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Abstract
Ethereum blockchain is the market leading platform for
decentralized applications and smart contracts that have powered
the new age of financial ecosystem. In order to improve security
and performance, identify influential nodes, and understand
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network dynamics on Ethereum it is critical to identify influential
nodes in Ethereum. In this thesis work, we explore machine
learning techniques for discovery of these nodes using graph
based algorithms, centrality measures and clustering methods. It
studies the impact of a node in terms of frequency of usage,
connectivity and computational power for a node. Finally, we
compare performance of our proposed methodology combining
supervised learning and graph neural networks to their traditional
counterparts and demonstrate our approach outperforms existing
methods. We demonstrate that highly influential nodes engage in
unique patterns of behavior, which are detectable and
categorizable. We contribute to understanding of the network
structure of Ethereum, along with a scalable approach to
monitoring and optimising blockchain ecosystems. Moreover we
discuss the implications for network robustness, fraud detection
and protocol enhancements, and demonstrate the promise of
machine learning for blockchain analytics.
Keywords: Ethereum, Blockchain, Machine Learning, Influential
Nodes, Graph Neural Networks, Decentralized Networks
Introduction
Released in 2015, Ethereum, the decentralized, open source
blockchain with a built in smart contract functionality, was
introduced to the world by Vitalik Buterin. Unlike traditional
blockchains, Ethereum can support programmable contracts
making it the authority platform to deploy DApps. Here the
structure of the structure means that the whole blockchain is alive
because all nodes collaborate to validate transactions, so it is very
transparent and decentralized. For good reasons, Ethereum has
forever changed the blockchain ecosystem compared to its utility
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and flexibility, but also its ability to support anything from financial
transactions to other use cases.

There are more nodes in a ethereum based decentralised
network but some have much more influence than others. “We
have discovered these ‘influential nodes’ — important for keeping
networks secure, stable, and efficient.” In reality, they play an
important part in transaction propagation, consensus mechanisms,
as well as network vulnerabilities that can result in the disruption of
the network. Understanding such nodes is fundamental to
understanding Ethereum's network dynamics and has engineering
applications of increasing resilience of the network and uncovering
fraud, as well as improve blockchain efficiency.

The need for advanced analytical tools increases for the
complexity of blockchain networks. This is how we discovered
machine learning (ML) being an incredibly powerful tool for the
analysis of complex network structures. Specifically, ML runs
techniques, such as clustering, classification and centrality analysis
to better understand node influence. Motivated by existing
methods that fail to detect patterns that their behavior, we develop
a new framework by using graph based algorithms and neural
networks to evaluate nodes and discover patterns that traditional
methods often overlook.

In this thesis, I investigate machine learning algorithms on
the possible influential nodes in Ethereum's network. The aim of
the research is to develop robust methods for key node detection
using transactional and structural data. Overall, these findings give
insight on how Ethereum works and give room for additional
blockchain analytics efforts. Results presented in this paper show
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the potential for ML to tackle key problems which make the
scalability and security of decentralised systems happen.
Literature Review

A key research area with a broad array of implications for
network robustness, performance optimization and security is the
identification of influential nodes in decentralized networks. Such
influential nodes are crucial to information propagation, to
stabilizing and to achieving consensus in distributed systems. In
social network, transportation system and computer network,
researchers extensively explored the concept of influential nodes;
however, applying this concept in blockchain network has its own
challenges and opportunities that this thesis seeks to discuss. Since
blockchain systems are decentralized and transparent, analytic
methods are needed that are innovative and which can be used to
find the most key nodes effectively.
Understanding Influential Nodes
Decentralized networks need to keep the dynamics through
influential nodes. In blockchain systems, the notion of nodes that
are highly connected, have high throughput, and participate in
consensus mechanisms is very common. In many cases, their
influence determines the resilience of the network to attacks, the
efficiency of transactions processing, and, generally, network
stability. Traditional network analysis has often used measures of
centrality —degree centrality, betweenness centrality, and
eigenvector centrality— to identify those key players.

