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Abstract
In this paper, Our focus is to obtain the appropriate conditions for
the convolution operator = (t) = (1) (t) that belongs

to actual classes  ( ,d), ( ,&)and .
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Introduction and Beginnings
Assume that A is the category of functions of type
)=+ 7, , (1)

All functions in s that are univalent in U fall into the class S, and

() is analytic in the open unit disc U = {t: |t] < 1}.The classes
of starlike and convex functions of order a are delimited by (&)
and ((@), respectively, and are defined as follows:
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(@) ={ :  Aand (—()))>0( U,a [04]
and
qo)={ : Aand (1+ —=2)>a Ua [01]
this is evident that
0) = q0)=¢

These classes were firstly showed by, The Robertson in (1936), see
[1, 2] for further details. Uniformly starlike functions ( ) and
uniformly convex functions (UCV) were first proposed by Goodman
[3, 4] in 1991. If the mapping of () is convex for any circular arc
T that is contained in the (OUD) open unit disc, it also has the

center in it. then the function Ais uniformly convex(UC).

In 1992 Minda and Ma [5] and in 1993 Ronning [6] showed that
freely:

1.1(Uniformly Convex Function)

In the open unit disc, a function A is uniformly convex if and
only if

(1+ %)>| & 2)
0

5 lies in the parabolic area, In the open

unit disc, we can state that a function A is uniformly convex
(UQ.
1.2(K-Uniformly Convex Functions)

Alternatively, if 1+

A function Aisin if

(=5)> =51l 3

The subcategories of K —uniformly convex functions of order a and
a new category related with the starlike functions are then shown.
Bharati et al. defined these groups in (1997) [7] explained as
follows:
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Definition 1.3 A function Aisin ( ,0)ifand only if

] 1+ =5)> |=2|+a L@
where0 < <o O<sda<1

The class ( ,8) defined can be built by using the Alexander
transform as follows:
Definition 1.4 A function ( ,&) “if and only if

(.
In 1997 Ronning and Ponnusamy [8] were hosted the classes ¢
and ¢ . These classes shown as follow:
Definition 1.5 A function A and

5 |<e. C £>0), (5)
then c.
Definition 1.6 A function A and
©6) FO-1]<e ¢ ve>
0),
then c.

In 2004 Swaminathan [9], was presented a class F"(”)é . This

class will perform a very significant role in our main outputs. The
class D _is defined as:
Definition 1.7 A function A and fulfils
(1-9)—+5 ‘()1
2 (1-A)+(1-9)—2+5 '()-1

<1, (7)

where rji<landt , 4 [0,1) belongs ( ) to the complex

numbers except 0, then P‘(”)é :

Remark 1.8. If = cos |, (_E’ ) then the class

2
P‘(”)é can also be defined as:
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- ) t 0 .
FO = A { (1-8)-2+5 ®-1}>0, (8)

Yu. N. Rabotnov in 1948 [10] presented a unique function used in
viscoelasticity. Rabotnov's discoveries to solid mechanics included
nonelastic stability, plasticity, shell theory, genetics, failure
mechanics, creep theory, and composites. The Rabotnov function,
also referred to as the Rabotnov fractional exponential function or
simply the Rabotnov function, has the following definition.

p=a > — 9
a (U= =0 (( +1)(1+a)) 2

We discussed on some of the geometric features of the following
normalized form of Rabotnov function.

_ o _ T+ ,
o O=t+ "o (10)

1.9 Convolution

Applications for the Hadamard or Convolution product have
multiple uses in the field of geometric function theory. This section
provides a definition for the term convolution.

Definition 1.10 The Hadamard convolution of the functions of
class A is defined by

( ) = + %, t )

here () and () are convergent power series in the open unit

disc.
Now, we discuss about the importance of convolution operator
o= ., ® (©
_ oo “1r1+a) L oo
=t+ n(1+a) ) - T =
_ T+
Where =gy ™

In our current work we discover some adequate conditions below
which the convolution operator ~~ (t) = (1) ()
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belonging to the actual classes ( ,&),Ucv( ,d),,and ¢ .

