale deployment. Future study might look
at the use of deep learning approaches to increase
feature extraction and classification accuracy,

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Imran et al., 2025 |Page 38

particularly with complex water quality datasets.
Furthermore, developing the model to assess water
quality in response to regional or climatic
fluctuations might aid in tailoring water safety
recommendations to specific geographic locations.
Overall, this work adds to the improvement of
intelligent water quality assessment systems by
providing a scalable and effective method of assuring
safe drinking water. By bridging the gap between old
water testing methods and current AI-driven
technologies, this study lays the groundwork for
future advances in water quality monitoring and
management.
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