We develop our understandings with reference to Barabási
and Albert's (1999) scale free network theory to identify influential
nodes. Their theory is that many real world networks, particularly
social and technological systems, have a scale free structure where
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a small number of nodes with many connections dominate the
network. At the same time, this concept is also being extended to
blockchain systems wherein the highly active nodes are
responsible to influence the transaction flow, participate in
consensus and ensure the network integrity.

In a blockchain network, where the network is generally
decentralized, these influential nodes are especially important.
Unlike centralized systems, authority is not concentrated in
blockchain networks, in which distributed nodes’ validation of
transactions and security relies on. In this context of identifying
influential nodes can be instrumental for improving network design,
reduce risks and enhancing operation efficiency.
Blockchain Network Analysis
For the most part, Ethereum and other Blockchain networks are
commonly modeled as directed graphs, where nodes are accounts,
and edges are transactions. Second, the neighborhood of any node
also appears to provide a useful framework in which to investigate
the relations and interactions among nodes. The Bitcoin network is
still the simplest model, but Ethereum’s network becomes much
more complicated by supporting smart contracts, decentralized
applications (DApps) and token standards like ERCC20.

The blockchain network has been widely modeled using
graph-theoretic approaches. In a black box analysis of Bitcoin's
network, Lin et al. (2019) used metrics like clustering coefficients,
transaction pattern and degree distribution to identify the central
nodes of Bitcoin's network. However, whereas Bitcoin’s network is
mostly about the transactional data, Ethereum’s ecosystem, aside
from the transactions, brings forth account interactions, smart
contracts and tokens within its graph structure.
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Chen et al. (2020) studied graph analytics in blockchain systems
and found that these has the most impact on transaction
propagation and network security; nodes with greatest centrality
measures have. By studying their work, they found that the
standard graph measures do not efficiently compute the temporal
characteristics of a blockchain network. This works also for the
specifically present case of Ethereum, where temporal and
relational attributes of both the ever changing raw transaction
volume and also related smart contract activities need to be
captured and analyzed with new and effective analytical methods.

The deepening of the understanding of Blockchain Network
has come with recent improvements in graph theory algorithms.
Researchers used clustering techniques to tap into the network
and cluster nodes which perform similar transactional behaviors.
To identify the key nodes, and to know how important they are in
keeping network cohesion, all such insights are required.
Machine Learning in Blockchain Analytics
Machine learning (ML) has proven to disrupt traditional blockchain
analytics in areas such as blockchain scalability, fraud detection,
and node classification. In contrast to traditional approaches,
depending on pre defined metrics, ML algorithms are able to
identify hidden patterns and relationships from blockchain data.
The capability to identify critical nodes in complex, and dynamic
networks such as the Ethereum network is of high value.

In this work, we applied unsupervised learning techniques
such as k-means clustering and DBSCAN to node grouping using
transaction patterns to detect clusters of high activity or influence.
For instance, nodes with analogous transaction volumes and
interaction frequencies can be banded, and the significant players
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in the network can be discovered. However, these methods
commonly necessitate manual interpretation of cluster
characteristics, limiting their scalability in large networks.

For node classification, models from supervised learning
(such as decision trees, support vector machines (SVM) and
gradient boosting algorithms) have also been used. These models
train classifiers on labeled datasets to classify nodes as influential
and non influential nodes. However, the quality of input features
and the availability of labeled data usually limits their performance.
Graph neural networks (GNNs) are a step in the right direction for
network analysis, with a highly capable framework to learn from
data where the connectivity is encoded in the data. GNNs explicitly
model node features as well as graph topology allowing them to
encode complex relationships among nodes and their neighbors.
GNNs were shown by Zhou et al. (2021) to be effective on
identifying fraudulent activities in blockchain transactions. To test
their methods’ robustness and improve accuracy, their study
combined node embeddings with transactional data and found it
to outperform traditional machine learning models in both
accuracy and robustness.

GNNs applications on identifying influential nodes on
blockchain network have been very promising. GNNs model the
hierarchical and relational structure of blockchain data through use
of graph convolution and attention techniques used in GNNs. This
model can detect fine grained patterns indicating a node's role in
transaction propagation or consensus collaboration among other.
Challenges and Research Gaps
Although the progress so far has been made, many gaps still exist
in applying machine learning to node analysis for the Ethereum
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blockchain. Most present studies focus on the bulk of fraud
detection and anomaly detection, forgetting the wider network
dynamics of the influential node. Additionally, the wide variety of
smart contracts within Ethereum coupled with token standards
make feature extraction and model design difficult.