Following Following lemmas are required for the proof of main

results.
Lemma 1.11 [7] A function Ais in ( ,@)ifit assure
L @+ )-(+a}l I=s1-a
(11)
Lemma 1.12 [7] A function Aisin ( ,d)ifitassure
L, { @+ )-( +a) Isi-a
(12)
Lemma 1.13 [9] If P‘(’”é is explained in (7) , then
2| |(1-7)
| Sm (13)
Lemma 1.14 [11] If A and fulfil
00:2(?4_ _1)S? / 3>0
(14)
Then 3
Lemma 1.15 [11] If A and satisfy
“L,03+ D=7 , 3=0
(15)
Then 3

Lemma 1.16 [12] If K € N and & > 0, then

(1T +a K-1TK-D'IT +a& <T(1T+ & K).
(16)
Lemma 1.17 [13] Suppose S and have form (1). If for
some ,0 < < oo, the inequality

"o (=D s

1
( +2)

holds, then — UCV . The number 1/ + 2 cannot be
increased.

(17)
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Remark 1.18. The circumstances defined in (11), (12), (14) and (15)_
are also essential if A of the form of

O= -7, ,

o)}
o

Main Results

These central results are the connection between the more than a
few subclasses of analytic functions by using Rabotnov functions.
For additional information about that type of link with Bessel
functions and hypergeometric functions see [ 8, 9, 11, 14, ].
Theorem 2.1 Suppose p > O,A > —l1landa [0,1) with
inequality such that

2(1 — 1+a
C=D G _na( -a)=i-a
9 a
If Pf(”)é,a’ [0,1) and
N < 1,thenthe convolution operator  (t) UCV ( , &).
Proof. Consider
M= O (©).
_ 0o _1/_(1+ ) o 0o
U eTmae)) -t =
_ Tlra+a
Where Ry am-
To display that the convolution
operator () UCV( ,@). From Lemma 1.11 we will verify
that
= mm+ )= ( +8))anl <1-a
Now

“_,m{m(1+ )—( +da)} (151)”:)

, o 1 1
<20 -meos ", { @+ )= ( +*Dwma sy Ta D

(18)
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Since, m i = 2 therefore (2) becomes
, fm(1+ )-( +a)} ,«15:;(})) |
_2(- r])cos 1 oo “ri+a) ~\ oo 1r1+4)
{d+) =2 ((1+c7) ) ( +G) ((1+a) )}
_20- rl)cos { (m—1) :noz (21:(;;:3)}
( ) /’(1+a)} (19)

=2 r((1+a) )
By using the inequalities

BMLr(1+&) 1 1\ me1
(am = - G forall m = 2
1+ 1+(x}

o+ (m—8);

6

_ 2(1 —n) cos { (m 1)

= LD M- ()

6

:2(1—r'})cos 1+a{ ( —1)+(m—d)}.

]

1+a

Equation (19) becomes

__2(1—n)cos {
o 7} 1+a

m-D+( —-d)} <1-a

Hence, the theorem's proof is complete.

Theorem 2.2 SupposeA > — 1,4 > OandQ
[0, 1) with inequality such that

2(1 — n)cos 1 1+@

( ;‘) — ( ){< “p+( —a)=1-a

If A\ < land 4

[0, 1) , then the convolution operator (1) ( ,0).

Proof. Consider
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®= 0 ()
— 00 ERACSYY) - 00
=2 (1+a) ) =t o
“1r1+a)
Where =———=—a
n(1+a) )
Toshowthat = (t) UCV( ,d).is a convolution operator. We

will show from Lemma 1.11 that

m{m(1+ )—( +&)}anl=1-d

m=2
Now

Bm 1
m=2 m{m(l + ) - ( G)} r((li(al)}rno;) |am|

. oo <\ /(1+8 1
=21 —-ncos “_, {m+ )-( +a)} r((1f;)+a)) Sveram

(20)
. 1 1
Since, TA DS ==, = 2 therefore (2) becomes
_ pm— lF(1+0()
n:2 m{m(l + ) ( G)} r((1+a)m)
_20- r]) cos B Ir(1+a)

a+ ) 2B hg =

m=2 T ((1+&)m) m=2 (e am) |

_ 201~ n)cos {m-1 = ((li(clr;ncg)} (-4 ((1:(;;3)
(27)
By using the inequalities
a+a 1 > 2