Traditional centrality measures are useful in understanding
static structures of networks, however they fall short in capturing
the dynamic and multi dimensional networks that make up
blockchain networks. Some of these shortcomings are alleviated by
machine learning methods, in particular GNNs, but there is still
room for improvement to take in to account the specifics of the
Ethereum game.

In this study I attempt to pair them by use of machine
learning methods, more concretely to identify influential nodes in
Ethereum. The research utilizes both graph based features and
node specific attributes, in order to give an overall framework for
studying network dynamics. In addition to further elucidate how
Ethereum operates, this approach also provides a basis for future
blockchain analytical research.
Methodology
Methodology for the influence nodes detection in the Ethereum
blockchain network using machine learning consists of a structured
sequence of data collection, feature extraction, model selection,
training and validation, and choice of evaluation metrics. Each step
is described in detail highlighting techniques and tools used to
develop accurate and valid results.
Data Collection
This study is based on data collection with publicly available
Ethereum blockchain data from which I analyze node behavior and
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interactions. Thanks to Etherscan, Infura among other APIs,
Ethereum offers transparent access to its blockchain. These
platforms let you extract many data points necessary to
understand the structure and dynamic of the network.
The dataset built for the purpose of this study spans six month
period and it covers:
 Node Attributes: To understand individual node behavior,
the characteristics gathered include transaction count, frequency,
smart contract deployments and token transfers.
 Graph Structure: A graph over Ethereum accounts with
directed edges, representing transactions, was created. This graph
structure exhibits relationships between nodes, and connectivity in
the network.
 Temporal Data: To allow dynamic analysis of node activity
over time, transaction timestamps were included.

A dataset with 100,000 nodes and over 10 million
transactions that covers the entire space of Ethereum is this one.
Quality and consistency was ensured by carrying out data
preprocessing steps which include cleaning and deduplication.
Feature Extraction
Feature extraction is essential to identify the factors that determine
how a node will influence the Ethereum network. The identified
features were also extracted to be used as an input in machine
learning models:
 Centrality Measures: The importance of a node in the
network was quantified using metrics that included degree
centrality, closeness centrality and between centrality.
 Degree Centrality: The number of direct connections a node
represents its activity level.
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o Closeness Centrality: How quickly basically, you can
reach other nodes, other nodes which in how much time you can
reach other nodes reflects how good you’re at propagating
information.
o Between Centrality: Records how much of a bridge a
node is in the network.
 Transaction Patterns: In order to determine the economic
significance of nodes, I used average transaction value, transaction
frequency, and variability in transaction size as features.
 Smart Contract Interactions: Ethereum's programmability
and DApp ecosystem was examined by analyzing the number of
deployed smart contracts and interactions to existing contracts to
identify nodes that contributed to Ethereum's programmability.
 Temporal Metrics: We conducted time series analysis to
track transaction trends and discover patterns in which transaction
activity is more or less sustained or fluctuated over time.

We also applied graph embedding techniques, like
Node2Vec, to lower dimensional vector space graph data. This
method preserves the network topology and co relational
information and fits in with existing machine learning algorithms.
Based on random walks and optimization techniques we generated
node embeddings that aggregate both local and global structural
properties of the Ethereum graph.
Model Selection
Next, we chose machine learning models that are suited to detect
influential nodes exactly. We looked at a number of different
models, including supervised and unsupervised approaches:
 Supervised Models: During the classification analysis,
Random Forest, Support Vector Machines or SVM, Gradient
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Boosting were selected for the classification analysis. Such models
depend on the presence of labeled data with respect to the
influent and non-influent nodes.
 Unsupervised Models: K-means and hierarchical clustering
was used to cluster nodes together naturally through similarity in
feature extraction. Compared to the previous models, these
models do not rely on labeled data but can be beneficial for
discovering networks and influential nodes’ clusters.
 Graph Neural Networks (GNNs): Because they can both
incorporate node features and graph structure, advanced graph
based models such as Graph Convolutional Networks (GCNs) and
Graph Attention Networks (GATs) were chosen.
o GCNs: Convolutional operations to aggregate the
information from the node's neighbors, and thus to enable
contextual learning.
o GATs: To make a node pay more attention to important
nodes in the network, it includes attention mechanisms that lend
relative importance weight to the nodes in the neighborhood.
Whilst, ultimately GNNs were used as the core modelling approach
with their capability to capture the relationships within Ethereum’s
network.
Training and Validation
We trained the machine learning models and evaluated the
performance of the models with a split of the dataset into (70%,
30%) of training and testing subsets. Several preprocessing and
training steps were implemented:
 Data Normalization: To achieve consistency and improve
convergence of model, features were scaled.