Q+a) — 1+a _( -1
Equation (21) becomes
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-1

{ ( - )(1+a) LC D! ( _ﬁ)(1+ﬁ) ¢ -
(22)

— 201 n)COS

( —!=5 1t =2

(1+ ﬁ;l 1 = (1151) N

So equation (22) becomes

= -n(E) T e —aE) T

and

__2(1—n)cos 1
s (g
__2(1—n)cos 1 1+4a ~\ 1+a
=S -0 (-9
__2(1—n)cos 1 1+a4 ~
- P 5 1) ﬁ{( -D+( -a)}
<1l-4a
Hence, the theorem's proof is complete.
Theorem 2.3 Suppose,t > 0,A > —land &

[0, 1) with inequality such that
2(1 — n) cos 1+ 4
Ve (3=
] a
If A A <1,4 [0,1)and3> 0 , then the convolution

operator (1) 5 -
Proof. To prove that the convolution operator (1) 3
from Lemma 1.14, we will verify that

LA+ DI =3

“tri+a)
Where A /_((1"'—0')) . for =2
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To verify that the convolution operator () 5 - By the
Lemma 1.14 we will prove that
_ o _ “ru+a)
= LG+ Drmay ||
L2 -fes A L g O+,
g :2/'((1+c”r) ) /‘((1+c”r) )
By using the inequalities
“11+a) 1 1 1
r(1+a) ) = (1+a) _, (1+c7) m =2
2(1—n) cos 1 . 1
== {1_%+(’1 1)1_%}.
1+a 1+4
2(1—n) cos 1+4 1+4
=" { = ~(3-1) 77}
__2(1—n)cos 1+4a
N P {q' d}
< 3.
Hence, the theorem's proof is complete.
Theorem 24 Consider p > O,A > —land &
[0, 1) with inequality such that
1+ 4
a{ 2+a+ 2- }=s1-a
a
Then  (images () Sinto ( ,4).
Proof. Consider
o= 0 (0.
_ oo “1r1+a) _ oo
= 7 = n(+a) ) = T =
_ T+
Where B CTE)
The convolution operator ~ (t) alters (t) S into ( ,a”')

to show this. Lemma 1.12 will be used to show that

316



Vol. 3 No. 1 (2025)

Spectrum of Engineering Sciences

Online ISSN
SPECTRUM OF | 3007-3138
ENGINEERING Print ISSN
SCIENCES | 3007-312x

m{m(1+ )—( +d)}llan|=1-4

Now

+ )—( +4 g
()= (D)

( N ° _1/_(l+f)")
(1+) _, M(1+a) )
. i+

\ ( ) :2/'((1+07) )

( N T2 1+ 4)

a+) ) /'((1+c7))

< e " i1+ 4)

\ ( ) :2/'((1+c’7) )

((° 2 11+ 4) . ® 2 11+ a)
) /'((1+c’7)) ) /‘((1+c”r) )
s ) s ¢S
\ :2/'((1+c’7) ) :2/'((1+c’7) )

( 2 T M+ a)
( “+a :
_) ) Lr((1+a) )
N ” _1/_(1+d).
\ ( g :2/'((1+c’7) )

By using the inequalities

“1ra+a) 1 _ 1 1
n(1+4) ) = (+a) _, (1+c7)

m= 2
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( 2+ a)(——)
1+4

= 1
+ (2-1D——)
1+4a
§
( 2+ ——
1- -
1+a
:{ 1
+ ( 2_1) 1
1- ~
\ 1+4a
( 1+4d
( 2+a)——
= < 1 »
+
+ ( ?-— ~a

_ 144

_7{ 2+ 4+ ?2- }=s1-a.
This completes the proof of Theorem.
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