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

413

Vol. 3 No. 1 (2025)

 Cross-Validation: To reduce overfitting and increase
robustness of the model a k-fold cross-validation approach was
utilized.
 Model Training: We implemented GNNs through the
PyTorch Geometric framework, our hyperparameters such as
learning rate, dropout rate, and number of layers being tuned via
grid search.
Here the training process was about minimizing loss functions,
namely, categorical crossentropy loss for classification task. To
avoid overfitting and thus to generalize to unseen data, we
employed early stopping criteria. A GPU-accelerated environment
was used to train the models with the computational demands of
large scale graph processing.
Evaluation Metrics
A combination of evaluation metrics were used to assess each
machine learning models’ performance:
 Precision and Recall: These metrics were computed by the
model’s ability to correctly recognise influential nodes and reduce
the number of falsely positives.
o Precision: Percentage of correctly identified influential
nodes among all nodes classified as influential.
o Recall: Actual influential nodes identified by the model
as a proportion of actual present influential nodes.
 F1-Score: A harmonic mean between precision and recall,
contributing to an objective measure of model efficacy. F1-scores
that are high means that I can maintain a well balanced precision
and recall.
 Node Ranking Consistency: The machine learning models'
predictions were then validated by comparing the rankings of
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influential nodes produced by the machine learning models with
the rankings obtained from traditional centrality measures. This
meant that the models would follow with the well accepted
standards of network analysis.

The evaluation results showed that GNNs are able to capture
complicated relationships and locate super hubs. All metrics
showed that GNN-based models consistently outperform
traditional machine learning algorithm and, therefore, are suitable
application for Ethereum network analysis.
Implementation Tools and Environment
The following tools and frameworks are also used to process,
model and/or evaluate data:
 Python Libraries: The Python data manipulation, and
statistical analysis libraries are Pandas, NumPy, and SciPy.
 Graph Libraries: A use of Network-X for graph analysis and
visualization.
 Machine Learning Frameworks: We use scikit-learn in order
to implement traditional models and PyTorch Geometric to train
GNNs.
 Hardware: Efficient computation of large graph datasets by
using GPU acceleration with NVIDIA GPUs.
Summary
In this study, we adopt a methodology that combines cutting edge
machine learning algorithms and graph based analytics to find the
influential nodes in the Ethereum blockchain network. With strong
dataset, deriving useful features, and applying enhanced GNN
models, the thesis presented can be a scalable and accurate
framework for node analysis. The results are systematic and
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applicable, which helps to better understand the Ethereum network
dynamics and their optimization for future use cases.
Results and Discussion
A few important results of this work show the promise of machine
learning, and more importantly, graph models, for analyzing the
Ethereum network and discovering influential nodes. This
demonstrates how various models, especially Graph Neural
Networks (GNNs) still can capture the complexity of the
decentralized Ethereum system. This section discusses the behavior
of influential nodes and broader implications of the findings, and
concludes with a discussion of model performance.
Model Performance
Our results show that GNN can significantly outperform traditional
machine learning models. Gat's performed best (highest Accuracy
and F1 score) therefore they were selected for use with graph
structured data with complex relationships between nodes.
 Accuracy: GAT outperformed Random forest (87.2) and
traditional models in term of accuracy with 93.5%. The results of
this application on the combined use of node feature and graph
structure with GAT led to enhancement in accuracy.
 F1-Score: GAT achieved a well balanced trade off between
precision and recall with F1–score 0.91. In identifying influential
nodes, this performance metric is particularly critical as it
guarantees correct classification and as few false positives as
possible.
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Graph embeddings were then integrated to further increase model
performance. With techniques like Node2Vec which captured the
network’s relational structure, the models were able to distinguish
nodes based on their level of connectivity and the associated role
in the Ethereum ecosystem. The strong local and global properties
of networks were preserved in these embeddings, which enriched
input features and led to outstanding GNN performance.

Conventional models such as Support Vector Machines
(SVMs) and Gradient Boosting proved successful for certain tasks,
but unable to reach the predication of GNNs nor the scale GNNs
are capable of. This is their limitation, as they failed to exploit the
graph based relationships that define at the core of Ethereum’s
network dynamics.
Node Behavior Analysis
It was showed that influential nodes have specific behavior
patterns, depending on their influence to the network. Pattern in
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these are valuable in terms of understanding what makes a node
influential in the Ethereum context.
 High Connectivity: Nodes with high degree centrality were
shown to have initiated and engaged in consensus activities
frequently. They (these nodes) served as nodes that acted as hubs
for transaction propagation throughout the network. Having their
connections intact, they have a critical role to play in keeping
Ethereum’s throughput at speeds still digestible for Ethereum users.
 Smart Contract Activity: Higher influence was ranked on
nodes that had deployed or interacted with more than one smart
contract. It would also indicate the degree to which
programmability will be important in the Ethereum ecosystem,
where smart contracts are central. These nodes help make the
platform useful due to their support of decentralized applications
(DApps) as well as tokenized ecosystems.
 Temporal Stability: It was shown that the activity levels of
influential nodes were consistent with time, as opposed to sporadic
or transient behaviors. This indicates stability upon their retention
in service to support network operation. Less likely, the nodes with
temporal consistency represent the malicious or the fraudulent
activity, which consequently confirms their trustfulness inside the
decentralized system.



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

418

Vol. 3 No. 1 (2025)

Another interesting bit that arose from the analysis is that
Ethereum’s network is quite dynamic. However, certain nodes
experienced fluctuating levels of activity and would be heavily
impacted by things such as market conditions, gas fees, and
changes in users’ behavior.
Implications
Ethereum is the identification of the influential nodes in the
network is important for network optimization, security and
development protocol analysis. This study helps derive insights and
inform strategies to improve performance and robustness of
blockchain systems.
 Network Optimization
It allows transaction propagation and consensus mechanisms to be
optimised based upon node behavior. Critical pathway nodes act
as highly influential nodes that transmit transaction dissemination,
and can be used to enhance the transaction dissemination
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efficiency of the network. For instance, incentivizing participation in
these nodes for protocol upgrade or even targeting these nodes
for the improvement.
 Fraud Detection
Direct applications in fraud detection and network security lie in
the ability to identify influential nodes. Potentially suspicious
activity comes from anomalous nodes malforming patterns of
activity. Let’s take one instance for example, a node that quickly
increases its influence without aligning to the same transactional
stability can provide an indication of threat. The early detection of
such anomalies can stop attacks on the network such as double
spending or Sybil attacks.
 Protocol Development
The influence of each node in the network distribution can be
exploited to enhance protocol development and the effort to scale.
Ethereum, for example, goes from proof of work (PoW) to proof of
stake (PoS) which changes participation dynamics in nodes.
Designing staking mechanisms can be informed by insights into
influential nodes, so that these mechanisms end up incentivising
actual and sustained meaningful contributions by core participants
to the healthy operation of the protocol.
 Economic Insights
Furthermore, economic insights into Ethereum’s ecosystem can
also be found in the identification of influential nodes. Sometimes
this smart contract activity will be associated with nodes that are
driving decentralized finance (DeFi) applications or tokenized
projects. These nodes can then be monitored to provide hints on
market trends, user behavior and ecosystem growth.
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 Decentralization Metrics
Measuring degree of decentralization in Ethereum is a proxy using
distribution of influence between the nodes. Centralization risk can
be a highly concentrated influence, a more even distribution is a
healthier and decentralized system.
Comparative Insights
Comparing GNN based methods to traditional centrality measures
found alignments and aberrations in node selection. Degree
centrality and betweenness centrality often identified hubs through
the network, but GNNs did so with a more nuanced view that
included features related to smart contract interaction and
temporal trends of activity. The highlighted insights about the
limitations of only graph theoretic metrics in the dynamic
blockchain environments complement the holistic understanding
of the problem.
Limitations and Challenges
Some limitations and challenges remain, however, where the study
proves the efficacy of machine learning to identify influential nodes:
 Scalability: Furthermore, training GNNs with large scale
blockchain data presents high computational demands that are
well beyond the resources required in real time applications.
 Feature Engineering: Yet, obtaining sensible features from
Ethereum’s abstracted ecosystem is a non-trivial task which must
be approached with domain expertise and continual refinement.
 Dynamic Behavior: However, temporal variability of node
activity creates issues in maintaining up to date models, in
particular of rapidly evolving networks such as Ethereum.
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Future research can address these challenges with lightweight
GNN architectures, feature extraction automation, or the
integration of real time monitoring systems.
Conclusion
In particular, this work highlights the key role of machine learning
in blockchain analytics to find the most influential nodes within the
Ethereum network. To develop a robust and scalable framework to
analyze the intricate dynamics in Decentralized Systems, research
employs advanced graph based features and machine learning
models (Graph Neural Networks (GNNs)). In particular, the findings
emphasize the role that influential nodes play in assuring the
remaining ethical congregation for assistance and security along
with the entire network’s efficiency.

The research confirmed that the stability of the network
depends on these influential nodes for propagation of the
transactions and contribution towards Ethereum’s consensus
mechanisms. This study analyzes the unique characteristics of their
behavior and their impact on the market by analyzing their
constant connectivity, smart contract smart activity, temporal
stability and more. Using GNNs coupled with graph embeddings
increased to an F1 score of 0.91 against node classification. This
shows how graph-based machine learning techniques are better
than traditional methods at modeling the intricate relationships
among the complex decentralized Ethereum ecosystem.

In this work we show that machine learning can overcome
limitations of traditional graph theoretic approaches, and
contribute to this work. Although degree and betweenness
centrality measures are used to measure node influence, they do
not measure the influence of Ethereum’s network dynamically or
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multiple dimensions. We are able to perform a more holistic
analysis, including transaction patterns, smart contract interactions,
temporal metrics, all by incorporating advanced machine learning
models. This approach identifies key nodes, and also gives insight
into the role played in the wider Ethereum ecosystem by each
node.

These findings have implications. Network operators can
optimize transaction propagation, build stronger consensus
mechanisms and mitigate off security risks by identifying influential
nodes. Anomalies identified early in an influencing nodes can be
used to help prevent fraud and improve the network’s resilience.
Also, the node influence insights can help with the design of the
protocol for the future as Ethereum progresses with updates such
as transitioning proof of law. The identification and monitoring of
key nodes also serves as useful metrics in assessing the extent of
decentralization in the network, in blackbox fashion, ensuring that
Ethereum remains faithful to its core principles.

The study has acknowledged its limitations, even with its
contribution to it. Training GNNs on large scale blockchain data
presents scalability issues when we seek to use the trained model
in real time. Furthermore, feature extraction is still a very involved
task because of Ethereum’s array and dynamic ecosystem.
Improvement of the practical applicability of the proposed
framework will be of vital importance when addressing these
challenges.

Further research could add to this study by observing real
time node influence by continuous exposure to network dynamics
with streaming data. Explainable AI techniques, on the other side,
are more transformative by putting forward Explainability of
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machine learning models and making interpretability better with
ML predictions. Furthermore, node behaviour of different
blockchains can be compared and these insights could be helpful
in understanding decentralized systems.

Finally, scalability of decentralized networks via machine
learning is the contribution of this research to the growing
discipline of blockchain analytics. Through identifying and
analyzing influential nodes, not only network dynamics of
Ethereum are improved but the study also paves the road towards
innovations in blockchain security, scalability and efficiency. The
insights gained provide assurance that machine learning offers the
promise of being a defining tool in building the future
decentralized systems.
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